Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
Heliyon ; 10(15): e35254, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39170482

ABSTRACT

Improving the economic performance of range forage in drylands internationally faces challenges from economic, ecological, and climate stress. Stakeholders in these drylands wish to protect range forage ecosystems while assuring economic viability of ranching. Despite several recent research achievements, little work to date has integrated relationships among precipitation, grazing pressure, animal performance, and forage production to protect ranching incomes faced with economic, ecological, and climate stress in dryland areas. This work addresses that gap by developing an empirical mathematical programming model for optimizing economic performance of livestock grazing on range forage ecosystems that adapt to several stressors. Its unique contribution is to formulate and apply a ranch income optimization model calibrated using positive mathematical programming. The model replicates observed economic, forage, and climate conditions while accounting for interacting relations among stocking rates, forage conditions, grazing pressure, animal performance, and ranch economic productivity. Results show ranch incomes ranging from about $5 to $88 per acre and marginal values of forage ranging from $0.01 to $0.12 per pound of forage, depending on economic, ecological, and climate conditions. Results reveal how all these stressors affect economically optimized choices of grazing levels, ranch income, and economic values of forage for a range of six biomes seen in the US west. Results help livestock ranchers to adjust stocking and forage choices as well as farm policymakers who seek flexible government programs to adapt to changes in economic, ecological, and climate conditions. The work's importance comes from applicability to forage management problems in dry regions internationally.

2.
J Insect Sci ; 24(4)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39126278

ABSTRACT

World food supplies rely on pollination, making this plant-animal relationship a highly valued ecosystem service. Bees pollinate flowering plants in rangelands that constitute up to half of global terrestrial vegetation. Livestock grazing is the most widespread rangeland use and can affect insect pollinators through herbivory. We examined management effects on bee abundance and other insect pollinators on grazed and idle sagebrush rangelands in central Montana, USA. From 2016 to 2018, we sampled pollinators on lands enrolled in rest-rotation grazing, unenrolled grazing lands, and geographically separate idle lands without grazing for over a decade. Bare ground covered twice as much area (15% vs. 7) with half the litter (12% vs. 24) on grazed than idle regardless of enrollment. Bee pollinators were 2-3 times more prevalent in grazed than idle in 2016-2017. In 2018, bees were similar among grazed and idled during an unseasonably wet and cool summer that depressed pollinator catches; captures of secondary pollinators was similar among treatments 2 of 3 study years. Ground-nesting bees (94.6% of total bee abundance) were driven by periodic grazing that maintained bare ground and kept litter accumulations in check. In contrast, idle provided fewer nesting opportunities for bees that were mostly solitary, ground-nesting genera requiring unvegetated spaces for reproduction. Managed lands supported higher bee abundance that evolved with bison grazing on the eastern edge of the sagebrush ecosystem. Our findings suggest that periodic disturbance may enhance pollinator habitat, and that rangelands may benefit from periodic grazing by livestock.


Subject(s)
Artemisia , Conservation of Natural Resources , Ecosystem , Pollination , Animals , Bees/physiology , Artemisia/physiology , Montana , Herbivory , Livestock
3.
Plants (Basel) ; 13(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38999708

ABSTRACT

The remarkable adaptability and rapid proliferation of Prosopis juliflora have led to its invasive status in the rangelands of Kenya, detrimentally impacting native vegetation and biodiversity. Exacerbated by human activities such as overgrazing, deforestation, and land degradation, these conditions make the spread and management of this species a critical ecological concern. This study assesses the effectiveness of artificial intelligence (AI) and remote sensing in monitoring the invasion of Prosopis juliflora in Baringo County, Kenya. We investigated the environmental drivers, including weather conditions, land cover, and biophysical attributes, that influence its distinction from native vegetation. By analyzing data on the presence and absence of Prosopis juliflora, coupled with datasets on weather, land cover, and elevation, we identified key factors facilitating its detection. Our findings highlight the Decision Tree/Random Forest classifier as the most effective, achieving a 95% accuracy rate in instance classification. Key variables such as the Normalized Difference Vegetation Index (NDVI) for February, precipitation, land cover type, and elevation were significant in the accurate identification of Prosopis juliflora. Community insights reveal varied perspectives on the impact of Prosopis juliflora, with differing views based on professional experiences with the species. Integrating these technological advancements with local knowledge, this research contributes to developing sustainable management practices tailored to the unique ecological and social challenges posed by this invasive species. Our results highlight the contribution of advanced technologies for environmental management and conservation within rangeland ecosystems.

