Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 291
Filter
1.
Article in English | MEDLINE | ID: mdl-39007455

ABSTRACT

BACKGROUND: Incomplete revascularization (ICR) after percutaneous coronary intervention (PCI) is associated with mortality and morbidity. AIM: We sought to investigate whether ICR in the left anterior descending artery (LAD) is worse than ICR of the right coronary artery (RCA) or left circumflex artery (LCX); and whether ICR in patients with a chronic total occlusion (CTO) is worse than in those without. METHODS: In the RIVER-PCI trial, 2651 patients with ICR after PCI were randomly assigned to ranolazine or placebo. Angiograms were assessed at an independent core laboratory in 2501 patients (94.3%). The primary endpoint was the composite of ischemia-driven revascularization or hospitalization. RESULTS: A total of 1664 patients (66.5%) had ICR involving the LAD, whereas 837 (33.5%) had ICR limited to the RCA or LCX. At median follow-up of 643 days, the primary endpoint occurred in 26.9% versus 26.5% of patients (adjusted HR [aHR]: 1.03, 95% confidence interval [CI]: 0.88-1.21). A nonrecanalized CTO was present in 854 patients (34.1%) with ICR after PCI. The primary endpoint occurred in 28.6% versus 25.9% of ICR patients with versus without a CTO (aHR: 1.10, 95% CI: 0.94-1.29). However, patients with a CTO had higher rates of ischemia-driven hospitalization without revascularization (aHR: 1.27, 95% CI: 1.04-1.56), heart failure hospitalization (aHR: 2.69, 95% CI: 1.61-4.59) and myocardial infarction (aHR: 1.46, 95% CI: 1.11-1.92) compared with those without. CONCLUSIONS: The 2-year prognosis was similar in post-PCI patients with ICR whether the LAD was versus was not involved. ICR patients with a CTO had more frequent hospitalizations for ischemia and myocardial infarctions compared with those without.

2.
Eur J Pharmacol ; 977: 176744, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38897438

ABSTRACT

Approximately 90% of diabetic males have varying degrees of testicular dysfunction. The current study investigates the possible beneficial consequences of ranolazine against T1DM-induced testicular dysfunction in rats. Thirty-two male Sprague Dawley rats were assorted into 4 groups; normal, diabetic (single 50 mg/kg STZ, I.P.) and ranolazine (40 and 80 mg/kg, orally). The present investigation revealed that the hypoglycemic impact of ranolazine significantly improved the testicular weight and body weight of the final rats, as well as the concentration of blood testosterone, sperm count, and viability, all of which were associated with STZ-induced testicular dysfunction. Furthermore, as demonstrated by elevated reduced glutathione (GSH) activity and lowered malondialdehyde (MDA) levels, diabetic rats administered ranolazine showed a noteworthy improvement in the oxidant/antioxidant ratio. Furthermore, a substantial rise in beclin-1 concentration was seen in conjunction with a significant decrease in thioredoxin-interacting protein (TXNIP) and interleukin-18 (IL-18) concentrations when ranolazine was administered. Although ranolazine exhibited a reduction in inflammation as seen by lower expression of nuclear factor-κB (NF-κB) and cluster of differentiation (CD68) in the testicles, these biochemical findings were validated by improvements in the morphological and histopathological outcomes of both the pancreatic and testicular tissues. In conclusion, daily oral administration of ranolazine (40 and 80 mg/kg) for 8 weeks could be a promising therapy for T1DM-induced testicular dysfunction through its dose-dependent anti-oxidant and anti-inflammatory effects.


Subject(s)
Beclin-1 , Interleukin-18 , NF-kappa B , Ranolazine , Rats, Sprague-Dawley , Signal Transduction , Testis , Animals , Male , NF-kappa B/metabolism , Ranolazine/pharmacology , Ranolazine/therapeutic use , Signal Transduction/drug effects , Interleukin-18/metabolism , Interleukin-18/blood , Testis/drug effects , Testis/metabolism , Testis/pathology , Rats , Beclin-1/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Carrier Proteins/metabolism , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/metabolism , Oxidative Stress/drug effects , Testicular Diseases/drug therapy , Testicular Diseases/prevention & control , Testicular Diseases/etiology , Testicular Diseases/pathology , Testosterone/blood , Cell Cycle Proteins
3.
Eur J Pharmacol ; 977: 176675, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38825303

