Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 113
Filter
1.
Sci Rep ; 14(1): 20413, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39223258

ABSTRACT

The Climate Suitability Index (CSI) can increase agricultural efficiency by identifying the high-potential areas for cultivation from the climate perspective. The present study develops a probabilistic framework to calculate CSI for rainfed cultivation of 12 medicinal plants from the climate perspective of precipitation and temperature. Unlike the ongoing frameworks based on expert judgments, this formulation decreases the inherent subjectivity by using two components: frequency analysis and Particle Swarm Optimization (PSO). In the first component, the precipitation and temperature layers were prepared by calculating the occurrence probability for each plant, and the obtained probabilities were spatially interpolated using geographical information system processes. In the second component, PSO quantifies CSI by classifying a study area into clusters using an unsupervised clustering technique. The formulation was implemented in the Lake Urmia basin, which was distressed by unsustainable water resources management. By identifying clusters with higher CSI values for each plant, the results provide deeper insights to optimize cultivation patterns in the basin. These insights can help managers and farmers increase yields, reduce costs, and improve profitability.


Subject(s)
Climate , Plants, Medicinal , Rain , Plants, Medicinal/growth & development , Agriculture/methods , Artificial Intelligence , Geographic Information Systems , Temperature
2.
Plants (Basel) ; 13(14)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39065445

ABSTRACT

Zinc (Zn) deficiency represents a significant global concern, affecting both plant and human health, particularly in regions with Zn-depleted soils. Agronomic biofortification strategies, such as the application of Zn fertilizers, offer a cost-effective approach to increase Zn levels in crops. This study aimed to assess the efficacy of soil and foliar Zn biofortification, applied as an aqueous solution of 0.5% zinc sulphate (ZnSO4·7H2O), on triticale (x Triticosecale) grown under Mediterranean conditions. The study was conducted over two growing seasons (2017/18 and 2018/19) in southern Spain, evaluating the effects on biomass yield; forage quality, including crude protein, Van Soest detergent fiber, organic matter digestibility, and relative forage value; and nutrient accumulation. Soil treatment consisted in the application of 50 kg of ZnSO4·7H2O ha-1 solely at the beginning of the first campaign to assess the residual effect on the second year. In contrast, the foliar treatment consisted of two applications of 4 kg of ZnSO4·7H2O ha-1 per campaign, one at the beginning of tillering and the other at the appearance of the first node. The foliar application increased the Zn content of the forage to adequate levels, while the soil application resulted in a 33% increase in biomass production, which is particularly beneficial for farmers. Overall quality was favored by the combined soil + foliar application, and no adverse antagonistic effects on other nutrients were detected. Instead, a synergistic interaction between Se and Zn was observed, which improved the efficacy of this important micronutrient for livestock and human wellbeing.

3.
J Sci Food Agric ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822542

ABSTRACT

BACKGROUND: The Songhua River Basin, a vital grain-producing area in China, faces challenges due to the uneven distribution of water resources and the intensive water demands of agriculture. To enhance agricultural development and effectively manage water scarcity, it is essential to identify the water-saving potential of major staple crops - corn, wheat, and rice. This study enhances the World Food Studies (WOFOST) model by refining the day of year for the developmental vegetative stage (DVS), thereby improving the representation of phenological stages for spring maize, spring wheat, and rice within the model. This refinement offers a detailed analysis of the potential and rainfed yields. RESULTS: The results from the modified WOFOST model show promising simulation outcomes for the biomass and yield of maize, wheat, and rice, with Nash-Sutcliffe efficiency (NS) and index of agreement (IoA) values all exceeding 0.7. An analysis of photothermal potential yields (Yp) and rainfed yields (Yr) revealed minimal differences in yields for spring maize and rice across various rainfall frequencies. Specifically, the average photothermal utilization rates (LTs) are 93.57% for maize and 85.25% for rice. In contrast, the rainfed yield for wheat is lower than its photothermal yield, with an LT of 43.66%. CONCLUSIONS: These findings suggest that in the Songhua River Basin, maize and rice offer greater potential for water conservation compared to wheat. It is recommended to judiciously reduce irrigation during the growing seasons of spring maize and rice to help alleviate agricultural water use pressures. © 2024 Society of Chemical Industry.

