Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
1.
Sci Rep ; 14(1): 18757, 2024 08 13.
Article in English | MEDLINE | ID: mdl-39138279

ABSTRACT

Hepatocellular carcinoma (HCC) still presents poor prognosis with low overall survival rates and limited therapeutic options available. Recently, attention has been drawn to peptidomic analysis, an emerging field of proteomics for the exploration of new potential peptide drugs for the treatment of various diseases. However, research on the potential function of HCC peptides is lacking. Here, we analyzed the peptide spectrum in HCC tissues using peptidomic techniques and explored the potentially beneficial peptides involved in HCC. Changes in peptide profiles in HCC were examined using liquid chromatography-mass spectrometry (LC-MS/MS). Analyze the physicochemical properties and function of differently expressed peptides using bioinformatics. The effect of candidate functional peptides on HCC cell growth and migration was evaluated using the CCK-8, colony formation, and transwell assays. Transcriptome sequencing analysis and western blot were employed to delve into the mode of action of potential peptide on HCC. Peptidomic analysis of HCC tissue yielded a total of 8683 peptides, of which 452 exhibited up-regulation and 362 showed down-regulation. The peptides that were differentially expressed, according to bioinformatic analysis, were closely linked to carbon metabolism and the mitochondrial inner membrane. The peptide functional validation identified a novel peptide, PDLC (peptide derived from liver cancer), which was found to dramatically boost HCC cell proliferation through the Ras/Raf/MEK/ERK signaling cascade. Our research defined the peptide's properties and pattern of expression in HCC and identified a novel peptide, PDLC, with a function in encouraging HCC progression, offering an entirely new potential therapeutic target the disease.


Subject(s)
Carcinoma, Hepatocellular , Cell Proliferation , Liver Neoplasms , MAP Kinase Signaling System , Proteomics , raf Kinases , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Humans , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Cell Proliferation/drug effects , MAP Kinase Signaling System/drug effects , raf Kinases/metabolism , Proteomics/methods , Cell Line, Tumor , ras Proteins/metabolism , ras Proteins/genetics , Peptides/metabolism , Peptides/pharmacology , Cell Movement/drug effects , Tandem Mass Spectrometry , Gene Expression Regulation, Neoplastic
2.
Theranostics ; 14(9): 3583-3602, 2024.
Article in English | MEDLINE | ID: mdl-38948067

ABSTRACT

Rationale: Mesenchymal stromal cells (MSCs) are considered a promising resource for cell therapy, exhibiting efficacy in ameliorating diverse bone diseases. However, most MSCs undergo apoptosis shortly after transplantation and produce apoptotic extracellular vesicles (ApoEVs). This study aims to clarify the potential role of ApoEVs from apoptotic MSCs in ameliorating osteoporosis and molecular mechanism. Methods: In this study, Dio-labeled bone marrow mesenchymal stem cells (BMSCs) were injected into mice to track BMSCs apoptosis and ApoEVs production. ApoEVs were isolated from BMSCs after inducing apoptosis, the morphology, size distribution, marker proteins expression of ApoEVs were characterized. Protein mass spectrometry analysis revealed functional differences in proteins between ApoEVs and BMSCs. BMSCs were adopted to test the cellular response to ApoEVs. Ovariectomy mice were used to further compare the ability of ApoEVs in promoting bone formation. SiRNA and lentivirus were used for gain and loss-of-function assay. Results: The results showed that BMSCs underwent apoptosis within 2 days after being injected into mice and produce a substantial quantity of ApoEVs. Proteomic analysis revealed that ApoEVs carried a diverse functional array of proteins, and easily traversed the circulation to reach the bone. After being phagocytized by endogenous BMSCs, ApoEVs efficiently promoted the proliferation, migration, and osteogenic differentiation of BMSCs. In an osteoporosis mouse model, treatment of ApoEVs alleviated bone loss and promoted bone formation. Mechanistically, ApoEVs carried Ras protein and activated the Ras/Raf1/Mek/Erk pathway to promote osteogenesis and bone formation in vitro and in vivo. Conclusion: Given that BMSC-derived ApoEVs are high-yield and easily obtained, our data underscore the substantive role of ApoEVs from dying BMSCs to treat bone loss, presenting broad implications for cell-free therapeutic modalities.