4.
Transl Anim Sci ; 8: txae068, 2024.
Article in English | MEDLINE | ID: mdl-38774510

ABSTRACT

The objective of this study was to evaluate the effects of injectable trace minerals (ITM) administrations at strategic moments in the beef cattle production cycle. At calving, 50 primiparous cows (Angus × Hereford) and their calves were randomly assigned to 1 of 2 treatments: 1) ITM: cattle assigned to the ITM treatment received an ITM injection at calving and a subsequent administration at breeding (cattle over 2 yr: 1.0 mL/90 kg body weight [BW]; calves: 1.0 mL/45 kg BW); or 2) Control: cattle assigned to the control treatment were administered with saline following the same procedure as the cattle assigned to the ITM treatment. Body weight, blood, and liver samples were collected from dams and calves at multiple time points to evaluate the growth and mineral status of cow-calf pairs. All variables were analyzed using the MIXED procedure of SAS. A treatment effect (P = 0.02) was observed for Cu liver concentration of primiparous cows at breeding. Cows assigned to ITM treatment had greater Cu status than cohorts assigned to Control treatment. No treatment effects were observed for the mineral status or growth of calves. The administration of ITM to primiparous cows enhanced Cu status when grazing Cu forages scarce of Cu.

5.
Transl Anim Sci ; 8: txae005, 2024.
Article in English | MEDLINE | ID: mdl-38525300

ABSTRACT

Residual feed intake (RFI) has become a widely spread index of feed efficiency. Although most of beef cattle systems in the world are pasture based, RFI evaluation and research is usually performed in confinement conditions. In this context, residual heat production (RHP) estimated as the difference between actual and expected heat production (HP), could allow to identify efficient animals. Thus, the aim of this work was to evaluate the relationship between paternal estimated breeding values (EBV) for RFI and beef heifer efficiency, measured as RHP, as well as its association with heifers' productive and reproductive performance on grazing conditions. Seventy-one 25 ±â€…0.8-mo-old and seventy-four 24 ±â€…0.7-mo-old Hereford heifers were managed as contemporary groups in spring 2019 and 2020, respectively. Heifers were sired by 10 RFI-evaluated bulls and classified into three groups according to the paternal EBV for RFI: five bulls of low RFI (high efficiency, pHE), two bulls of medium RFI (medium efficiency), and three bulls of high RFI (low efficiency, pLE). The experimental period lasted 70 d prior to their first insemination where HP was determined by the heart rate-O2 pulse technique. In addition, reproductive performances during the first and second breeding and calving seasons were recorded. Heifers' RHPs expressed as MJ/d and kJ/kg of body weight (BW)0.75/d were positively correlated with paternal RFI EBVs (P < 0.05; r > 0.60). Moreover, BW and average daily gain (ADG) were greater (P < 0.01) for pHE than pLE heifers while expressed as units of BW0.75/d, neither total HP nor metabolizable energy (ME) intake differed between groups, but pHE heifers had greater retained energy (RE; P < 0.01) and lower RHP (P < 0.05) than pLE ones. Gross energy efficiency (RE/ME intake) was greater (P < 0.001) for pHE than pLE heifers while the HP/ADG and RHP/ADG were reduced (P < 0.05) and feed-to-gain ratio (ADG/DM intake) tended to be greater (P = 0.07) for pHE than pLE heifers. In addition, during the first breeding and calving seasons, small but significant (P < 0.01) differences in reproductive responses between groups suggested an earlier pregnancy in pHE heifers than the pLE group, differences that disappeared during the second breeding and calving seasons. Thus, heifers sired by high-efficiency bulls measured as RFI were more efficient measured as RHP in grazing conditions, without significant differences in reproductive performance.