4.
Sci Total Environ ; 927: 172205, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38599397

ABSTRACT

Adaptation measures are essential for reducing the impact of future climate risks on agricultural production systems. The present study focuses on implementing an adaptation strategy to mitigate the impact of future climate change on rainfed maize production in the Eastern Kansas River Basin (EKSRB), an important rainfed maize-producing region in the US Great Plains, which faces potential challenges of future climate risks due to a significant east-to-west aridity gradient. We used a calibrated CERES-Maize crop model to evaluate the impacts of baseline climate conditions (1985-2014), late-term future climate scenarios (under the SSP245 emission pathway and CMIP6 models), and a novel root proliferation adaptation strategy on regional maize yield and rainfall productivity. Changes in the plant root system by increasing the root density could lead to yield benefits, especially under drought conditions. Therefore, we modified the governing equation of soil root growth in the CERES-Maize model to reflect the genetic influence of a maize cultivar to improve root density by proliferation. Under baseline conditions, maize yield values ranged from 6522 to 12,849 kgha-1, with a regional average value of 9270 kgha-1. Projections for the late-term scenario indicate a substantial decline in maize yield (36 % to 50 %) and rainfall productivity (25 % to 42 %). Introducing a hypothetical maize cultivar by employing root proliferation as an adaptation strategy resulted in a 27 % increase in regional maize yield, and a 28 % increase in rainfall productivity compared to the reference cultivar without adaptation. We observed an indication of spatial dependency of maize yield and rainfall productivity on the regional precipitation gradient, with counties towards the east having an implicit advantage over those in the west. These findings offer valuable insights for the US Great Plains maize growers and breeders, guiding strategic decisions to adapt rainfed maize production to the region's impending challenges posed by climate change.


Subject(s)
Climate Change , Crops, Agricultural , Plant Roots , Zea mays , Zea mays/growth & development , Zea mays/physiology , Plant Roots/physiology , Plant Roots/growth & development , Crops, Agricultural/growth & development , Agriculture/methods , Crop Production/methods , Rain
5.
Plants (Basel) ; 13(6)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38592749

ABSTRACT

Quinoa (Chenopodium quinoa Willd.) is a promising and versatile crop due to its remarkable adaptability to diverse environments and the exceptional nutritional value of its seeds. Nevertheless, despite the recent extensive research on quinoa seeds, the straw associated with this crop has received comparatively little attention. The valorisation of this by-product provides an opportunity to improve the overall outcomes of quinoa cultivation. In this work, three quinoa varieties were evaluated for two years (2019 and 2020) under three different Mediterranean water environments (irrigation, fresh rainfed, and hard rainfed), aiming to assess the straw yield and nutritional quality and to study the changes in the crop nutritional uptake associated with different water environmental conditions. The nutritional analysis included the quantification of the ash, crude protein, crude fat, minerals (P, K, Ca, Mg), and fibre (gross fibre (GF), acid detergent fibre (ADF), neutral detergent fibre (NDF), acid detergent lignin (ADL), hemicellulose, cellulose) contents. As the results reveal, most of the parameters evaluated were susceptible to change mainly with the water environment but also with the genotype (or their interaction), including the yield, crude protein, relative feed value (RFV), and mineral content, which generally decreased under water-limiting conditions. Moreover, a comparative analysis revealed that straw Ca, Mg, and K contents were generally higher than in seeds. Overall, this study demonstrates that quinoa straw quality is genotypic and environmentally dependent, and these factors should be considered when aiming at improving straw feed value for livestock nutrition.