ABSTRACT

BACKGROUND: Ibrutinib, a Bruton's tyrosine kinase inhibitor used in cancer therapy, exerts ventricular proarrhythmic effects; however, the underlying mechanisms remain unclear. Excitation-contraction coupling (E-C) disorders are pivotal for the genesis of ventricular arrhythmias (VAs), which arise mainly from the right ventricular outflow tract (RVOT). In this study, we aimed to comprehensively investigate whether ibrutinib regulates the electromechanical activities of the RVOT, leading to enhanced arrhythmogenesis, and explore the underlying mechanisms. METHODS: We utilized conventional microelectrodes to synchronously record electrical and mechanical responses in rabbit RVOT tissue preparations before and after treatment with ibrutinib (10, 50, and 100 nM) and investigated their electromechanical interactions and arrhythmogenesis during programmed electrical stimulation. The fluorometric ratio technique was used to measure intracellular calcium concentration in isolated RVOT myocytes. RESULTS: Ibrutinib (10-100 nM) shortened the action potential duration. Ibrutinib at 100 nM significantly increased pacing-induced ventricular tachycardia (VT) (from 0% to 62.5%, n = 8, p = 0.025). Comparisons between pacing-induced VT and non-VT episodes demonstrated that VT episodes had a greater increase in contractility than that of non-VT episodes (402.1 ± 41.4% vs. 232.4 ± 29.2%, p = 0.003). The pretreatment of ranolazine (10 µM, a late sodium current blocker) prevented the occurrence of ibrutinib-induced VAs. Ibrutinib (100 nM) increased late sodium current, reduced intracellular calcium transients, and enhanced calcium leakage in RVOT myocytes. CONCLUSION: Ibrutinib increased the risk of VAs in the RVOT due to dysregulated electromechanical responses, which can be attenuated by ranolazine or apamin.


Subject(s)
Action Potentials , Adenine , Agammaglobulinaemia Tyrosine Kinase , Piperidines , Protein Kinase Inhibitors , Animals , Piperidines/pharmacology , Rabbits , Adenine/analogs & derivatives , Adenine/pharmacology , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Agammaglobulinaemia Tyrosine Kinase/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/adverse effects , Action Potentials/drug effects , Pyrimidines/pharmacology , Arrhythmias, Cardiac/chemically induced , Arrhythmias, Cardiac/physiopathology , Male , Heart Ventricles/drug effects , Heart Ventricles/physiopathology , Calcium/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Tachycardia, Ventricular/physiopathology , Pyrazoles/pharmacology , Excitation Contraction Coupling/drug effects
4.
J Invasive Cardiol ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38691399

ABSTRACT

Ranolazine is an anti-anginal medication given to patients with chronic angina and persistent symptoms despite medical therapy. We examined 11 491 chronic total occlusion (CTO) percutaneous coronary interventions (PCI) that were performed at 41 US and non-US centers between 2012 and 2023 in the PROGRESS-CTO Registry. Patients on ranolazine at baseline had more comorbidities, more complex lesions, lower procedural and technical success (based on univariable but not multivariable analysis), and higher incidence of major adverse cardiac events (MACE) (on both univariable and multivariable analysis).

5.
Front Pharmacol ; 15: 1379236, 2024.
Article in English | MEDLINE | ID: mdl-38659580

ABSTRACT

Introduction: Hypertrophic cardiomyopathy (HCM) is a leading cause of lethal arrhythmias in the young. Although the arrhythmic substrate has been hypothesised to be amenable to late Na+ block with ranolazine, the specific mechanisms are not fully understood. Therefore, this study aimed to investigate the substrate mechanisms of safety and antiarrhythmic efficacy of ranolazine in HCM. Methods: Computational models of human tissue and ventricles were used to simulate the electrophysiological behaviour of diseased HCM myocardium for variable degrees of repolarisation impairment, validated against in vitro and clinical recordings. S1-S2 pacing protocols were used to quantify arrhythmic risk in scenarios of (i) untreated HCM-remodelled myocardium and (ii) myocardium treated with 3µM, 6µM and 10µM ranolazine, for variable repolarisation heterogeneity sizes and pacing rates. ECGs were derived from biventricular simulations to identify ECG biomarkers linked to antiarrhythmic effects. Results: 10µM ranolazine given to models manifesting ventricular tachycardia (VT) at baseline led to a 40% reduction in number of VT episodes on pooled analysis of >40,000 re-entry inducibility simulations. Antiarrhythmic efficacy and safety were dependent on the degree of repolarisation impairment, with optimal benefit in models with maximum JTc interval <370 ms. Ranolazine increased risk of VT only in models with severe-extreme repolarisation impairment. Conclusion: Ranolazine efficacy and safety may be critically dependent upon the degree of repolarisation impairment in HCM. For moderate repolarisation impairment, reductions in refractoriness heterogeneity by ranolazine may prevent conduction blocks and re-entry. With severe-extreme disease substrates, reductions of the refractory period can increase re-entry sustainability.