7.
Heliyon ; 9(10): e20615, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37876417

ABSTRACT

Mountainous rangelands provide key ecosystem goods and services, particularly for human benefit. In spite of these benefits, mountain grasslands are undergoing extensive land-cover change as a result of woody plant encroachment. However, the influence of topographic and soil factors on woody plant encroachment is complex and has not yet been studied comprehensively. The aim of this review was to establish current knowledge on the influence of topographic and soil factors on woody plant encroachment in mountainous rangelands. To find relevant literature for our study on the impact of topographic and soil factors on woody plant encroachment in mountain rangelands, we conducted a thorough search on ScienceDirect and Google Scholar using various search terms. Initially, we found 27,745 papers. We narrowed down the search to include only 66 papers published in English that directly addressed the research area. The effect of slope aspect and slope position on woody plant encroachment is complex and dynamic, with no universal consensus on their impact. Some studies found higher woody plant encroachment on the cooler slopes, while others found increased woody plant encroachment on the warmer slopes. Slope gradient has a significant impact on woody plant encroachment, with steeper slopes tending to have more woody plant encroachment than gentle slopes. Soil texture and depth are important soil factors affecting woody plant encroachment. Coarse-textured soils promote the growth of woody plants, while fine-textured soils limit it. The effect of soil depth on woody plant encroachment remain unclear and requires further research. Soil moisture availability, soil nutrient content and soil microbial community are influenced by topography, which in turn affect the woody plant growth and distribution. In conclusion, the spread of woody plants in mountainous rangelands is a complex and dynamic process influenced by a range of factors. Further research is needed to fully understand the mechanisms behind these interactions and to develop effective strategies for managing woody plant encroachment in mountainous rangelands.

8.
Ecol Appl ; 33(8): e2909, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37602895

ABSTRACT

Herbivore exclusion is implemented globally to recover ecosystems from grazing by introduced and native herbivores, but evidence for large-scale biodiversity benefits is inconsistent in arid ecosystems. We examined the effects of livestock exclusion on dryland plant richness and reproductive capacity. We collected data on plant species richness and seeding (reproductive capacity), rainfall, vegetation productivity and cover, soil strength and herbivore grazing intensity from 68 sites across 6500 km2 of arid Georgina gidgee (Acacia georginae) woodlands in central Australia between 2018 and 2020. Sites were on an actively grazed cattle station and two destocked conservation reserves. We used structural equation modeling to examine indirect (via soil or vegetation modification) versus direct (herbivory) effects of grazing intensity by two introduced herbivores (cattle, camels) and a native herbivore (red kangaroo), on seasonal plant species richness and seeding of all plants, and the richness and seeding of four plant groups (native grasses, forbs, annual chenopod shrubs, and palatable perennial shrubs). Non-native herbivores had a strong indirect effect on plant richness and seeding by reducing vegetative ground cover, resulting in decreased richness and seeding of native grasses and forbs. Herbivores also had small but negative direct impacts on plant richness and seeding. This direct effect was explained by reductions in annual chenopod and palatable perennial shrub richness under grazing activity. Responses to grazing were herbivore-dependent; introduced herbivore grazing reduced native plant richness and seeding, while native herbivore grazing had no significant effect on richness or seeding of different plant functional groups. Soil strength decreased under grazing by cattle but not camels or kangaroos. Cattle had direct effects on palatable perennial shrub richness and seeding, whereas camels had indirect effects, reducing richness and seeding by reducing the abundance of shrubs. We show that considering indirect pathways improves evaluations of the effects of disturbances on biodiversity, as focusing only on direct effects can mask critical mechanisms of change. Our results indicate substantial biodiversity benefits from excluding livestock and controlling camels in drylands. Reducing introduced herbivore impacts will improve soil and vegetation condition, ensure reproduction and seasonal persistence of species, and protect native plant diversity.


