Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 122
Filter
Add more filters











Publication year range
1.
BMC Vet Res ; 20(1): 450, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39375658

ABSTRACT

BACKGROUND: Many studies conducted on livestock point to fermented rapeseed meal (FRSM) as a component that provides adequate quality and quantity of protein. Additionally, it is a very good source of probiotics, prebiotics, enzymes, and antioxidants. A study was undertaken to assess the impact of a feed supplemented with FRSM fermented with Bacillus subtilis strain 87Y on production parameters, nutrient digestibility, and haematological and lipid indicators of the blood in growing rabbits. Forty New Zealand White rabbits (body weight 816,25 ± 24,98 g) aged 35 days were used in this study. The animals were divided into four groups, a control group (C) was fed a standard diet, while in the diet of three experimental groups, soybean meal (SBM) was replaced with FRSM at 4% (FR4 group), 8% (FR8 group), or 12% (FR12 group). RESULTS: Detailed analysis revealed that the contribution of FRSM in the rabbit feed, regardless of the amount, had a significant effect on body weight gain (BWG), as well as average daily gain (ADG), compared to the control group (C), (P = 0.017). All groups receiving FRSM had a significantly lower (P = 0.05) feed conversion ratio (FCR) compared to the control group. In rabbits fed a diet containing 8% FRSM, the blood haematological parameters, such as red blood cells (RBC), haematocrit (HCT), haemoglobin (HGB), and mean corpuscular volume (MCV), were significantly higher compared to the control group (P = 0.037). In addition, a significant reduction in the plasma levels of the low-density lipoprotein fraction (LDL-chol), the ratio of total cholesterol to high-density lipoprotein (CHOL/HDL), (P = 0.001), and triacylglycerols (TG), (P = 0.004) were observed in the experimental groups compared to the control group. CONCLUSIONS: Based on the encouraging outcomes, it is possible to recommend domestically produced FRSM as a viable substitute for genetically-modified (GM) SBM in rabbit feed.


Subject(s)
Animal Feed , Animal Nutritional Physiological Phenomena , Diet , Dietary Supplements , Digestion , Fermentation , Animals , Rabbits/blood , Animal Feed/analysis , Diet/veterinary , Digestion/drug effects , Digestion/physiology , Lipids/blood , Male , Brassica rapa , Bacillus subtilis , Brassica napus
2.
Arch Anim Nutr ; : 1-12, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39319554

ABSTRACT

A study was conducted to investigate the chemical composition and feeding value of rapeseed meal (RSM) batches produced at the same plant when fed to turkey poults. In total, seven RSM samples were obtained from a single manufacturer within a period of 90 days. Although the manufacturer followed the same procedures during oil extraction and RSM production, different batches of rapeseed were used. A balancer feed (BF) was formulated to contain 11.85 MJ/kg ME and 265 g/kg crude protein. Seven nutritionally complete test mash diets were prepared by mixing 200 g/kg of each RSM batch sample with 800 g/kg of the BF, totalling 8 diets. Diets were fed to female B.U.T. Premium turkeys from 12 to 21 d of age. Each diet was fed to six raised floor pens, housing two birds, following randomisation. During the experiment, a nitrogen corrected apparent metabolisable energy (AMEn) assay was performed using a total collection technique. The AMEn in RSM samples was calculated based on the differences between the AMEn values of basal and test diets. Associations were examined between AMEn and the chemical composition of the RSM samples. The overall determined AMEn value of the RSM ranged from 5.50 MJ/kg DM to 8.53 MJ/kg DM, giving an average AMEn of 7.29 MJ/kg DM. There was no difference (p > 0.05) in AMEn content between batches. There was a negative correlation (r = - 0.864; p < 0.05) between AMEn values and the neutral detergent fibre (NDF) content of the RSM samples. The results suggest that the NDF could be a good predictor of the AMEn of industry produced RSM. It may be inferred that processing rather than cultivar could be the main factor determining the feeding value of RSM for turkeys.

3.
Animals (Basel) ; 14(18)2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39335316

ABSTRACT

This study examined the effects of incorporating fermented rapeseed meal (FRSM) into the diet of newly weaned piglets on mineral digestibility and bone health. Experimental diets containing varying levels of FRSM (8%, 12%, 15%, and 25%) were introduced to the piglets at 18 days of age, prior to weaning at 28 days. These diets were continued until the piglets were euthanized at 42 days of age. Mineral absorption was assessed using the apparent total tract digestibility (ATTD) method and blood plasma element analysis, while bone mineral content and mechanical properties were evaluated through densitometry and three-point bending tests. The results showed that intermediate levels of FRSM (12-15%) significantly enhanced the digestibility of key minerals, including phosphorus, calcium, magnesium, copper, zinc, and iron. This improvement was linked to increased femoral mineral content and bone stiffness, as well as a higher yield point, likely due to enhanced collagen synthesis. Additionally, there was an increase in bone fracture load and fracture stress, potentially due to changes in the organization of the bone mineral phase, as no changes in bone mid-shaft mineral density or geometry were observed. These findings suggest FRSM as a promising dietary component for improving mineral bioavailability and bone health in piglets.