6.
Front Plant Sci ; 15: 1260690, 2024.
Article in English | MEDLINE | ID: mdl-38525151

ABSTRACT

Chickpea, renowned for its exceptional nutritional value, stands as a crucial crop, serving as a dietary staple in various parts of the world. However, its productivity faces a significant challenge in the form of drought stress. This challenge highlights the urgent need to find genetic markers linked to drought tolerance for effective breeding programs. The primary objective of this study is to identify genetic markers associated with drought tolerance to facilitate effective breeding programs. To address this, we cultivated 185 chickpea accessions in two distinct locations in Lebanon over a two-year period, subjecting them to both irrigated and rain-fed environments. We assessed 11 drought-linked traits, including morphology, growth, yield, and tolerance score. SNP genotyping revealed 1344 variable SNP markers distributed across the chickpea genome. Genetic diversity across populations originating from diverse geographic locations was unveiled by the PCA, clustering, and structure analysis indicating that these genotypes have descend from five or four distinct ancestors. A genome-wide association study (GWAS) revealed several marker trait associations (MTAs) associated with the traits evaluated. Within the rainfed conditions, 11 significant markers were identified, each associated with distinct chickpea traits. Another set of 11 markers exhibited associations in both rainfed and irrigated environments, reflecting shared genetic determinants across these conditions for the same trait. The analysis of linkage disequilibrium (LD) highlighted two genomic regions with notably strong LD, suggesting significant interconnections among several investigated traits. This was further investigated by the correlation between major markers associated with these traits. Gene annotation of the identified markers has unveiled insights into 28 potential genes that play a role in influencing various chickpea drought-linked traits. These traits encompass crucial aspects such as blooming organ development, plant growth, seed weight, starch metabolism, drought regulation, and height index. Among the identified genes are CPN60-2, hsp70, GDSL(GELP), AHL16, NAT3, FAB1B, bZIP, and GL21. These genes collectively contribute to the multifaceted response of chickpea plants to drought stress. Our identified genetic factors exert their influence in both irrigated and rainfed environments, emphasizing their importance in shaping chickpea characteristics.

7.
Heliyon ; 10(4): e25540, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38370218

ABSTRACT

The vast cultivation of lemongrass (Cymbopogon flexuosus) as an essential oil-bearing plant worldwide relies heavily on its compound citral that holds immense industrial potential. Soil fertility practices greatly affect the growth and quality of these plants, with a majority of the agricultural land globally grappling with water scarcity. In this respect, field experiments were conducted at the University of Embu research farm during the November 2021-September 2022 growing period and aimed to investigate the influence of two different factors, namely; (i) two watering regimes (rainfed and irrigated) and (ii) four soil conditioner levels (control (T1), cow manure (T2), cow manure plus NPK fertilizer (T3), and NPK fertilizer alone (T4)) on the growth and essential oil parameters of C. flexuosus. The field trials were arranged in a split-plot design with three replicates for each treatment. The essential oil from C. flexuosus was obtained using steam distillation method and analyzed for quality using gas chromatography with mass spectrometry (GC-MS) technique. Results revealed that treatments T4 and T3 improved the growth of C. flexuosus under rain-fed conditions, implying the plant's sensitivity to soil fertility practices and watering regimes. Herbage from rain-fed plants harvested after 120 days had high oil content, ranging from 0.17 to 0.23 %, while herbage from irrigated plants harvested after 180 days had the lowest oil content, ranging from 0.11 to 0.17 %. Using GC-MS, the main components of C. flexuosus oil were citral (75.97-87.70 %), geranyl acetate (0.80-4.91 %), geraniol (0.80-4.26 %), isogeranial (1.83-3.45 %), and isoneral (1.29-2.78 %). Notably, citral, a racemic mixture of geranial and neral, was found in a high concentration (87.70 %), meeting the acceptable international market standards for its use. Altogether, the major oil compounds, oil yield and growth properties of C. flexuosus in this experiment differed as a function of different soil conditioners under the two watering regimes, and so with the time scale. The outcomes of this research highlight implications for enhancing and bolstering the production of high-value lemongrass oil in Kenya, where it holds potential significance as a vital economic and export-oriented crop.

8.
Sci Total Environ ; 917: 170190, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38278221

ABSTRACT

The intensive agriculture practices improved the crop productivity but escalated energy inputs (EI) and carbon foot print (CF) which contributes to global warming. Hence designing productive, profitable crop management practices under different production systems with low environmental impact (EI and CF) is the need of the hour. To identify the practices, quantification of baseline emissions and the major sources of emissions are required. Indian agriculture has diversified crops and production systems but there is dearth of information on both EI and CF of these production systems and crops. Hence the present study was an attempt to find hot spots and identify suitable strategies with high productivity, energy use efficiency (EUE) and carbon use efficiency (CUE). Energy and carbon balance of castor, cotton, chickpea, groundnut, maize, rice (both rainfed and irrigated), wheat, sugarcane (only irrigated), pigeon pea, soybean, sorghum, pearl millet (only rainfed) in different production systems was assessed. Field specific data on different crop management practices as well as grain and biomass yields were considered. Rainfed production systems had lower EI and CF than irrigated system. The nonrenewable sources of energy like fertilizer (64 %), irrigation (78 %), diesel fuel (75 %) and electricity (67 %) are the major source of energy input. Rainfed crops recorded higher CUE over irrigated condition. Adoption of technologies like efficient irrigation strategies (micro irrigation), enhancing fertilizer use efficiency (site specific nutrient management or slow release fertilizer), conservation agriculture (conservation or reduced tillage) rice cultivation methods (SRI or Direct seeded rice) were the mitigation strategies. These results will help policy makers and stake holders in adoption of suitable strategies for sustainable intensification.