Subject(s)
Ecosystem , Livestock , Animals , Cattle , Camelus , Plants , Forests , Biodiversity , Poaceae , Soil , Herbivory/physiology
9.
Transl Anim Sci ; 7(1): txad080, 2023.
Article in English | MEDLINE | ID: mdl-37649644

ABSTRACT

Prescribed fire is a common management practice used to manipulate rangeland plant productivity and composition. Although the nutritive value of most herbaceous plant species is considered poor for grazing animals, native rangelands in Florida are an important source of forage for livestock, especially during the winter months, when the productivity of cultivated perennial warm-season pastures is limited. This study evaluated the effects of prescribed fire on methanogenic potential and nutritive value of selected native rangeland plant species. Treatments were a 3 × 2 factorial arrangement of plant species (creeping bluestem [Schizachyrium scoparium var. stoloniferum {Nash} Wipff], wiregrass [Aristida stricta {Michx.}], or saw palmetto [Serenoa repens {W. Bartram} Small]) and prescribed fire management [2 yr after burning (control) vs. 1 yr after burning (burned)] distributed in a randomized complete block design with four replicates. Samples were analyzed for crude protein (CP), neutral detergent undigestible fiber (NDF), in vitro methane production, and in situ ruminal disappearance. Prescribed fire generally increased forage CP and DM effective degradability relative to control; however, no effect was observed on saw palmetto. Wiregrass had the least CP concentration in both burned (8.5%) and control (2.3%). In burned treatments, creeping bluestem and palmetto had greater DM effective degradability (62% and 58%) than wiregrass (53%). Fire increased in vitro gas production by 60 (creeping bluestem) to 90% (wiregrass) relative to control treatments. No effect of fire on methane production was observed for any of the plant species evaluated in this study. Creeping bluestem had the greatest methane production (12.5 mg/g DM), followed by wiregrass (5.3 mg/g DM) and saw palmetto (1.4 mg/g DM). Methane:DM effective degradability decreased in the following order: creeping bluestem ≥ wiregrass > saw palmetto. Data indicated prescribed fire was an effective tool to increase creeping bluestem and wiregrass nutritive value but no effect was observed on saw palmetto. Cattle grazing grass-dominated rangelands will likely emit more gas and methane than shrub or tree-dominated ecosystems; however, the greater forage nutritive value and subsequent positive impacts on animal production are expected to offset a substantial fraction of enteric methane emissions.

10.
BMC Complement Med Ther ; 23(1): 299, 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37620931

ABSTRACT

BACKGROUND: Nowadays, the use of herbal extracts for the production of nanoparticles has attracted a lot of attention due to the fast reaction, economy, and compatibility with the environment. The aim of the present study is the biosynthesis of silver nanoparticles from the extracts of Nepeta sessilifolia Bunge and Salvia hydrangea DC. ex Benth. and their antibacterial activity was measured. METHODS: For this purpose, the flowering branch of N. sessilifolia and the flower of S. hydrangea were randomly collected from three places, respectively, from the rangelands of Aqdash Mountain and Biabe in Isfahan province, Iran in May 2021. After extracting aqueous extracts by hot method, silver nanoparticles were synthesized by the biological method. Green synthesized silver nanoparticles were analyzed by UV-Vis spectroscopy, XRD, FTIR, and FESEM-EDAX. The antibacterial effect was evaluated by diffusion method in agar and determination of minimum growth inhibitory and lethal concentration (MIC and MBC) by dilution method in liquid culture medium. RESULTS: Based on the results of UV-Vis spectroscopy, silver nanoparticles synthesized from N. sessilifolia and S. hydrangea had distinct absorption peaks at wavelengths of 407 to 424 nm and 414 to 415 nm, respectively. The crystalline nature of these synthetic silver nanoparticles was confirmed by XRD. FESEM analysis showed that the size of biosynthesized silver nanoparticles from N. sessilifolia and S. hydrangea extracts were 10-50 nm and 10-80 nm, respectively, and were cubic. The results of diffusion in agar showed that the largest diameter of the growth inhibition zone belonging to the synthetic silver nanoparticles from both extracts of N. sessilifolia (~ 26.00 mm) and S. hydrangea (~ 23.50 mm) was against Gram-positive bacteria Staphylococcus aureus. The most vigorous killing activity by synthetic silver nanoparticles from N. sessilifolia extract was against Klebsiella pneumoniae with a value of 250 µg/mL, two times stronger than rifampin. CONCLUSION: Therefore, the studied extracts can be suitable options for fast and safe green synthesis of silver nanoparticles effective against some bacterial strains. These synthetic silver nanoparticles can be used as possible options and have strong potential for the production of natural antibiotics.