4.
Article in English | MEDLINE | ID: mdl-39345033

ABSTRACT

The use of rapeseed as a source of protein in broiler chicken diets has been highlighted. However, there are inconsistent findings on the performance data of broiler chickens fed rapeseed meal (RSM). Therefore, this meta-analysis aimed to resolve the inconsistent findings on the effect of RSM on growth performance, carcass characteristics, internal organs, and intestinal histomorphology of broiler chickens, identify knowledge gaps and create new insights using published data. Fourteen studies on the topic were identified via a systematic search performed on bibliographic databases, and the data generated was analysed using OpenMEE software. A random-effects model was used, and effect sizes were presented as standardised mean difference (SMD) at a 95% confidence interval (CI). Sources of heterogeneity were evaluated using broiler strains, inclusion levels, processing methods, rearing phases and sex as moderators. In comparison with the controls, the results showed that RSM decreased feed intake (SMD = -0.29; 95% Cl: -0.41, -0.18; p < 0.001), average daily gain (SMD = -0.48; 95% Cl: -0.63, -0.32; p < 0.001), and liver weight (SMD = 1.24; 95% Cl: 0.78, 1.71; p < 0.001), but had no effect on feed conversion ratio (SMD = 0.10; 95% Cl: -0.05, 0.23; p = 0.19). Likewise, broiler chickens fed RSM had significantly reduced carcass yield, weights of thigh, abdominal fat and heart when compared with the control. Results indicate that duodenum villus height (DVH) and jejunum villus height (JVH)/crypt depth (CD) ratios were improved in broiler chickens fed RSM. Meta-regression revealed that the analysed moderators are significant predictors of feed intake, average daily gain and feed conversion ratio in broiler chickens. In conclusion, dietary RSM negatively influenced growth performance, liver weight and carcass characteristics in broiler chickens, but improved aspects of intestinal histomorphology traits. Therefore, innovative research on processing methods that will improve the feeding value of rapeseed meal in broiler chickens is recommended.

5.
Biomolecules ; 14(8)2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39199370

ABSTRACT

In recent years, there has been increasing interest in developing novel materials based on natural biopolymers as a renewable alternative to petroleum-based plastics. The availability of proteins derived from agricultural by-products, along with their favourable properties, has fostered a renewed interest in protein-based materials, promoting research in innovative technologies. In this study, we propose the use of rapeseed protein-rich meal as the main ingredient for the preparation of novel sustainable materials combining excellent environmental properties such as biodegradability and renewability. The application of sustainable products in the present high-tech society requires the modification of the basic native properties of these natural compounds. The original route proposed in this paper consists of preparation via the compression moulding of flexible biomaterials stabilized by crosslinkers/chain extenders. An investigation of the effects of different denaturing and disulfide bond reducing agents, crosslinkers, and preparation conditions on the material mechanical behaviour demonstrated that the novel materials have appreciable strength and stiffness. The results show the potential of utilizing full meal from vegetable by-products to prepare protein-based materials with guaranteed ecofriendly characteristics and mechanical properties adequate for specific structural applications.


Subject(s)
Brassica rapa , Brassica rapa/chemistry , Biocompatible Materials/chemistry , Plant Proteins/chemistry
6.
Fish Physiol Biochem ; 50(4): 1683-1699, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38869816

ABSTRACT

This study aims to evaluate the effects of substituting soybean meal with fermented rapeseed meal (FRM) on growth, antioxidant capacity, and liver and intestinal health of the genetically improved farmed tilapia (GIFT, Oreochromis niloticus). A total of 450 tilapia (7.22 ± 0.15 g) were fed with five experimental diets, including a basal diet containing 40% soybean meal (CP0), which was subsequently replaced by 25% (CP25), 50% (CP50), 75% (CP75), and 100% (CP100) FRM in a recirculated aquiculture system for 9 weeks (30 fish per tank in triplicates). The results showed that the weight gain, specific growth rate, feed intake, feed efficiency, hepatosomatic index, and viscerosomatic index of fish in both CP75 and CP100 groups were significantly lower than those in CP0 group (P < 0.05). The fish in CP100 group had the lower content of muscle crude protein while the higher level of muscle crude lipid (P < 0.05). Activities of serum aspartate aminotransferase, alanine aminotransferase along with total triglyceride in CP100 group were significantly higher than those in CP0 group (P < 0.05). There were no significant differences in the contents of liver protease, amylase, and lipase among five groups (P > 0.05). The activities of liver total antioxidant capacity and superoxide dismutase exhibited the increased tendency with the increase of FRM replacement levels from 25 to 50% (P < 0.05), while then significantly decreased from 75 to 100% (P < 0.05). Histological morphology indicated that the fish in between CP75 and CP100 groups had poor liver and intestine health. Intestinal microbial diversity analysis showed that the relative abundance of Cetobacterium and Alcaligenaceae in both CP75 and CP100 groups were lower than that in other three groups. In conclusion, the maximum replacement level of soybean meal with FRM in the diet was determined to be 50% without compromising the growth performance, antioxidant status, and liver and intestinal health of tilapia under the current experimental conditions. The observed decrease in food intake and subsequent retarded growth performance in the CP75 and CP100 groups can be attributed directly to a reduction in feed palatability caused by FRM.