Subject(s)
Apoptosis , Extracellular Vesicles , Mesenchymal Stem Cells , Osteogenesis , Osteoporosis , Animals , Extracellular Vesicles/metabolism , Extracellular Vesicles/transplantation , Mesenchymal Stem Cells/metabolism , Osteoporosis/therapy , Osteoporosis/metabolism , Mice , Female , Osteogenesis/physiology , Cell Differentiation , Mesenchymal Stem Cell Transplantation/methods , Cell Proliferation , Mice, Inbred C57BL , Disease Models, Animal , Ovariectomy , Proteomics , Signal Transduction
3.
Dis Model Mech ; 17(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38847227

ABSTRACT

RASopathies are rare developmental genetic syndromes caused by germline pathogenic variants in genes that encode components of the RAS/mitogen-activated protein kinase (MAPK) signal transduction pathway. Although the incidence of each RASopathy syndrome is rare, collectively, they represent one of the largest groups of multiple congenital anomaly syndromes and have severe developmental consequences. Here, we review our understanding of how RAS/MAPK dysregulation in RASopathies impacts skeletal muscle development and the importance of RAS/MAPK pathway regulation for embryonic myogenesis. We also discuss the complex interactions of this pathway with other intracellular signaling pathways in the regulation of skeletal muscle development and growth, and the opportunities that RASopathy animal models provide for exploring the use of pathway inhibitors, typically used for cancer treatment, to correct the unique skeletal myopathy caused by the dysregulation of this pathway.


Subject(s)
Muscle Development , Muscle, Skeletal , ras Proteins , Humans , Animals , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , ras Proteins/metabolism , Muscle Development/genetics , Signal Transduction , MAP Kinase Signaling System , Mitogen-Activated Protein Kinases/metabolism , Disease Models, Animal
4.
Biochem Soc Trans ; 52(3): 1061-1069, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38695730

ABSTRACT

The RAF kinases are required for signal transduction through the RAS-RAF-MEK-ERK pathway, and their activity is frequently up-regulated in human cancer and the RASopathy developmental syndromes. Due to their complex activation process, developing drugs that effectively target RAF function has been a challenging endeavor, highlighting the need for a more detailed understanding of RAF regulation. This review will focus on recent structural and biochemical studies that have provided 'snapshots' into the RAF regulatory cycle, revealing structures of the autoinhibited BRAF monomer, active BRAF and CRAF homodimers, as well as HSP90/CDC37 chaperone complexes containing CRAF or BRAFV600E. In addition, we will describe the insights obtained regarding how BRAF transitions between its regulatory states and examine the roles that various BRAF domains and 14-3-3 dimers play in both maintaining BRAF as an autoinhibited monomer and in facilitating its transition to an active dimer. We will also address the function of the HSP90/CDC37 chaperone complex in stabilizing the protein levels of CRAF and certain oncogenic BRAF mutants, and in serving as a platform for RAF dephosphorylation mediated by the PP5 protein phosphatase. Finally, we will discuss the regulatory differences observed between BRAF and CRAF and how these differences impact the function of BRAF and CRAF as drivers of human disease.


Subject(s)
HSP90 Heat-Shock Proteins , Proto-Oncogene Proteins B-raf , Humans , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/chemistry , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins B-raf/chemistry , Proto-Oncogene Proteins B-raf/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/chemistry , Protein Multimerization , raf Kinases/metabolism , raf Kinases/chemistry , Animals , Chaperonins/metabolism , Chaperonins/chemistry , Signal Transduction , 14-3-3 Proteins/metabolism , 14-3-3 Proteins/chemistry , Neoplasms/enzymology , Neoplasms/metabolism , Neoplasms/genetics , Proto-Oncogene Proteins c-raf/metabolism , Proto-Oncogene Proteins c-raf/chemistry , Models, Molecular
5.
Chem Biol Interact ; 395: 111007, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38642817

ABSTRACT

Mitomycin C (MC) is an anti-cancer drug which functions by forming interstrand crosslinks (ICLs) between opposing DNA strands. MC analog, 10-decarbamoyl mitomycin C (DMC), unlike MC, has stronger cytotoxic effects on cancer cells with TP53 mutation. We previously demonstrated that MC/DMC could activate p21WAF1/CIP1 in MCF-7 (TP53-proficient) and K562 (TP53 deficient) cells in a TP53-independent mode. We also found that MC/DMC regulate AKT activation in a TP53-dependent manner and that AKT deactivation is not associated with the activation of p21WAF1/CIP1 in response to MC/DMC treatment. RAS proteins are known players in the upstream mediated signaling of p21WAF1/CIP1 activation that leads to control of cell proliferation and cell death. Thus, this prompted us to investigate the effect of both drugs on the expression of RAS proteins and regulation of the MAPK/ERK signaling pathways in MCF-7 and K562 cancer cells. To accomplish this goal, we performed comparative label free proteomics profiling coupled to bioinformatics/complementary phosphoprotein arrays and Western blot validations of key signaling molecules. The MAPK/ERK pathway exhibited an overall downregulation upon MC/DMC treatment in MCF-7 cells but only DMC exhibited a mild downregulation of that same pathway in TP53 mutant K562 cells. Furthermore, treatment of MCF-7 and K562 cell lines with oligonucleotides containing the interstrand crosslinks (ICLs) formed by MC or DMC shows that both ICLs had a stronger effect on the downregulation of RAS protein expression in mutant TP53 K562 cells. We discuss the implication of this regulation of the MAPK/ERK pathway in relation to cellular TP53 status.