Subject(s)
Hydrangea , Metal Nanoparticles , Nepeta , Agar , Iran , Silver/pharmacology , Anti-Bacterial Agents/pharmacology
11.
Environ Manage ; 72(4): 699-704, 2023 10.
Article in English | MEDLINE | ID: mdl-37452138

ABSTRACT

Grazing by domestic livestock is the most widespread use of public lands in the American West (USA) and their effects on climate change and ways to mitigate those effects are of interest to land managers, policy makers, and the broader public. Kauffman et al. (2022a) provided a meta-analysis of the ecosystem impacts, greenhouse gas (GHG) emissions, and social costs of carbon (SCC) associated with livestock grazing on public lands in the western USA. They determined that GHG emissions from cattle on public lands equaled 12.4 million t CO2e/year. At the scale of land use planning utilized by federal agencies, GHG emissions associated with allocated livestock numbers will typically exceed US Environmental Protection Agencies' reporting limits (25,000 t) for certain industrial greenhouse gas emitters. As such, these are essentially unreported sources of GHG emissions from public lands. Using the US government's most recent SCC estimate of $51/t, Kauffman et al. (2022a) determined the total SCC of cattle grazing on public lands to be approximately $264-630 million/year. However, recent advances in the determination of SCC reveal this is to be an underestimate. Using the latest science results in an estimated SCC of $1.1-2.4 billion/year for grazing on public lands. Furthermore, the SCC borne by the public exceeds the economic benefits to private livestock permittees by over $926 million/year. Cessation of public lands grazing is an environmentally and economically sound mitigation and adaptation approach to addressing the climate crisis; an approach that will also facilitate restoration of the myriad of ecosystem services provided by intact wildland ecosystems.


Subject(s)
Ecosystem , Greenhouse Gases , Animals , Cattle , Livestock , Climate Change , Carbon , Greenhouse Effect
12.
Microorganisms ; 11(5)2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37317087

ABSTRACT

The sagebrush steppe has presented increasing levels of degradation. The addition of arbuscular mycorrhizal fungi (AMF) and biochar have been suggested to restore ecosystems. However, little is known about their effects on sagebrush steppe plants. We tested three sources of AMF inoculum: soil from a disturbed site (Inoculum A), soil from an undisturbed site (Inoculum B), and commercial inoculum (Inoculum C), all with and without biochar, to test if they could mediate growth of Pseudoroegneria spicata (native perennial), Taeniatherum caput-medusae (early seral; exotic annual) and Ventenata dubia (early seral; exotic annual) under greenhouse conditions. We measured AMF colonization and biomass. We hypothesized that the plant species would be differently affected by the inoculum types. The colonization of T. caput-medusae and V. dubia was greatest when inoculated with Inoculum A (38.8% and 19.6%). In contrast, the colonization of P. spicata was greatest with Inoculum B and Inoculum C (32.1% and 32.2). Biochar decreased biomass production but increased colonization with Inoculum A for P. spicata and V. dubia and with Inoculum C for T. caput-medusae. This study reveals the response of early and late seral sagebrush steppe grass species to contrasting sources of AMF and suggests that late seral plant species respond better to late seral inocula.