Subject(s)
Animal Feed , Antioxidants , Cichlids , Diet , Glycine max , Intestines , Liver , Animals , Liver/metabolism , Animal Feed/analysis , Antioxidants/metabolism , Diet/veterinary , Cichlids/growth & development , Cichlids/metabolism , Cichlids/physiology , Animal Nutritional Physiological Phenomena , Fermentation , Brassica napus
7.
J Sci Food Agric ; 104(12): 7355-7366, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38661233

ABSTRACT

BACKGROUND: Wheat distillers' grains (WDG) and seaweeds are recommended as alternative protein sources and enteric methane mitigators in dairy cow diets, respectively, but little is known about their impact on milk quality and safety. In the present study, 16 cows in four 4 × 4 Latin squares were fed isonitrogenous diets (50:50 forage:concentrate ratio), with rapeseed meal (RSM)-based or WDG-based concentrate (230 and 205 g kg-1 dry matter) and supplemented with or without Saccharina latissima. RESULTS: Replacement of RSM with WDG enhanced milk nutritional profile by decreasing milk atherogenicity (P = 0.002) and thrombogenicity (P = 0.019) indices and the concentrations of the nutritionally undesirable saturated fatty acids - specifically, lauric (P = 0.045), myristic (P = 0.022) and palmitic (P = 0.007) acids. It also increased milk concentrations of the nutritionally beneficial vaccenic (P < 0.001), oleic (P = 0.030), linoleic (P < 0.001), rumenic (P < 0.001) and α-linolenic (P = 0.012) acids, and total monounsaturated (P = 0.044), polyunsaturated (P < 0.001) and n-6 (P < 0.001) fatty acids. Feeding Saccharina latissima at 35.7 g per cow per day did not affect the nutritionally relevant milk fatty acids or pose any risk on milk safety, as bromoform concentrations in milk were negligible and unaffected by the dietary treatments. However, it slightly reduced milk concentrations of pantothenate. CONCLUSION: Feeding WDG to dairy cows improved milk fatty acid profiles, by increasing the concentrations of nutritionally beneficial fatty acids and reducing the concentration of nutritionally undesirable saturated fatty acids, while feeding seaweed slightly reduced pantothenate concentrations. However, when considering the current average milk intakes in the population, the milk compositional differences between treatments in this study appear relatively small to have an effect on human health. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Animal Feed , Dietary Proteins , Fatty Acids , Milk , Nutritive Value , Animals , Cattle/metabolism , Female , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Diet/veterinary , Dietary Proteins/analysis , Dietary Proteins/metabolism , Edible Seaweeds/chemistry , Edible Seaweeds/metabolism , Fatty Acids/analysis , Fatty Acids/metabolism , Fatty Acids/chemistry , Laminaria , Milk/chemistry , Milk/metabolism , Triticum/chemistry , Triticum/metabolism
8.
Food Chem ; 446: 138858, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38430766

ABSTRACT

The functionality of rapeseed meal is limited, to acquire more utilization, the functional attributes were improved by altering its structural features using magnetic field-assisted solid fermentation. The magnetic treatment was performed every 24 h (specifically at 24, and 48 h), each treatment having a duration of 4 h. The magnetic intensity was set at 120 Gs, and the fermentation temperature 37 °C. Magnetic field-assisted solid fermentation resulted in higher surface hydrophobicity, fluorescence intensity, UV absorption, and sulfhydryl groups of rapeseed meal. Magnetic field treatment considerably enhanced solubility, antioxidant activity, emulsifying activity, and stability by 8.8, 19.5, 20.7, and 12.3 %, respectively. Magnetic field-assisted solid fermentation also altered rapeseed meal structure, as shown by scanning electron microscopy, atomic force microscopy, and Raman spectroscopy outcomes. Correlation analysis displayed positive interrelationships between functional characteristics, and surface hydrophobicity, ß-sheets, and polydispersity index.


Subject(s)
Brassica napus , Brassica rapa , Brassica rapa/chemistry , Chemical Phenomena , Fermentation , Solubility
9.
Front Nutr ; 11: 1363411, 2024.
Article in English | MEDLINE | ID: mdl-38379546