6.
J Clin Med ; 13(6)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38541898

ABSTRACT

Background: Although ranolazine has been available for years as a second-line treatment to reduce angina attacks in patients with stable angina pectoris, real-world data on the effectiveness, tolerability, and safety of ranolazine are limited. Methods: A non-interventional, prospective study was conducted to assess the effectiveness and safety of ranolazine. Patients eligible for enrolment had a baseline assessment between one and fourteen days after initiating ranolazine for the first time and a follow-up visit three months later. The primary endpoints comprised the weekly frequency of angina attacks, total adverse events, and ranolazine discontinuation rate. The secondary endpoints included the use of short-acting nitrates, changes on the Canadian Cardiovascular Society (CCS) angina classification score and quality of life scale score (QoL). Results: In total, 1101 patients were enrolled at 214 sites. Mean weekly angina attacks were reduced from 3.6 ± 2.9 to 0.4 ± 0.9 (p < 0.0001) and the mean weekly consumption of short-acting nitrates decreased by 1.7 ± 2.2 (p < 0.0001). CCS class and QoL were also improved (p < 0.0001). Adverse events were reported by 11 (1%) patients in total, while 2 of them (0.2%) were characterised as serious. Treatment was discontinued for various reasons in 23 patients (2.1%) after the follow-up period. Ranolazine treatment was equally effective in all subgroups tested, with larger benefits observed in patients with more frequent angina and CCS angina class III and IV. Up-titration of ranolazine during the study improved the outcomes. Conclusions: Ranolazine was well tolerated and effectively reduced angina attacks, with simultaneous improvement of the CCS class and QoL score in patients with stable angina.

7.
Cureus ; 16(1): e52747, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38384654

ABSTRACT

Coronary artery ectasia (CAE) is characterized by the abnormal dilation of coronary arteries, resulting in disturbed or slow blood flow, which causes angina pectoris-the most prevalent symptom of CAE. To date, there is no consensus on the therapeutic management of CAE due to its rarity and the scarcity of research. We present a case series of five patients with different ethnicities, including both men and women, whose CAE was successfully managed by the administration of ranolazine. All five patients were found to have CAE by coronary angiography, which was also associated with slow blood flow. Clinically, the patients had accelerating angina. They were prescribed an initial dose of 500 mg of ranolazine twice daily, which led to the resolution of their anginal symptoms. They have been clinically and hemodynamically stable for the last several years. In light of these results, we propose that ranolazine be considered as a first-choice anti-anginal medication for patients with CAE.