13.
Integr Zool ; 18(2): 299-315, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36065141

ABSTRACT

Rangelands worldwide have been subject to broadscale modification, such as widespread predator control, introduction of permanent livestock water and altered vegetation to improve grazing. In Australia, these landscape changes have resulted in kangaroos (i.e. large macropods) populations increasing over the past 200 years. Kangaroos are a key contributor to total grazing pressure and in conjunction with livestock and feral herbivores have been linked to land degradation. We used 22 years of aerial survey data to investigate whether the density of 3 macropod species in the southern rangelands of Western Australia was associated with: (i) land use, including type of livestock, total livestock, density of feral goats, type of land tenure, and kangaroo commercial harvest effort; (ii) predator management, including permitted dingo control effort, estimated dingo abundance, and presence of the State Barrier Fence (a dingo exclusion fence); and (iii) environmental variables: ruggedness, rainfall, fractional cover, and total standing dry matter. Red kangaroos (Osphranter rufus) were most abundant in flat, open vegetation, on pastoral land, where area permitted for dingo control was high, and numbers were positively associated with antecedent rainfall with a 12-month delay. Western grey kangaroos (Macropus fuliginosus) were most abundant on flat, agricultural land, but less abundant in areas with high permitted dingo control. Euros (Osphranter robustus) were most abundant in rugged pastoral land with open vegetation, where permitted dingo control was high. While environmental variables are key drivers of landscape productivity and kangaroo populations, anthropogenic factors such as land use and permitted dingo control are strongly associated with kangaroo abundance.


Subject(s)
Agriculture , Macropodidae , Animals , Australia , Goats , Herbivory
14.
Trends Ecol Evol ; 38(2): 109-112, 2023 02.
Article in English | MEDLINE | ID: mdl-36216690

ABSTRACT

Rangelands comprise approximately 50% of ecologically intact landscapes available to mitigate biodiversity loss and to provide natural climate solutions. However, their planetary value is often overshadowed by local priorities on select provisioning services. A transformative stewardship strategy will require an inversion of priorities placed on ecosystem service categories supplied by rangelands.


Subject(s)
Biodiversity , Ecosystem , Humans , Chromosome Inversion , Conservation of Natural Resources
15.
Environ Res ; 219: 114954, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36529322

ABSTRACT

This study was carried out to evaluate the forage quantity and quality of several halophyte species grown in arid-saline environments. After identifying 44 halophytic species in the region and considering the potential of quantitative and qualitative forage production, 13 species from four families, i.e. Amaranthaceae, Asteraceae, Leguminosae and Convolvulaceae, and eight genera were selected for further evaluation. These species differed significantly in terms of both forage quantity, measured in terms of fresh (FW) and dry weight (DW), and forage quality assessed in terms of tissue water content (TWC), ash, nitrogen content (N), crude protein (CP), acid detergent fiber (ADF), neutral detergent fiber (NDF), dry matter digestibility and metabolizable energy (ME). The highest fresh and dry weights were obtained from Suaeda ferticosa (1006.3 g and 306.3 g, respectively) and Noaea mucronata (909.3 g and 309 g, respectively). However, based on forage quality characteristics, Alhagi maurorum, Bassia scoparia, Noaea mucronata, Halostachys belangriana and Cressa cretica showed the best forage potential. Values of ash, CP, ADF, NDF and ME measured in the halophytes species ranged between 7.9% and 33.2%, 6.2% and 15.8%, 30.0% and 50.3%, 33.2% and 56.4%, 5.6 and 8.7 MJ kg-1, respectively. The forage quality of the evaluated halophytic plants was influenced by unfavorable environmental conditions such as high soil salinity and low rainfall, however, these species can be considered as new sources of forage. Nevertheless, further studies are needed to improve the quality of such halophytic species by reducing the ash content and increasing the ME.