ABSTRACT

A 12-week feeding trial was conducted to evaluate the effects of replacing soybean meal with different types of rapeseed meal (RSM; Chinese 95-type (oil press model) rapeseed meal [C95RM], Chinese 200-type rapeseed meal [C200RM], cold pressed rapeseed cake [CPRC], Indian rapeseed meal [IRM] and Canadian rapeseed meal [CRM]) on growth, antioxidant capacity, non-specific immunity and Aeromonas hydrophila infection tolerance in 990 fingering (average weight 12.77 ± 0.01 g) rainbow trout (Oncorhynchus mykiss). A basal diet was prepared using fishmeal and soybean meal as the main protein sources, the other 10 diets were formulated with five types of RSM at 20% (C95RM20, C200RM20, CPRC20, IRM20, CRM20) or 35% (C95RM35, C200RM35, CPRC35, IRM35, CRM35) inclusion levels to replace iso-nitrogenous soybean meal. Regardless of the RSM source, dietary inclusion of 20% RSM significantly reduced the weight gain rate (WGR) and digestive enzymes activities (except C200RM20) of fish, but increased the blood urea nitrogen (BUN) and hepatic malondialdehyde (MDA) content (except CRM20). Fish fed with CPRC20 and IRM20 exhibited relatively higher plasma cortisol and MDA content, but lower content/activities of triiodothyronine (T3), thyroxine (T4) and glutathione peroxidase (GPx) in plasma, lysozyme (LZM) and complement 3 (C3) in serum, catalase (CAT) in liver, and respiratory burst activity (RBA) of head kidney macrophages. The intestinal and hepatic tissues fed with 20% RSM were damaged to some extent, with the CPRC20 and IRM20 groups being the most severely affected. Regardless of the RSM source, dietary inclusion of 35% RSM significantly decreased WGR and digestive enzymes activities, but significantly increased plasma BUN and MDA content. The fish fed with CPRC35 and IRM35 exhibited relatively higher plasma cortisol, MDA, serum triglyceride, BUN content, but lower content/activities of T3, T4, C3, and LZM in serum, CAT, peroxidase and GPx in plasma, CAT in liver, RBA and phagocytic activity of head kidney macrophage. The hepatic and intestinal tissues damage was the worst in the IRM35 group among the 35% RSM inclusion groups. These results indicate that including ≥20% RSM in the diet, regardless of the source, reduced the growth, antioxidant capacity, immunity, and survival to Aeromonas hydrophila infection in rainbow trout.

10.
Front Vet Sci ; 11: 1321486, 2024.
Article in English | MEDLINE | ID: mdl-38362303

ABSTRACT

Introduction: This study was carried out to investigate the effects of mixed meal (rapeseed meal, cotton meal, and sunflower meal) replacement soybean meal on growth performance, nutrient apparent digestibility, serum inflammatory factors and immunoglobulins, serum biochemical parameters, intestinal permeability, short-chain fatty acid content, and gut microbiota of finishing pigs. Methods: A total of 54 pigs with an average initial weight of 97.60 ± 0.30 kg were selected and randomly divided into 3 groups according to their initial weight, with 6 replicates in each group and 3 pigs in each replicate. The trial period was 26 days. The groups were as follows: control group (CON), fed corn-soybean meal type basal diet; Corn-soybean-mixed meal group (CSM), fed corn-soybean meal-mixed meal diet with a ratio of rapeseed meal, cotton meal, and sunflower meal of 1:1:1 to replace 9.06% soybean meal in the basal diet; Corn-mixed meal group (CMM), fed a corn-mixed meal diet with a ratio of Rapeseed meal, Cotton meal and Sunflower meal of 1:1:1 to replace soybean meal in the basal diet completely. The crude protein level of the three diets was maintained at 12.5%. Results: Our findings revealed no significant impact of replacing soybean meal with the mixed meal (rapeseed meal, cotton meal, and sunflower meal) on the ADG (Average daily gain), ADFI (Average daily feed intake), and F/G (Feed gain ratio) (P > 0.05), or crude protein, crude fat, and gross energy (P > 0.05) in the diet of finishing pigs. Compared with the CON group, the serum interleukin 6 (IL-6) and interleukin 10 (IL-10) concentrations were significantly decreased in the CMM group (P < 0.05). However, there is no significant effect of the mixed meal (rapeseed meal, cotton meal, and sunflower meal) replacing soybean meal in the diet on the serum interleukin 1ß (IL-1ß), interleukin 8 (IL-8), tumor necrosis factor-alpha (TNF-α), immunoglobulin A (IgA), immunoglobulin G (IgG), and immunoglobulin M (IgM) concentrations (P > 0.05). Concordantly, there is no significant effect of mixed meal (rapeseed meal, cotton meal, and sunflower meal) replacing soybean meal in the diet on the serum antioxidant capacity, such as total antioxidant capacity (T-AOC), catalase (CAT), and malondialdehyde (MDA) levels of finishing pigs. Moreover, compared with the CON group, serum low-density lipoprotein (LDL-C) levels were significantly lower in the CSM group (P < 0.05) and their total bilirubin (TBIL) levels were significantly lower in the CMM group (P < 0.05). There is not a significant effect on serum D-lactate and diamine oxidase (DAO) concentrations (P > 0.05). The next section of the survey showed that the replacement of soybean meal with a mixed meal (rapeseed meal, cotton meal, and sunflower meal) in the diet did not significantly influence the acetic acid, propionic acid, butyric acid, valeric acid, isobutyric acid, and isovaleric acid in the colon contents (P > 0.05). Furthermore, compared with the CON group, the CMM group diet significantly increased the abundance of Actinobacteria at the phylum level (P < 0.05), U_Actinobacteria at the class level (P < 0.05), and U_Bacteria at the class level (P < 0.05). The result also showed that the CMM group significantly reduced the abundance of Oscillospirales at the order level (P < 0.05) and Streptococcaceae at the family level (P < 0.05) compared with the CON group. The Spearman correlation analysis depicted a statistically significant positive correlation identified at the class level between the relative abundance of U_Bacteria and the serum T. BILI concentrations (P < 0.05). Moreover, a significant negative correlation was detected at the order level between the relative abundance of Oscillospirales and the levels of acetic and propionic acids in the colonic contents (P < 0.05). Additionally, there was a significant positive correlation between the serum concentrations of IL-6 and IL-10 and the relative abundance of the family Streptococcaceae (P < 0.05). Discussion: This study demonstrated that the mixed meal (rapeseed meal, cotton meal, and sunflower meal) as a substitute for soybean meal in the diet had no significant negative effects on the growth performance, nutrient apparent digestibility, serum immunoglobulins, serum antioxidant capacity, intestinal permeability, short-chain fatty acid content, and diversity of gut microbiota of finishing pigs. These results can help develop further mixed meals (rapeseed meal, cotton meal, and sunflower meal) as a functional alternative feed ingredient for soybean meals in pig diets.