8.
Quant Imaging Med Surg ; 14(2): 1451-1465, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38415135

ABSTRACT

Background: Microvascular dysfunction in patients with nonobstructive coronary artery disease is increasingly being recognized as an important health issue. This systematic review and meta-analysis evaluated the effectiveness of ranolazine, an antianginal agent, in improving coronary microvascular function. Methods: We conducted a comprehensive literature search of the Cochrane Library, PubMed, Embase, China National Knowledge Infrastructure, the Chinese BioMedical Literature Database, and gray literature databases until September 30, 2023. The included studies were randomized controlled trials (RCTs) published in the English or Chinese languages that screened for eligibility using two independent investigators. Risk of bias was evaluated with the Cochrane Collaboration tool. Subgroup and sensitivity analyses were used to identify sources of heterogeneity. Meta-analysis was performed using RevMan version 5.4 (Cochrane) and Stata version 16.0 (StataCorp). Results: From 1,470 citations, 8 RCTs involving 379 participants were included in this analysis. Our findings showed that ranolazine increased coronary flow reserve (CFR) over an 8 to 12-week follow-up period [standardized mean difference =1.16; 95% confidence interval (CI): 0.4-1.89; P=0.002]. Ranolazine increased the global myocardial perfusion reserve index (MPRI) [weighted mean difference (WMD) =0.18; 95% CI: 0.07-0.29; P=0.002] and the midsubendocardial MPRI (WMD =0.10; 95% CI: 0.02-0.19; P=0.02). Moreover, ranolazine improved 3 of the 5 Seattle Angina Questionnaire scores, namely, physical functioning (WMD =4.89; 95% CI: 0.14 to 9.64; P=0.04), angina stability (WMD =17.31; 95% CI: 7.13-27.49; P=0.0009), and quality of life (WMD =10.11; 95% CI: 3.57-16.65; P=0.0003). Trial sequential analysis showed that the meta-analysis of angina stability and quality of life scores had a sufficient sample size and statistical power. Conclusions: Our analysis suggests that ranolazine is associated with improvements in CFR, myocardial perfusion, and the Seattle Angina Questionnaire scores in patients with nonobstructive coronary artery disease. However, further large-scale RCTs with long-term follow-up are recommended to validate these findings and provide a more comprehensive understanding of the effects of ranolazine on coronary microvascular function.

9.
Medicina (Kaunas) ; 60(1)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38256425

ABSTRACT

Background and Objectives: Remote ischemic preconditioning (RIPC) has demonstrated efficacy in protecting against myocardial ischemia-reperfusion injury when applied before percutaneous coronary revascularization. Ranolazine, an anti-ischemic drug, has been utilized to minimize ischemic events in chronic angina patients. However, there is a lack of trials exploring the combined effects of ranolazine pretreatment and RIPC in patients undergoing percutaneous coronary interventions (PCIs). Materials and Methods: The present study is a prospective study which enrolled 150 patients scheduled for nonemergent percutaneous coronary revascularization. Three groups were formed: a control group undergoing only PCIs, an RIPC group with RIPC applied to either upper limb before the PCI (preconditioning group), and a group with RIPC before the PCI along with prior ranolazine treatment for stable angina (ranolazine group). Statistical analyses, including ANOVAs and Kruskal-Wallis tests, were conducted, with the Bonferroni correction for type I errors. A repeated-measures ANOVA assessed the changes in serum enzyme levels (SGOT, LDH, CRP, CPK, CK-MB, troponin I) over the follow-up. Statistical significance was set at p < 0.05. Results: The ranolazine group showed (A) significantly lower troponin I level increases compared to the control group for up to 24 h, (B) significantly lower CPK levels after 4, 10, and 24 h compared to the preconditioning group (p = 0.020, p = 0.020, and p = 0.019, respectively) and significantly lower CPK levels compared to the control group after 10 h (p = 0.050), and (C) significantly lower CK-MB levels after 10 h compared to the control group (p = 0.050). Conclusions: This study suggests that combining RIPC before scheduled coronary procedures with ranolazine pretreatment may be linked to reduced ischemia induction, as evidenced by lower myocardial enzyme levels.


Subject(s)
Ischemic Preconditioning , Percutaneous Coronary Intervention , Humans , Ranolazine/pharmacology , Ranolazine/therapeutic use , Prospective Studies , Troponin I
10.
Acta Cardiol Sin ; 40(1): 77-86, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38264074

ABSTRACT

Background: We aimed to determine the usability of ranolazine (Rn) as a neuroprotective during cardiac surgeries and carotid artery interventions where cerebral blood flow is interrupted. Methods: Female Wistar albino rats were used. The rats were divided into 4 groups of 8 rats each. The first group (Group 1) was the control group. Group 2 underwent ischemia induction but was not treated with Rn. Group 3 received 25 mg/kg/day and Group 4 50 mg/kg/day Rn intraperitoneally, starting 3 days before ischemia induction. Bilateral carotid arteries were explored and clamped simultaneously. Ischemia was induced for 15 minutes. After 72 hours, the experimental animals were sacrificed. Results: Superoxide dismutase, alkaline phosphatase, and interleukin 6 levels were similar among the 4 groups. Acetylcholine esterase (Group 3: p = 0.007, Group 4: p = 0.002), tumor necrosis factor-alpha (Group 4: p = 0.01), and annexin V (Group 3: p = 0.001) levels were statistically significantly lower in the Rn-treated groups. Malondialdehyde (Group 3: p = 0.003, Group 4: p = 0.009), reduced glutathione (Group 4: p = 0.04), acid phosphatase (Group 3: p = 0.04), noradrenaline (Group 3: p = 0.01), and Bcl-2 (Group 4: p = 0.004) levels were significantly higher in the Rn-treated groups. Conclusions: The results of this study demonstrated the antiapoptotic effect of Rn in a brain ischemia-reperfusion model of rats receiving Rn before the procedure.