Subject(s)
MAP Kinase Signaling System , Mitomycin , ras Proteins , Humans , Mitomycin/pharmacology , K562 Cells , ras Proteins/metabolism , MCF-7 Cells , MAP Kinase Signaling System/drug effects , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics
6.
Microorganisms ; 12(3)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38543635

ABSTRACT

The RAS is a hormonal system playing a pivotal role in the control of blood pressure and electrolyte homeostasis, the alteration of which is associated with different pathologies, including acute respiratory distress syndrome (ARDS). As such, it is not surprising that a number of studies have attempted to elucidate the role and balance of the renin-angiotensin system (RAS) in COVID-19. In this review article, we will describe the evidence collected regarding the two main enzymes of the RAS (i.e., ACE and ACE2) and their principal molecular products (i.e., AngII and Ang1-7) in SARS-CoV-2 infection, with the overarching goal of drawing conclusions on their possible role as clinical markers in association with disease severity, progression, and outcome. Moreover, we will bring into the picture new experimental data regarding the systemic activity of ACE and ACE2 as well as the concentration of AngII and Ang1-7 in a cohort of 47 COVID-19 patients hospitalized at the IRCCS Sacro Cuore-Don Calabria Hospital (Negrar, Italy) between March and April 2020. Finally, we will discuss the possibility of considering this systemic pathway as a clinical marker for COVID-19.

7.
J Biomol Struct Dyn ; : 1-18, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38411559

ABSTRACT

The Non synonymous SNPs (nsSNPs) of the renin-angiotensin-system (RAS) pathway, unique to the Indian population were investigated in view of its importance as an endocrine system. nsSNPs of the RAS pathway genes were mined from the IndiGenome database. Damaging nsSNPs were predicted using SIFT, PredictSNP, SNP and GO, Snap2 and Protein Variation Effect Analyzer. Loss of function was predicted based on protein stability change using I mutant, PremPS and CONSURF. The structural impact of the nsSNPs was predicted using HOPE and Missense3d followed by modeling, refinement, and energy minimization. Molecular Dynamics studies were carried out using Gromacsv2021.1. 23 Indian nsSNPs of the RAS pathway genes were selected for structural analysis and 8 were predicted to be damaging. Further sequence analysis showed that HEMGH zinc binding motif changes to HEMGD in somatic ACE-C domain (sACE-C) H992D and Testis ACE (tACE) H418D resulted in loss of zinc coordination, which is essential for enzymatic activity in this metalloprotease. There was a loss of internal interactions around the zinc coordination residues in the protein structural network. This was also confirmed by Principal Component Analysis, Free Energy Landscape and residue contact maps. Both mutations lead to broadening of the AngI binding cavity. The H992D mutation in sACE-C is likely to be favorable for cardiovascular health, but may lead to renal abnormalities with secondary impact on the heart. H418D in tACE is potentially associated with male infertility.Communicated by Ramaswamy H. Sarma.

8.
Histopathology ; 84(7): 1199-1211, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38409885

ABSTRACT

AIMS: Intracranial germ cell tumour (IGCT) is a type of rare central nervous system tumour that mainly occurs in children and adolescents, with great variation in its incidence rate and molecular characteristics in patients from different populations. The genetic alterations of IGCT in the Chinese population are still unknown. METHODS AND RESULTS: In this study, 47 patients were enrolled and their tumour specimens were analysed by whole-exome sequencing (WES). We found that KIT was the most significantly mutated gene (15/47, 32%), which mainly occurred in the germinoma group (13/20, 65%), and less frequently in NGGCT (2/27, 7%). Copy number variations (CNVs) of FGF6 and TFE3 only appeared in NGGCT patients (P = 0.003 and 0.032, respectively), while CNVs of CXCR4, RAC2, PDGFA, and FEV only appeared in germinoma patients (P = 0.004 of CXCR4 and P = 0.027 for the last three genes). Compared with a previous Japanese cohort, the somatic mutation rates of RELN and SYNE1 were higher in the Chinese. Prognostic analysis showed that the NF1 mutation was associated with shorter overall survival and progression-free survival in IGCT patients. Clonal evolution analysis revealed an early branched evolutionary pattern in two IGCT patients who underwent changes in the histological subtype or degree of differentiation during disease surveillance. CONCLUSION: This study indicated that Chinese IGCT patients may have distinct genetic characteristics and identified several possible genetic alterations that have the potential to become prognostic biomarkers of NGGCT patients.