9.
Plant Physiol Biochem ; 207: 108380, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38244389

ABSTRACT

It is crucial to clarify the physiological responses of wheat (T. aestivum) plants to source-sink manipulation and assimilation transportation under drought stress during domestication of dryland wheat. In this research, a two-year field experiment was conducted using nine wheat cultivars in a semiarid site of northwest China. The source-sink manipulation treatments including defoliation of flag leaves and 50% removal of ears were applied at the anthesis stage under two levels of drought stress conditions i.e. progressive water supply (PWS) and rainfed drought treatment (RDT). Our results indicated that drought stress reduced the dry weight of leaves, sheaths and stems, as well as caused a significant yield reduction. High ploidy wheat exhibits a greater capacity to sustain higher grain yields when subjected to drought stress, primarily due to its stronger buffer capacity between source supply and sink demand. All wheat species with different ploidy levels had a certain degree of source limitation and sink restriction. During the domestication of wheat, the type of source and sink might be ploidy-dependent with progressive water deficit, but similar interactive relationships. The source-sink ratio of tetraploid species was the largest, while that of hexaploid species was the lowest.


Subject(s)
Triticum , Water , Triticum/genetics , Domestication , Edible Grain , Plant Leaves/physiology
10.
J Sci Food Agric ; 104(2): 1154-1165, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37735953

ABSTRACT

BACKGROUND: Drought affects the characteristics of water use during crop production and so quantitatively evaluating the impacts is important. However, it remains unclear how crop water use responds to drought. To address this gap, water footprint (WF) and standardized precipitation evapotranspiration index (SPEI) were calculated by remote sensing approaches to assess the effects of drought on crop water use. Rainfed maize is the most important crop in Jilin Province, and its growth and water use are more susceptible to drought. The present study explored not only the impact of growing season drought on the maize WF values in Jilin Province, but also the response of WF values to drought at different time scales. RESULTS: Spatially, 72.94% of the WFblue pixels showed a non-significant increase, and the WFgreen in 68% pixels decreased significantly, being mainly concentrated in the middle region. Furthermore, the pixels affected by monthly time scale drought were mainly in the middle region, whereas the pixels affected by annual time scale drought were mainly in the western region. CONCLUSION: Drought not only affected on the source and structure of agricultural water consumption, but also had different effects on WF values at different time scale. These effects had obvious spatial differences. The present study systematically explored the effects of drought on the WF values for rainfed maize in different climate regions and a consideration of these effects could provide valuable information on rainfed maize growth and the agricultural water use response to a changing climate. © 2023 Society of Chemical Industry.


Subject(s)
Droughts , Zea mays , Remote Sensing Technology , Water/analysis , Agriculture , China
11.
Plant Physiol Biochem ; 206: 108280, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38103337

ABSTRACT

Soil calcium (Ca) and magnesium (Mg) mineral states in rain-fed arid regions of Northwest China are inefficient, and their levels of substitution and water-soluble states are far below the lowest threshold required for maize growth, resulting in frequent physiological diseases, restricting synthesis of kernel protein (CRP). Our study set up different levels of foliar spraying of Ca and Mg fertilizers before maize pollination to examine the response characteristics of physiological and biochemical indicators in kernel, and the driving process of CRP synthesis. The main findings were: (1) Ca and Mg significantly increased the levels of CRP and endogenous hormones, and the activities of defense enzymes and CRP synthesis enzymes, which decreased significantly and stabilized at the maturity stage of maize. (2) The synthesis and accumulation of CRP were synergistically regulated by endogenous hormones, defense enzymes, and CRP synthase enzymes, with the degree of regulation varying with the level of Ca and Mg supplementation. Indole-3-acetic acid (IAA), gibberellin (GA), zeatin riboside (ZR), catalase (CAT), malondialdehyde (MDA), and glutamate dehydrogenase (GDH) were the primary physiological driving indicators of CRP synthesis, with CRP having a significant synergistic relationship with CAT and a remarkable trade-off with other driving indicators. (3) The dominant driving pathway of CRP synthesis was "Ca, Mg-IAA or GA or ZR-CAT-GDH-CRP". Ca and Mg positively affected IAA and GA levels, and IAA and GA positively regulated CAT activity. However, CAT negatively regulated GDH levels, causing GDH to negatively influence the synthesis and accumulation of CRP and its components. The findings provide theoretical support for further study of inter-root endogenous hormones and soil microbe-driven processes in the regulation of maize quality by Ca and Mg.