11.
Vascul Pharmacol ; 154: 107273, 2024 03.
Article in English | MEDLINE | ID: mdl-38182082

ABSTRACT

The current approach to myocardial ischemia has been influenced by the misconception of a close link between ischemia and coronary atherosclerotic obstructions. Recent guidelines have, however, acknowledged the multifactorial nature of this condition, with an identifiable cause present in less than half of angina patients, and a large fraction with angina of unknown origin. Because of this background, focusing on cardiac energy metabolim offers new opportunities to manage myocardial ischemia even when its cause is unknown.


Subject(s)
Coronary Artery Disease , Myocardial Ischemia , Humans , Ranolazine/adverse effects , Ranolazine/metabolism , Myocardial Ischemia/chemically induced , Myocardial Ischemia/metabolism , Coronary Artery Disease/metabolism , Myocardium/metabolism , Energy Metabolism
12.
Am J Med Sci ; 367(3): 155-159, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38072070

ABSTRACT

The vast majority of antianginal drugs decrease heart rate and or blood pressure levels or the inotropic status of the left ventricle to decrease myocardial oxygen consumption (MVO2) and thus anginal symptoms. Ranolazine presents a completely different mechanism of action, which reduces the sodium-dependent calcium overload inhibiting the late sodium current. Current European Society of Cardiology (ESC) guidelines for the management of angina in patients with chronic coronary symptoms recommend the use of several drugs such as ranolazine, b-blockers, calcium channel blockers, long-acting nitrates, ivabradine, nicorandil and trimetazidine for angina relief. However, ranolazine, in addition to symptom relief properties, is an antianginal drug showing favorable effects in decreasing the arrhythmic burden and in ameliorating the glycemic profile of these patients. In this review, we summarize the available data regarding the antianginal and pleiotropic effects of this drug.


Subject(s)
Cardiovascular Agents , Humans , Ranolazine/pharmacology , Ranolazine/therapeutic use , Cardiovascular Agents/therapeutic use , Angina Pectoris/drug therapy , Ivabradine , Sodium
13.
Am J Cardiol ; 209: 92-103, 2023 12 15.
Article in English | MEDLINE | ID: mdl-37844876

ABSTRACT

Heart failure is a complex clinical syndrome with a detrimental impact on mortality and morbidity. Energy substrate utilization and myocardial ion channel regulation have gained research interest especially after the introduction of sodium-glucose co-transporter 2 inhibitors in the treatment of heart failure. Ranolazine or N-(2,6-dimethylphenyl)-2-(4-[2-hydroxy-3-(2-methoxyphenoxy) propyl] piperazin-1-yl) acetamide hydrochloride is an active piperazine derivative which inhibits late sodium current thus minimizing calcium overload in the ischemic cardiomyocytes. Ranolazine also prevents fatty acid oxidation and favors glycose utilization ameliorating the "energy starvation" of the failing heart. Heart failure with preserved ejection fraction is characterized by diastolic impairment; according to the literature ranolazine could be beneficial in the management of increased left ventricular end-diastolic pressure, right ventricular systolic dysfunction and wall shear stress which is reflected by the high natriuretic peptides. Fewer data is evident regarding the effects of ranolazine in heart failure with reduced ejection fraction and mainly support the control of the sodium-calcium exchanger and function of sarcoendoplasmic reticulum calcium adenosine triphosphatase. Ranolazine's therapeutic mechanisms in myocardial ion channels and energy utilization are documented in patients with chronic coronary syndromes. Nevertheless, ranolazine might have a broader effect in the therapy of heart failure and further mechanistic research is required.