11.
Bioengineering (Basel) ; 11(2)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38391667

ABSTRACT

Rapeseed meal (RSM) is a cheap, abundant and renewable feedstock, whose biorefinery is a current challenge for the sustainability of the oilseed sector. RSM is rich in sinapic acid (SA), a p-hydroxycinnamic acid that can be decarboxylated into canolol (2,6-dimethoxy-4-vinylphenol), a valuable bioactive compound. Microbial phenolic acid decarboxylases (PADs), mainly described for the non-oxidative decarboxylation of ferulic and p-coumaric acids, remain very poorly documented to date, for SA decarboxylation. The species Neolentinus lepideus has previously been shown to biotransform SA into canolol in vivo, but the enzyme responsible for bioconversion of the acid has never been characterized. In this study, we purified and characterized a new PAD from the canolol-overproducing strain N. lepideus BRFM15. Proteomic analysis highlighted a sole PAD-type protein sequence in the intracellular proteome of the strain. The native enzyme (NlePAD) displayed an unusual outstanding activity for decarboxylating SA (Vmax of 600 U.mg-1, kcat of 6.3 s-1 and kcat/KM of 1.6 s-1.mM-1). We showed that NlePAD (a homodimer of 2 × 22 kDa) is fully active in a pH range of 5.5-7.5 and a temperature range of 30-55 °C, with optima of pH 6-6.5 and 37-45 °C, and is highly stable at 4 °C and pH 6-8. Relative ratios of specific activities on ferulic, sinapic, p-coumaric and caffeic acids, respectively, were 100:24.9:13.4:3.9. The enzyme demonstrated in vitro effectiveness as a biocatalyst for the synthesis of canolol in aqueous medium from commercial SA, with a molar yield of 92%. Then, we developed processes to biotransform naturally-occurring SA from RSM into canolol by combining the complementary potentialities of an Aspergillus niger feruloyl esterase type-A, which is able to release free SA from the raw meal by hydrolyzing its conjugated forms, and NlePAD, in aqueous medium and mild conditions. NlePAD decarboxylation of biobased SA led to an overall yield of 1.6-3.8 mg canolol per gram of initial meal. Besides being the first characterization of a fungal PAD able to decarboxylate SA, this report shows that NlePAD is very promising as new biotechnological tool to generate biobased vinylphenols of industrial interest (especially canolol) as valuable platform chemicals for health, nutrition, cosmetics and green chemistry.

12.
Animals (Basel) ; 14(4)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38396508

ABSTRACT

Litopenaeus vannamei, with high plant protein acceptance and high global aquaculture production, is a potential species for rapeseed meal application. However, rapeseed meal has been associated with anorexia in fish, and whether the same occurs in L. vannamei remains unknown. This study demonstrated the effects of rapeseed meal on the feeding and anorexigenic endocrine of L. vannamei based on feeding behavior and transcriptomics. Soybean meal was replaced with fermented rapeseed meal (50%), and a significant increase in remaining diet and dietary discard was observed with a significant reduction in dietary visits. Transcriptome analysis revealed that the pathways involved in rapeseed meal-induced anorexia mainly included signal transduction, the digestive system, the sensory system, the endocrine system, phototransduction-fly, the thyroid hormone signaling pathway and pancreatic secretion. Moreover, this study further analyzed and identified seven neuropeptides involved in rapeseed meal-induced anorexia, and it explored the complex expression regulation strategies of these neuropeptides. In summary, this study confirmed through feeding behavior that rapeseed meal causes anorexia in L. vannamei, and it identified seven neuropeptides that were closely related to the anorexia process.