Subject(s)
Dietary Fiber , Salt-Tolerant Plants , Humans , Salt-Tolerant Plants/metabolism , Dietary Fiber/metabolism , Animal Feed/analysis , Digestion , Detergents
16.
Front Insect Sci ; 3: 1101445, 2023.
Article in English | MEDLINE | ID: mdl-38469484

ABSTRACT

The grass-cutting ant Atta vollenweideri is well suited for studies examining the negative effect leaf-cutting ants have on livestock production in South American grasslands because they forage on the same plants as cattle. This study investigated the impact of A. vollenweideri on livestock production in Argentinean rangelands. First, we assessed A. vollenweideri herbivory rates and its economic injury level (EIL). Second, using satellite imagery in a region covering 15,000 ha, we estimated the percentage of this area that surpassed the calculated EIL. Results showed that A. vollenweideri consumed approximately 276 kg of dry plant weight/ha/year, foraging mostly on grasses (70%). Additionally, ants cut 25% of herbs and 5% of trees. In summer and autumn, ants consumed more grasses, while in winter and spring, herbs and trees were also significantly cut. Ants consumed 7% of the forage demand needed to raise a calf according to the management regime applied by farmers. Our calculated EIL (5.85 nests/ha) falls in the range of previous studies. Colonies were absent in 93.6% of the surveyed area, while their density was below the EIL in 6.2% of the area. A. vollenweideri populations surpassed the EIL in only 0.2% of the area, which corresponds to 2.6% of the locations holding colonies. These results question the perception that Atta leaf-cutting ants are a pest of livestock production. Although ants consume a small percentage of cattle's forage demand, evidence that ants and cattle are competing in the few cases in which density surpasses the EIL is arguable. First, grass-cutting ants are capable of consuming herbs and trees in addition to the grasses on which cattle mostly feed. Second, there is no evidence indicating that both are cutting the same plant portions when preferences overlap. Third, evidence suggests that ants are not displaced under high-pressure grazing regimes by cattle. In the countries where A. vollenweideri is present, decision makers have promulgated several acts making its control mandatory. It is time to revisit the pest status of A. vollenweideri and include the use of EIL as a control criterion.

17.
Front Vet Sci ; 9: 926140, 2022.
Article in English | MEDLINE | ID: mdl-36504849

ABSTRACT

Grass biomass composition and distribution patterns within the paddock as determinants of behavioral activities and animal performance of Nguni (NG) and Boran (BR) cattle post-relocation to a novel environment were examined. Ten steers of each breed aged 9 months were bought from two different farms and sent to Honeydale research facilities, where they were reared on rangelands for 12 weeks. Identification and classification of grass species were done every sampling week before introducing cattle to each paddock. Direct visual observations and durations of behavior and paddock occupancy patterns were recorded every fortnight between 0500 and 1900 h every week. Individual animal weights and body condition scores (BCS) were recorded two times per week. Location within paddocks hugely affected (P < 0.0001) the composition of the vegetation as most grass species were found everywhere on pastures, near the watering points and along fencelines. However, the distribution patterns of the grass species significantly differed at different locations. Aristida congesta was dominant (P = 0.0014) everywhere in the pasture and along fenceline than in areas with a high density of trees. Except in shaded areas, Cynodon dactylon (P = 0.0003) and Eragrostis chloromelas (P = 0.0008) were highly abundant near the watering points, pastures, and along the fenceline. Themeda triandra (P < 0.0001) was only prevalent everywhere on pastures except in shade areas, near the water sites, and along fenceline. In terms of palatability and ecological groups, highly palatable species (P < 0.0001) and decreasers (P = 0.0010) were more frequent everywhere in the paddocks. From Weeks 1 to 3, NG spent more time walking (P < 0.0001), while the BR showed a significant decline in grazing activities (P < 0.0001) in spite of several differences in vegetation composition. Both breeds showed a significant decline in weight gain (P < 0.0001) and body condition score (P < 0.0001) in the first 3 weeks. However, the two cattle breeds quickly compensated for their behavioral activities and weight gain, and this shows a good ability to cope with stress caused by heterogeneous environmental conditions.