Subject(s)
Plant Growth Regulators , Zea mays , Plant Growth Regulators/metabolism , Zea mays/metabolism , Magnesium/metabolism , Hormones/metabolism , Soil
12.
Data Brief ; 51: 109754, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38075626

ABSTRACT

This data article presents a dataset that analyzes the trends in climatic factors and rice yield in Cotabato Province, a key contributor to the country's rice output. The dataset was collected from the Office of the Provincial Agriculturist and NASA's POWER Prediction Of Worldwide Energy Resources (POWER) dataset agro-climate dataset from 2007 to 2021. Moreover, the data was processed using Extract, Transform, and Loading (ETL) method, and multivariate linear regression analysis was conducted to identify the agro-climates that significantly influence the production of irrigated and rainfed rice. Further, the explanatory factors that significantly influence the production of rice were determined and presented in an Analytical Dashboard. The dataset has great reuse potential for predictive analytics research at the municipal level, which can provide more detailed insights into the agro-climates of different municipalities in Cotabato Province. Moreover, the dataset can also be used to distribute different varieties of rice that can withstand the effects of climate change to the municipalities of Cotabato. Overall, this dataset provides valuable insights into the relationship between agro-climate and rice production in Cotabato Province and can inform future decision-making and resource allocation in the region.

13.
Plants (Basel) ; 12(24)2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38140518

ABSTRACT

A major portion of maize is produced under rainfed conditions in the tropics with relatively poor yield because of the unpredictable and irregular distribution of seasonal rainfall, as well as a decline in pre-rainy season rainfall due to climate change, so identification of sustainable production options is utmost needed. Thus, the present studies were conducted in a greenhouse (GH) to ascertain the water stress-tolerant traits of maize and at the field level in the tropical environment of Thailand to see the stimulating possibility of the ascertained traits in a locally popular cultivar using ethephon. Depending on tolerance level, three maize genotypes (Suwan 2301 > Suwan 4452 > S 7328) were tested under different water conditions-well-watered, short-term, and long-term water stress-in the GH. At the field level, the locally popular maize cultivar Suwan 5819 was examined with six ethephon levels (doses in g a.i. ha-1 of ethephon, i.e., T1, 281 at V6 stage; T2, 281 at V6 + 281 at V10 stage; T3, 281 at V10 stage; T4, 562 at V6 stage; T5, 562 at V6 + 562 at V10 stage; T6, 562 at V10 stage) against no ethephon application (T0) under rainfed conditions. Maize suffered from the scarcity of sufficient rainfall during 26-39 days after planting (DAP) and 43-63 DAP in the field. The yield index (YI) was identified from biplot analysis as one of the suitable standards for drought tolerance checks for maize at GH as well as at field level in the tropics. The YI value of observed agro-physio-biochemical traits of maize in GH showed that relative water content (RWC, 1.23), stem base diameter (SBD, 1.21), total soluble sugar (TSS, 1.15), proline (Pr, 1.13), aboveground plant biomass (APB, 1.13), root weight (RW, 1.13), relative growth rate (RGR, 1.15), specific leaf weight (SLW, 1.12), and net assimilation rate (NAR, 1.08) were the most desirable. Efforts were made to stimulate these traits under water stress at the field level. Ethephon application as T1 helped to gain higher kernel yield (KY) (5.26 t ha-1) with the support of higher RWC (90.38%), proline (24.79 µmol g-1 FW), TSS (1629 mg g-1 FW), SBD (24.49 mm), APB (271.34 g plant-1), SLW (51.71 g m-2), RGR (25.26 mg plant-1 day-1), and NAR (0.91 mg cm-2 day-1) compared to others, especially no ethephon application. Furthermore, the attributes SLW, SBD, Pr, heat utilization efficiency (HUE), 100-kernel weight, TSS, electrolyte leakage, and lodging percentage showed a substantial direct effect and significant correlation with KY. Aside from higher KY, ethephon application as T1 tactics resulted in higher values of energy efficiency (1.66), HUE (2.99 kg ha-1 °C days-1), gross margin (682.02 USD ha-1), MBCR (3.32), and C absorption (6.19 t C ha-1), indicating that this practice may be a good option for maize sustainable production under rainfed conditions.