13.
J Sci Food Agric ; 104(9): 5474-5485, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38391155

ABSTRACT

BACKGROUND: Campylobacter jejuni (C. jejuni), a widely distributed global foodborne pathogen, primarily linked with contaminated chicken meat, poses a significant health risk. Reducing the abundance of this pathogen in poultry meat is challenging but essential. This study assessed the impact of Lactobacillus-fermented rapeseed meal (LFRM) on broilers exposed to C. jejuni-contaminated litter, evaluating growth performance, Campylobacter levels, and metagenomic profile. RESULTS: By day 35, the litter contamination successfully colonized broilers with Campylobacter spp., particularly C. jejuni. In the grower phase, LFRM improved (P < 0.05) body weight and daily weight gain, resulting in a 9.2% better feed conversion ratio during the pre-challenge period (the period before artificial infection; days 13-20). The LFRM also reduced the C. jejuni concentration in the ceca (P < 0.05), without altering alpha and beta diversity. However, metagenomic data analysis revealed LFRM targeted a reduction in the abundance of C. jejuni biosynthetic pathways of l-tryptophan and l-histidine and gene families associated with transcription and virulence factors while also possibly leading to selected stress-induced resistance mechanisms. CONCLUSION: The study demonstrated that LFRM inclusion improved growth and decreased cecal Campylobacter spp. concentration and the relative abundance of pivotal C. jejuni genes. Performance benefits likely resulted from LFRM metabolites. At the molecular level, LFRM may have reduced C. jejuni colonization, likely by decreasing the abundance of energy transduction and l-histidine and l-tryptophan biosynthesis genes otherwise required for bacterial survival and increased virulence. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Animal Feed , Campylobacter Infections , Campylobacter jejuni , Cecum , Chickens , Fermentation , Histidine , Lactobacillus , Tryptophan , Animals , Chickens/microbiology , Animal Feed/analysis , Campylobacter jejuni/metabolism , Cecum/microbiology , Cecum/metabolism , Tryptophan/metabolism , Lactobacillus/metabolism , Campylobacter Infections/microbiology , Campylobacter Infections/prevention & control , Campylobacter Infections/veterinary , Histidine/metabolism , Poultry Diseases/microbiology , Poultry Diseases/prevention & control , Biosynthetic Pathways , Dietary Supplements/analysis , Brassica rapa/microbiology , Brassica rapa/chemistry , Brassica napus/microbiology
14.
Br Poult Sci ; 65(2): 137-143, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38265055

ABSTRACT

1. Two experiments were conducted to explore the effects of an exogenous sfericase protease on the apparent ileal nutrient digestibility of soybean meal (SBM) and rapeseed meal (RSM) in broiler chickens.2. In each experiment, a total of 256 sixteen-day-old male Cobb 500 broilers were fed one of four semi-purified experimental diets, comprising two different batches (A and B) of samples for either SBM (Exp. 1) or RSM (Exp. 2) without or with an exogenous sfericase (0 or 30,000 NFP/kg). Each experimental diet was fed to eight replicate pens of broiler chickens from 16 to 21 d of age (eight birds per cage), and ileal digesta were collected for measuring the digestibility coefficients.3. In Exp. 1, the amino acid digestibility was greater (P < 0.05) in SBM B compared with SBM A for Arg and Val, and a similar trend (P < 0.1) was observed for Tyr, Leu and Thr. Exogenous sfericase increased (P < 0.10) digestibility of most of amino acids except Gly, His and Trp. There was an interaction between SBM source and sfericase, whereby digestibility of P, N and Asp was increased by sfericase for SBM B but not for SBM A. In Exp. 2, there was no interaction (P > 0.05) between RSM source and sfericase for ileal nutrient digestibility. Digestibility was greater in RSM A compared to RSM B for all non-essential AA and most essential AA (except for Trp), while the reverse was noted for Ca and P (P < 0.05). Exogenous sfericase increased (P < 0.1) digestibility for all amino acids except Cys and Met.4. In conclusion, the current studies showed that both SBM and RSM batches influenced amino acid digestibility. Sfericase protease supplementation increased amino acid digestibility for both SBM and RSM. The digestibility effects were greater in the SBM batch with low digestibility for N and Asp which was in line with an increase in P digestibility.


Subject(s)
Brassica napus , Brassica rapa , Serine Endopeptidases , Animals , Male , Amino Acids/metabolism , Brassica napus/metabolism , Chickens/metabolism , Peptide Hydrolases/metabolism , Flour , Digestion , Diet/veterinary , Brassica rapa/metabolism , Ileum/metabolism , Glycine max , Animal Feed/analysis , Nutrients , Animal Nutritional Physiological Phenomena
15.
Animals (Basel) ; 14(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38275770

ABSTRACT

The search for alternative protein sources to soybean meal (SBM) in animal feeding is a strategic objective to reduce production costs and contribute to sustainable animal production. Spirulina, due to the high protein content, has emerged as a potential cost-effective, sustainable, viable, and high-nutritional-value food resource for many animal species. Insect larvae (Tenebrio molitor and Hermetia illucens) are also considered potential alternatives to SBM, given their high edible percentage of almost 100%, as well as a protein value higher than that of vegetable proteins. Rapeseed meal and grain legumes, such as fava beans, peas, lupins, and chickpea, can also be used as locally producible protein ingredients. This study reviews the nutritional value of these potential alternatives to SBM in pig diets, and their effects on animal performance, digestion, immune system, and the physicochemical and sensorial characteristics of meat, including processed pork products. The limits on their use in pig feeding are also reviewed to indicate gaps to be filled in future research on the supplementation level of these potential alternative protein sources in pig diets.