18.
Ecol Evol ; 12(10): e9376, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36203632

ABSTRACT

Net-wire fencing built to confine livestock is common on rangelands in the Southwestern USA, yet the impacts of livestock fencing on wildlife are largely unknown. Many wildlife species cross beneath fences at defined crossing locations because they prefer to crawl underneath rather than jump over fences. Animals occasionally become entangled jumping or climbing over fences, leading to injury or death. More commonly, repeated crossings under net-wire fencing by large animals lead to fence damage, though the damage is often tolerated by landowners until the openings affect the ability to enclose livestock. The usage, placement, characteristics, and passage rates of fence crossings beneath net-wire fencing are poorly understood. We monitored 20 randomly selected fence crossings on net-wire livestock fencing across two study sites on rangelands in South Texas, USA, from April 2018 to March 2019. We assessed the characteristics of fence-crossing locations (openings beneath the fence created by animals to aid in crossing) and quantified crossing rates and the probability of crossing by all species of animals via trail cameras. We documented 10,889 attempted crossing events, with 58% (n = 6271) successful. Overall, 15 species of medium- and large-size mammals and turkey (Meleagris gallopavo) contributed to crossing events. Crossing locations received 3-4 crossing attempts per day on average, but the number of attempts and probability of successful crossing varied by location and fence condition. The probability of crossing attempts was most consistently influenced by the opening size of the crossing and season; as crossing size (opening) increased, the probability of successful crossing significantly increased for all species. Peaks in crossing activity corresponded with species' daily and seasonal movements and activity. The density and size of fence-crossing locations were dependent on fence maintenance and not associated with vegetation communities or habitat variables. However, crossing locations were often re-established in the same locations after fence repairs. This is one of the few studies to monitor how all animal species present interacted with net-wire livestock fencing in rangelands. Our results will help land managers understand the impact of net-wire livestock fencing on animal movement.

19.
J Environ Manage ; 322: 116092, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36055100

ABSTRACT

Wildfire activity has recently increased in California, impacting ecosystems and human well-being. California's rangelands are complex social-ecological systems composed of multiple ecosystems and the people who live and work in them. Livestock grazing has been proposed as a tool for reducing wildfire activity. Here, we explore how grazing affects wildfire at large spatial scales, assessing burn probability on rangelands with different grazing levels. We collected grazing data by surveying 140 large private landowners in three social-ecological regions: California's North Bay, Central Coast, and Central Valley and Foothills. Using pre-regression matching and mixed effects regression, we calculate the burn probability from 2001 to 2017 in points sampled from grazed and ungrazed properties in each region in grasslands, shrub/scrublands, and forests. We find that in the Central Coast and North Bay, annual burn probability decreases as stocking levels increase across all vegetation types, with reductions of 0.008-0.036. In the Central Valley and Foothills, the relationship is complex, with burn probability increasing over some grazing levels and variations in the effect of higher stocking densities. Our results indicate that livestock grazing may reduce annual burn probability in some regions and ecosystems in California, providing the first large-scale assessment of this relationship.


Subject(s)
Livestock , Wildfires , Animals , Ecosystem , Forests , Probability
20.
PeerJ ; 10: e13597, 2022.
Article in English | MEDLINE | ID: mdl-35979476

ABSTRACT

Shrub encroachment is understood to be an important problem facing rangeland ecosystems globally. The phenomenon is still poorly understood both in regard to its impacts (e.g., on diversity, productivity, and soil properties) and its causes. We study the impacts and causes of dwarf shrub encroachment in the highlands of Lesotho. There, shrubs have been described as indicators of generalized land degradation and soil erosion. Surprisingly, our findings show that grass abundance is not reduced by shrub abundance, but that forb abundance does decrease with shrub abundance. We suggest that not enough research has been done to examine the role of forbs in livestock diets, nor in assessing its role in plant-plant competition in grass-shrub systems. Equating shrub presence with declines in available forage may be hasty, as according to our results, grasses were not decreased by shrub expansion in this context; however, forbs are critical components of livestock diets. We propose that the role of forbs in this system should be further studied, focusing on the role that high-nutrient or N-fixing forbs could play in returning nutrients to the soil and affecting livestock grazing patterns, both of which could reduce shrub abundances and favor the establishment of a richer forb community.


Subject(s)
Ecosystem , Poaceae , Lesotho , Diet , Soil
SELECTION OF CITATIONS
SEARCH DETAIL