14.
Front Plant Sci ; 14: 1268014, 2023.
Article in English | MEDLINE | ID: mdl-38023922

ABSTRACT

Climate change is considered a serious threat to agriculture and food security. It is linked to rising temperatures and water shortages, conditions that are expected to worsen in the coming decades. Consequently, the introduction of more drought-tolerant crops is required. Quinoa (Chenopodium quinoa Willd.) has received great attention worldwide due to the nutritional properties of its seeds and its tolerance to abiotic stress. In this work, the agronomic performance and seed nutritional quality of three quinoa varieties were studied during two consecutive years (2019-2020) under three water environmental conditions of Southwestern Europe (irrigated conditions, fresh rainfed, and hard rainfed) with the goal of determining the impact of rainfed conditions on this crop performance. High precipitations were recorded during the 2020 growing season resulting in similar grain yield under irrigation and fresh rainfed conditions. However, in 2019, significant yield differences with penalties under water-limiting conditions were found among the evaluated environmental conditions. Furthermore, nutritional and metabolomic differences were observed among seeds harvested from different water environments including the progressive accumulation of glycine betaine accompanied by an increase in saponin and a decrease in iron with water limitation. Generally, water-limiting environments were associated with increased protein contents and decreased yields preserving a high nutritional quality despite particular changes. Overall, this work contributes to gaining further knowledge about how water availability affects quinoa field performance, as it might impact both seed yield and quality. It also can help reevaluate rainfed agriculture, as water deficit can positively impact the nutritional quality of seeds.

15.
Plants (Basel) ; 12(20)2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37896063

ABSTRACT

Rice (Oryza sativa) is a major crop and a main food for a major part of the global population. Rice species have derived from divergent agro-climatic regions, and thus, the local germplasm has a large genetic diversity. This study investigated the relationship between phenotypic and genetic variabilities of yield and yield-associated traits in Aus rice to identify short-duration, high-yielding genotypes. Targeting this issue, a field experiment was carried out to evaluate the performance of 51 Aus rice genotypes, including 50 accessions in F5 generation and one short-duration check variety BINAdhan-19. The genotypes exhibited a large and significant variation in yield and its associated traits, as evidenced by a wide range of their coefficient of variance. The investigated traits, including days to maturity (DM), plant height (PH), panicle length (PL) and 1000-grain weight (TW) exhibited a greater genotypic coefficient of variation than the environmental coefficient of variation. In addition, the high broad-sense heritability of DM, PH, PL and TW traits suggests that the genetic factors significantly influence the observed variations in these traits among the F5 Aus rice accessions. This study also revealed that the grain yield per hill (GY) displayed a significant positive correlation with PL, number of filled grains per panicle (FG) and TW at both genotype and phenotype levels. According to the hierarchical and K-means cluster analyses, the accessions BU-R-ACC-02, BU-R-ACC-08 and R2-36-3-1-1 have shorter DM and relatively higher GY than other Aus rice accessions. These three accessions could be employed in the ongoing and future breeding programs for the improvement of short-duration and high-yielding rice cultivars.