16.
Int J Biol Macromol ; 258(Pt 1): 128794, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38110166

ABSTRACT

Sustainable and renewable biomass-derived porous carbon (BPC) have garnered considerable attention owing to their low cost, high specific surface area, and outstanding electrochemical performance. However, the subpar energy density severely restricts the applications of BPC in high-energy-density devices. Herein, a high-surface-area porous carbon with multiple heteroatoms doping was derived from rapeseed meals by hydrothermal carbonization and high-temperature activation. The rapeseed meal-derived activated carbon (RMAC) exhibits a remarkable surface area of 3291 m2 g-1 and is doped with nitrogen (1.05 at.%), oxygen (7.4 at.%), phosphorus (0.31 at.%), and sulfur, resulting in an impressive specific capacitance of 416 F g-1 at 1 A g-1. Furthermore, even after 10,000 cycles, the optimized RMAC-800 electrode maintains 92 % of its initial capacitance, attesting to its exceptional performance. Through comprehensive density functional theory (DFT) calculations, the elements O, N, P, and S can significantly enhance the electron negativity and density, improving the adsorption and diffusion of K+ to attain a high capacitance. To assess the RMAC-800's practical performance, an asymmetric supercapacitor with 1 M [BMIM]BF4/AN electrolyte was produced that delivered a high energy density of 195.94 Wh kg-1 at a power density of 1125 W kg-1. Thus, we propose an eco-friendly strategy for producing BPC materials with outstanding electrochemical performance for supercapacitors.


Subject(s)
Brassica napus , Brassica rapa , Adsorption , Potassium , Biomass , Porosity , Physical Phenomena , Charcoal
17.
Anim Nutr ; 15: 420-429, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38058565

ABSTRACT

To explore the effects of fermented rapeseed meal (FRSM) on growth performance and intestinal health, a total of 30 growing pigs were randomly allotted to three treatments consisting of corn-soybean meal diet (CSD), rapeseed meal diet (RSD), and fermented rapeseed meal diet (FRSD). Results showed that compared with RSD, FRSD feeding increased the average daily gain and final body weight in pigs (P < 0.01). Compared with RSD feeding, FRSD feeding elevated the apparent digestibility of crude protein, acid detergent fiber, and ether extract in pigs (P < 0.01). Moreover, the FRSD group exhibited greater apparent ileal digestibility of His, Thr, Lys, and Ser than the RSD group (P < 0.01). The digestible energy, metabolic energy, and nitrogen utilization were higher in the FRSD and CSD groups than in the RSD group (P < 0.01). As compared to the RSD, FRSD feeding decreased the serum concentration of leptin but significantly increased the concentrations of immunoglobulin (Ig) A, IgG, ghrelin, and enzyme activities of amylase, lipase, and trypsin in the pancreas (P < 0.05). Interestingly, the villus height, the ratio of villus height to crypt depth, and the activities of brush border enzymes (e.g., maltase and sucrase) in the small intestine were higher in the CSD and FRSD groups than in the RSD group (P < 0.05). As compared to the RSD, the FRSD feeding not only increased the expression level of the occludin in the small intestinal epithelium (P < 0.05) but also elevated the expression levels of claudin-1, MUC1, and PepT1 genes in the duodenum, and elevated the expression levels of SGLT1 and CAT1 genes in the jejunum (P < 0.05). Importantly, FRSD feeding significantly decreased the abundance of Escherichia coli, but increased the abundance of Lactobacillus and the content of butyrate in the cecum and colon (P < 0.05). These results indicated that compared with rapeseed meal, fermented rapeseed meal exhibited a positive effect on improving the growth performance and intestinal health in growing pigs, and the results may also help develop novel protein sources for animal nutrition and the feed industry.