Subject(s)
Heart Failure , Piperazines , Humans , Ranolazine/therapeutic use , Piperazines/therapeutic use , Piperazines/pharmacology , Acetanilides/pharmacology , Acetanilides/therapeutic use , Heart Failure/drug therapy , Sodium
14.
Int J Mol Sci ; 24(17)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37686345

ABSTRACT

Ranolazine (RN) is a drug used in the treatment of chronic coronary ischemia. Different clinical trials have shown that RN behaves as an anti-diabetic drug by lowering blood glucose and glycosylated hemoglobin (HbA1c) levels. However, RN has not been shown to improve insulin (IN) sensitivity. Our study investigates the possible facilitating effects of RN on the actions of IN in the rabbit aorta. IN induced vasodilation of the abdominal aorta in a concentration-dependent manner, and this dilatory effect was due to the phosphorylation of endothelial nitric oxide synthase (eNOS) and the formation of nitric oxide (NO). On the other hand, IN facilitated the vasodilator effects of acetylcholine but not the vasodilation induced by sodium nitroprusside. RN facilitated all the vasodilatory effects of IN. In addition, IN decreased the vasoconstrictor effects of adrenergic nerve stimulation and exogenous noradrenaline. Both effects were in turn facilitated by RN. The joint effect of RN with IN induced a significant increase in the ratio of p-eNOS/eNOS and pAKT/AKT. In conclusion, RN facilitated the vasodilator effects of IN, both direct and induced, on the adrenergic system. Therefore, RN increases vascular sensitivity to IN, thus decreasing tissue resistance to the hormone, a key mechanism in the development of type II diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Animals , Rabbits , Ranolazine/pharmacology , Vasodilator Agents , Aorta, Abdominal , Adrenergic Agents
15.
Front Cardiovasc Med ; 10: 1207580, 2023.
Article in English | MEDLINE | ID: mdl-37671136

ABSTRACT

Introduction: Coronary slow flow (CSF) is a condition commonly encountered during angiography. Recent studies have shown the adverse effects of CSF on left ventricular diastolic functions. CSF reportedly increases the novel ventricular repolarization parameters. Ranolazine is a preparation with a prominent anti-anginal activity that has positive effects on anti-arrhythmic and diastolic parameters. In this context, this study was carried out to investigate the effects of ranolazine on left ventricular diastolic functions and repolarization in patients with CSF. Material and methods: Forty-six patients with CSF and 29 control subjects were included in the patient and control groups, respectively. Both groups received ranolazine for one month and were evaluated using 12-lead electrocardiography, conventional echocardiography, and tissue Doppler imaging at the baseline and after one month of ranolazine treatment. Results: Corrected P, QT dispersion, and Tp-e interval values were significantly higher in the patient group than in the control group. There was a significant decrease in isovolumic relaxation time (IVRT) and deceleration time (DT) values after the ranolazine treatment compared to the baseline values in the patient group but not the control group. A significant increase was observed in the mean E and A velocities and the mean E/A ratio after the ranolazine treatment compared to the baseline values in the patient group. Additionally, there was a significant difference between the Tp-e interval and corrected P dispersion values measured after the ranolazine treatment compared to the baseline values in the patient group but not in the control group. Conclusion: This study's findings demonstrated that ranolazine positively affected impaired diastolic functions and repolarization parameters, particularly in patients with CSF.