16.
Heliyon ; 9(8): e18727, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37560645

ABSTRACT

Rainfed farming is a dominant agricultural system in Tigray, Ethiopia. However, rainfall is characterized by short duration, intense and erratic subjected to late-onset and early cessation, suggesting a pressing need for Supplemental Irrigation (SI) to fill the crop water demand. Understanding the effects of SI during rainfall late-onset, early cessation, or both, along with their underlying causes, is a critical knowledge gap globally. Although wheat is one of the principal food crops in Tigray, it is subjected to moisture stress during critical growth stages, limiting its potential productivity. Studies specifically related to impacts due to the late-onset of rainfall on wheat are non-existent. Here, we investigated the agrometeorological characteristics of rainfall variability, onset, cessation, and length of the growing season to evaluate the use of SI for balancing the moisture stress in rainfed farming. Meanwhile, using an on-farm experiment, we also evaluated double-season (2017 and 2018) SI application during late-onset (Pre), early cessation (Post), and its combined effects (Pre + Post) on yield and water productivity (WP) of wheat. Yield and WP were significantly (P < 0.05) affected by SI application with higher grain yield (3298 kg/ha) and WP (0.538 kg/m3) obtained from applying Pre + Post. Applying Pre + Post has increased grain yield, biomass, and WP of wheat by 45.6, 27.7, and 21.5% over Rain-fed farming, respectively. Thus, balancing crop water requirements using SI during inadequate rainfall distribution is key for improving WP and wheat production in semi-arid environments. Particularly, the application of SI both during the late-onset and early cessation of rainfall is suggested for greater wheat productivity in semi-arid regions.

17.
J Sci Food Agric ; 103(15): 7580-7589, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37483099

ABSTRACT

BACKGROUND: Table olives are widely consumed in the Mediterranean diet, and several typical Spanish and Portuguese varieties could potentially be used as such. In order to ensure a good-quality product, the effect of different factors such as elaboration processes, irrigation conditions, crop year and their crossover interaction on acrylamide content and antioxidant compounds needs to be deeply studied. RESULTS: When looking through irrigation, regulated deficit irrigation (RDI) presented lower acrylamide levels than rainfed conditions for 'Cordovil de Elvas', 'Picual' and 'Verdeal Alentejana'. No significant interactions were found between the type of irrigation and elaboration style for 'Arbequina' and 'Koroneiki' varieties. Although RDI had the largest concentration of total phenols, antioxidant activity was also the highest. The table olives harvested in the crop year of 2019 showed lower levels of acrylamide due to a significant relationship between the crop year and irrigation conditions. CONCLUSIONS: Novel varieties to be marketed should be taken into consideration for table olive elaboration. The impact of the crop year on the bioactive value of table olives and crossover interactions relies strongly in climatological conditions. Last but not least, the benefit of selecting the best irrigation and elaboration methods is crucial to ensure desirable acrylamide levels. © 2023 Society of Chemical Industry.


Subject(s)
Olea , Olea/chemistry , Acrylamide , Phenols/chemistry , Antioxidants , Plant Extracts/chemistry , Olive Oil/chemistry
18.
Front Nutr ; 10: 1127970, 2023.
Article in English | MEDLINE | ID: mdl-37234556

ABSTRACT

Mineral and vitamin deficiencies together affect a greater number of human populations in the world than does protein malnutrition. Organic farming is reported to improve nutritional quality of food grains while also improving soil health. However, sufficient scientific information on several aspects of organic farming based on long-term studies is lacking particularly under rainfed conditions of India. The purpose of this study was to assess the long-term impact of organic and integrated production systems on crops yield and quality, economic returns and soil properties. The study was conducted with three crops, sunflower (Helianthus annuus L.), pigeonpea (Cajanus cajan L.), and greengram [Vigna radiata (L.) Wilczek] under three different production systems, control (use of chemical inputs alone), organic and integrated. The results of the 10-year study revealed that, the average production of integrated system was on par with organic management and recorded significantly higher pigeonpea equivalent yield (PEY) (827 kg ha-1) compared to control (chemical inputs) (748 kg ha-1). In general, the yield gap between organic and integrated production systems declined from fourth year for greengram and eighth year for sunflower, during the 10-year experimental period whereas the pigeonpea yield was similar under both production systems from first year. Plots under organic management had significantly lower bulk density (1.18 mg m-3), higher water holding capacity (38.72%) and porosity (53.79%) compared to integrated production system and control (chemical inputs). The soil organic C (SOC) content in the plots under organic production system was 32.6% more than the initial organic carbon of the soil (0.43%), with higher soil N (205.2 kg ha-1). Plots under integrated production system, however, had higher soil P (26.5 kg ha-1) compared with other treatments. The dehydrogenase activity (5.86 µg TPF g-1 soil h-1) and microbial biomass carbon (317.3 µg g-1 soil) content was higher in the plots under organic production system than under other systems. Organically produced pigeonpea and greengram seeds had similar protein content with that of integrated system, and higher K and micronutrient (Fe, Zn, Cu, and Mn) contents than other treatments. The results show the potential of organic production system in improving crop yields, soil properties and produce quality in semiarid rainfed areas.