18.
Biotechnol Biofuels Bioprod ; 16(1): 173, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37964324

ABSTRACT

p-Hydroxycinnamic acids, such as sinapic, ferulic, p-coumaric and caffeic acids, are among the most abundant phenolic compounds found in plant biomass and agro-industrial by-products (e.g. cereal brans, sugar-beet and coffee pulps, oilseed meals). These p-hydroxycinnamic acids, and their resulting decarboxylation products named vinylphenols (canolol, 4-vinylguaiacol, 4-vinylphenol, 4-vinylcatechol), are bioactive molecules with many properties including antioxidant, anti-inflammatory and antimicrobial activities, and potential applications in food, cosmetic or pharmaceutical industries. They were also shown to be suitable precursors of new sustainable polymers and biobased substitutes for fine chemicals such as bisphenol A diglycidyl ethers. Non-oxidative microbial decarboxylation of p-hydroxycinnamic acids into vinylphenols involves cofactor-free and metal-independent phenolic acid decarboxylases (EC 4.1.1 carboxyl lyase family). Historically purified from bacteria (Bacillus, Lactobacillus, Pseudomonas, Enterobacter genera) and some yeasts (e.g. Brettanomyces or Candida), these enzymes were described for the decarboxylation of ferulic and p-coumaric acids into 4-vinylguaiacol and 4-vinylphenol, respectively. The catalytic mechanism comprised a first step involving p-hydroxycinnamic acid conversion into a semi-quinone that then decarboxylated spontaneously into the corresponding vinyl compound, in a second step. Bioconversion processes for synthesizing 4-vinylguaiacol and 4-vinylphenol by microbial decarboxylation of ferulic and p-coumaric acids historically attracted the most research using bacterial recombinant phenolic acid decarboxylases (especially Bacillus enzymes) and the processes developed to date included mono- or biphasic systems, and the use of free- or immobilized cells. More recently, filamentous fungi of the Neolentinus lepideus species were shown to natively produce a more versatile phenolic acid decarboxylase with high activity on sinapic acid in addition to the others p-hydroxycinnamic acids, opening the way to the production of canolol by biotechnological processes applied to rapeseed meal. Few studies have described the further microbial/enzymatic bioconversion of these vinylphenols into valuable compounds: (i) synthesis of flavours such as vanillin, 4-ethylguaiacol and 4-ethylphenol from 4-vinylguaiacol and 4-vinylphenol, (ii) laccase-mediated polymer synthesis from canolol, 4-vinylguaiacol and 4-vinylphenol.

19.
Food Res Int ; 174(Pt 1): 113517, 2023 12.
Article in English | MEDLINE | ID: mdl-37986420

ABSTRACT

Rapeseed meal (RSM) is the by-product of rapeseed processing that enriches phenolic compounds. However, the comprehensive characterization of its phenolic substances in terms of composition and potential activities remains incomplete, leading to limited utilization in the food industry. In this study, the phenolic profile from RSM (referred to as RMP) was identified, and their inhibitory effects on α-glucosidase were investigated. UPLC-MS/MS analysis showed that a total of 466 phenolic compounds were detected in RMP. The primary components were sinapic acid (SA), caffeic acid (CA), salicylic acid (SAA), and astragalin (AS). Multispectral approaches demonstrated significant inhibitory capacity of RMP against α-glucosidase with a half inhibition value (IC50) of 0.32 mg/mL, with a stronger inhibition compared to CA/SAA/AS (IC50: 4.0, 5.9, and 0.9 mg/mL) in addition to the previously reported SA, suggesting a synergistic effect. Both RMP and CA/SAA/AS altered the secondary structure of α-glucosidase to quench its intrinsic fluorescence. Molecular simulation results revealed that hydrogen bonds and van der Waals forces primarily contributed to the interaction between CA/SAA/AS and α-glucosidase, as well as verified the stability of the binding process over the entire simulation duration. The ADMET analysis showed that CYP2D6 was not inhibited by CA/SAA/AS, which had no AMES toxicity, hepatotoxicity, and skin sensitization. This finding suggests the potential of RMP against α-glucosidase for the treatment of diabetes.


Subject(s)
Brassica napus , Glycoside Hydrolase Inhibitors , Glycoside Hydrolase Inhibitors/chemistry , Brassica napus/metabolism , alpha-Glucosidases/metabolism , Chromatography, Liquid , Tandem Mass Spectrometry , Phenols/analysis
20.
Animals (Basel) ; 13(19)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37835673

ABSTRACT

The objective of the present study was to test the hypothesis of B. subtilis and B. licheniformis supplementation to a negative control diet in comparison to a standard control diet, had the potential to improve the performance and nutrient digestibility of growing-finishing pigs. For this purpose, 384 fattening pigs of 85 d of age were allotted to three treatments: a standard diet, a negative control (NC) diet (5% soybean meal replaced by 5% rapeseed meal), or a NC diet + probiotic. After reaching a body weight of approximately 110 kg, all animals going to the slaughterhouse (87% of total pigs) were selected to measure carcass quality. Moreover, the apparent total tract digestibility of protein was evaluated at the end of the grower period. The results of this study indicate that supplementation of the tested Bacillus-based probiotic significantly improved average daily gain (ADG, +14.6%) and Feed:gain ratio (F:G, -9.9%) during the grower phase compared to the NC diet. The improvement observed during the grower phase was maintained for the whole fattening period (ADG, +3.9%). Probiotic supplementation significantly improved the total apparent faecal digestibility of dry matter and crude protein in pigs at the end of the grower period. The improvements observed with the additive tested could indicate that supplementation of the Bacillus-based probiotic was able to counteract the lower level of crude protein and standardised ileal digestible amino acids in the NC diet by means of improved protein digestibility.

SELECTION OF CITATIONS
SEARCH DETAIL