16.
Pharmaceuticals (Basel) ; 16(8)2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37631066

ABSTRACT

Chronic stable angina pectoris is the primary indication for ranolazine (RZ), an anti-anginal drug. The drug has an anti-ischemic action that is unaffected by either blood pressure or heart rate. Due to the first-pass effect, the drug has a reduced bioavailability of 35 to 50%. The study emphasized developing a novel transdermal drug delivery system of nanostructured lipid carriers (NLCs) for delivering RZ. Many pharmaceutical companies employ lipid nanoparticles as biocompatible carriers for medicinal, cosmetic, and biochemical uses. These carriers are appropriate for many applications, such as topical, transdermal, parenteral, pulmonary, and oral administration, because of the large variety of lipids and surfactants that are readily available for manufacturing. RZ NLCs were made using high-pressure homogenization. Statistical analysis was utilized to find the best formula by varying the concentrations of Precirol ATO 5 (X1), oleic acid (X2), and Tween 80 (X3). Variables such as entrapment effectiveness (EE) (Y1), particle size (Y2), polydispersity index (PDI) (Y3), and zeta potential (Y4) were tested. A variety of tests were performed on the new formulation to ascertain how well it would be absorbed in the body. These tests included in vivo absorption studies, skin permeability assessments, in vitro drug release assessments, and physicochemical analyses. The particle size of RZ-NLCs was shown to be very small (118.4 ± 5.94 nm), with improved EE (88.39 ± 3.1%) and low ZP and PDI (-41.91 ± 0.38 and 0.118 ± 0.028). SEM and TEM analysis confirmed the structure of the NLCs and showed a smooth, spherical surface. Improved RZ-NLCs were used to create NLC gel, which was then tested for elasticity both physically and rheologically. The formulation's elasticity was investigated. Optimized RZ-NLCs and NLCG were found to have transdermal fluxes of 48.369 g/cm2/h and 38.383 g/cm2/h, respectively. These results showed that the transdermal delivery of RZ distribution through NLC's transdermal gel had more significant potential. According to in vivo experiments, the drug's bioavailability in Wistar rats increased when it was delivered through NLCs. The findings demonstrated that NLCs loaded with RZ successfully transported the RZ to the designated site with no interruptions and that a quadratic connection existed between the independent and dependent variables.

18.
Basic Clin Pharmacol Toxicol ; 133(2): 194-201, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37269153

ABSTRACT

AIMS: Recent studies have demonstrated that stimulating pyruvate dehydrogenase (PDH, gene Pdha1), the rate-limiting enzyme of glucose oxidation, can reverse obesity-induced non-alcoholic fatty liver disease (NAFLD), which can be achieved via treatment with the antianginal ranolazine. Accordingly, our aim was to determine whether ranolazine's ability to mitigate obesity-induced NAFLD and hyperglycaemia requires increases in hepatic PDH activity. METHODS: We generated liver-specific PDH-deficient (Pdha1Liver-/- ) mice, which were provided a high-fat diet for 12 weeks to induce obesity. Pdha1Liver-/- mice and their albumin-Cre (AlbCre ) littermates were randomized to treatment with either vehicle control or ranolazine (50 mg/kg) once daily via oral gavage during the final 5 weeks, following which we assessed glucose and pyruvate tolerance. RESULTS: Pdha1Liver-/- mice exhibited no overt phenotypic differences (e.g. adiposity, glucose tolerance) when compared to their AlbCre littermates. Of interest, ranolazine treatment improved glucose tolerance and mildly reduced hepatic triacylglycerol content in obese AlbCre mice but not in obese Pdha1Liver-/- mice. The latter was independent of changes in hepatic mRNA expression of genes involved in regulating lipogenesis. CONCLUSIONS: Liver-specific PDH deficiency is insufficient to promote an NAFLD phenotype. Nonetheless, hepatic PDH activity partially contributes to how the antianginal ranolazine improves glucose tolerance and alleviates hepatic steatosis in obesity.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Male , Mice , Diet, High-Fat/adverse effects , Glucose/metabolism , Liver/metabolism , Mice, Inbred C57BL , Mice, Obese , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/genetics , Obesity/complications , Obesity/drug therapy , Obesity/chemically induced , Oxidoreductases/metabolism , Ranolazine/adverse effects , Ranolazine/metabolism
19.
Cureus ; 15(4): e37153, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37153311

ABSTRACT

An Emergency Use Authorization (EUA) was issued by the FDA on December 22, 2021 for the investigational antiviral drug nirmatrelvir copackaged with the HIV-1 protease inhibitor ritonavir (Paxlovid - Pfizer) for outpatient treatment of mild to moderate COVID-19 in children 12 years and old that are high risk of severe disease. Due to the effects, Paxlovid has on liver metabolism it has a copious amount of drug-to-drug interactions. Here we present a rare case of a patient that was given Paxlovid and continued to take her Ranolazine at home. She presented to the emergency department obtunded and after an initial workup, it was determined to be secondary to ranolazine toxicity. She eventually recovered over 54 hours and returned to her baseline.

SELECTION OF CITATIONS
SEARCH DETAIL