19.
Molecules ; 28(8)2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37110793

ABSTRACT

BACKGROUND: The genetic diversity of Sardinian pear germplasm has received limited attention regarding its chemical composition. Understanding this composition can aid in the setting up of resilient, extensive groves that offer multiple products and ecosystem services. This research aimed at investigating the antioxidant properties and phenolic compounds of ancient pear cultivars grown extensively in Sardinia (Italy); Methods: the cultivars Buttiru, Camusina, Spadona, and Coscia (as a reference) were compared. Fruit samples were manually peeled and cut. Their flesh, peel, core, and peduncle were frozen separately, lyophilized, and milled before being analysed; Results: The content of total phenolics (TotP), total flavonoids (TotF), condensed tannins (CT), and antioxidant capacity in each fruit part varied significantly among the cultivars. The TotP content was high in the peduncle (42.2-58.8 g GAE kg-1 DM) and low in flesh (6.4-17.7 g GAE kg-1 DM); Conclusions: the highest values of antioxidant capacity, TotP, NTP, TotF, and CT were found in the flesh of the cultivar Buttiru and in the peel of the cultivar Camusina. Chlorogenic acid was the major individual phenolic compound in peel, flesh and core, whereas arbutin was mostly present in the peduncle. Results can contribute to revise target exploitations of underutilized ancient pear cultivars.


Subject(s)
Proanthocyanidins , Pyrus , Antioxidants/chemistry , Fruit/chemistry , Pyrus/chemistry , Ecosystem , Plant Extracts/chemistry , Phenols/chemistry , Flavonoids/analysis , Proanthocyanidins/analysis
20.
Environ Monit Assess ; 195(5): 544, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37017873

ABSTRACT

Water and carbon footprint assessment can be a good indicator of sustainable agricultural production. The present research quantifies the potential impact of near-future (2026-2050) climate change on water footprint (WF) and carbon footprint (CF) of farm-level kharif rice production of three locally grown varieties (Khandagiri, Lalat, and Swarna) in Odisha, India, under the two RCP scenarios of 4.5 and 8.5. The crop yield, water resources utilization, and greenhouse gas (GHG) emissions were estimated using the calibrated and validated DSSAT crop simulation model. The precipitation and temperature estimates from three regional climate models (RCM), namely HadGEM3-RA, RegCM4, and YSU-RSM were downscaled using the quantile mapping method. The results revealed a considerably high increase in the total WF of the Khandagiri, Lalat, and Swarna rice varieties elevating up to 101.9%, 80.7%, and 71.8% respectively during the mid-century for RCP 4.5 scenario, and 67.3%, 66.6%, and 67.2% respectively for RCP 8.5 scenario relative to the baseline WF. Moreover, compared to the green WF, the blue WF was projected to increase significantly (~ 250-450%) in the future time scales. This could be attributed to increasing minimum temperature (~ 1.7 °C) and maximum temperature (~ 1.5 °C) and reduced precipitation during the rice-growing periods. Rice yield was projected to continually decline in the future period (2050) with respect to the baseline (1980-2015) by 18.8% and 20% under RCP 4.5 and 8.5 scenarios respectively. The maximum CF of Swarna, Lalat, and Khandagiri rice were estimated to be 3.2, 2.8, and 1.3 t CO2eq/t respectively under RCP 4.5 and 2.7, 2.4, and 1.3 t CO2eq/t respectively under RCP 8.5 scenario. Fertilizer application (40%) followed by irrigation-energy use (30%) and farmyard manure incorporation (26%) were the three major contributors to the CF of rice production. Subsequently, management of N-fertilizer dose was identified as the major mitigation hotspot, simultaneously reducing carbon footprint and grey water footprint in the crop production process.


Subject(s)
Oryza , Climate Change , Water , Carbon Footprint , Fertilizers , Environmental Monitoring , India
SELECTION OF CITATIONS
SEARCH DETAIL