Subject(s)
Brain Neoplasms , Exome Sequencing , Neoplasms, Germ Cell and Embryonal , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Male , Young Adult , Asian People/genetics , Biomarkers, Tumor/genetics , Brain Neoplasms/genetics , Brain Neoplasms/pathology , China/epidemiology , DNA Copy Number Variations , East Asian People , Mutation , Neoplasms, Germ Cell and Embryonal/genetics , Neoplasms, Germ Cell and Embryonal/pathology , Prognosis , Reelin Protein
9.
Leuk Res Rep ; 21: 100410, 2024.
Article in English | MEDLINE | ID: mdl-38273970

ABSTRACT

B/T mixed phenotype acute leukemia (MPAL) is a rare aggressive leukemia. Three cases of B/T MPAL were identified with comprehensive immunophenotypic, cytogenetic, and molecular studies. T-lineage predominant B/T MPAL shares a genetic signature with T-ALL whereas B/T lineage co-dominant B/T MPAL lacks such a T-ALL signature. All three patients were treated with lineage-matched-ALL therapy and alive at the last follow-up. Our study is the first to demonstrate molecular heterogeneity within B/T MPAL in a context of an immunophenotype of T-lineage versus B-lineage predominance. The implication of such a phenotype-genotype association on diagnostic classification is briefly discussed.

10.
Chem Biodivers ; 21(2): e202300865, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38180793

ABSTRACT

In this study, we evaluated the toxicological and antiproliferative effects of B. glabra Choisy bract extract (BGCE) in its free and loaded into liposomes forms administered to C. elegans mutants with let-60 gain-of-function (gf). Our results demonstrated that the concentration up to 75 µg CAE/mL of BGCE was safe for the worms. Notably, we developed BGCE-loaded liposomes to extend the pharmacological window up to 100 µg CAE/mL without toxicity. In addition, the extract and liposomes reduced the number and area of the multivulva formed in let-60 gf mutants. There was also an increase in the apoptotic signaling in the germline cells and increased longevity mediated through DAF-16 nuclear translocation with GST-4 activation in the treated animals. Our findings demonstrated that the BGCE-loaded liposomes possess antitumoral effects due to the activation of the apoptotic signaling and DAF-16 nuclear translocation.


Subject(s)
Caenorhabditis elegans Proteins , Nyctaginaceae , Animals , Caenorhabditis elegans/physiology , Hyperplasia , Liposomes
12.
Biomed J ; 47(2): 100694, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38154617

ABSTRACT

In Saccharomyces cerevisiae, RAt Sarcoma (Ras) activity plays a central role in mediating the effect of glucose in decreasing stress resistance and longevity, with constitutive Ras activation mutations promoting cell growth and oncogenesis. Here, we used transposon mutagenesis in yeast to identify suppressors of the constitutively active Ras2G19V, orthologue of the KRASG12C mammalian oncogene. We identified mutations in Yeast Myotubularin Related (YMR1), SynaptoJanin-Like (SJL2) and SJL3 phosphatases, which target phosphatidylinositol phosphates, as the most potent suppressors of constitutive active Ras, able to reverse its effect on stress sensitization and sufficient to extend longevity. In sjl2 mutants, the staining of Ras-GTP switched from membrane-associated to a diffuse cytoplasmic staining, suggesting that it may block Ras activity by preventing its localization. Whereas expression of the Sjl2 PI 3,4,5 phosphatase mediated stress sensitization in both the Ras2G19V and wild type backgrounds, overexpression of the phosphatidylinositol 3 kinase VPS34 (Vacuolar Protein Sorting), promoted heat shock sensitization only in the Ras2G19V background, suggesting a complex relationship between different phosphatidylinositol and stress resistance. These results provide potential targets to inhibit the growth of cancer cells with constitutive Ras activity and link the glucose-dependent yeast pro-aging Ras signaling pathway to the well-established pro-aging PhosphoInositide 3-Kinase(PI3K) pathway in worms and other species raising the possibility that the conserved longevity effect of mutations in the PI3K-AKT (AK strain Transforming) pathway may involve inhibition of Ras signaling.


Subject(s)
Longevity , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , ras Proteins , Saccharomyces cerevisiae/genetics , Longevity/genetics , Longevity/physiology , ras Proteins/metabolism , ras Proteins/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Stress, Physiological/genetics , Stress, Physiological/physiology , Mutation/genetics , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , Signal Transduction/genetics
13.
Heliyon ; 9(11): e21975, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38034665

ABSTRACT

A powerful steroid hormone precursor, 1,25 dihydroxycholecalciferols (1,25(OH)2D3), and dietary phytoestrogen (genistein) are essential compounds that act by binding to nuclear receptors and altering gene expression. They have many biological benefits, some of which have anticancer properties. We studied the impact of 1,25(OH)2D3 and genistein on the proliferation, progression, and metastasis of MCF-7 and MDA-MB-231 cells when they were used alone or in combination and investigated whether there was a synergistic effect between genistein and 1,25(OH)2D3. To achieve these goals, a variety of assays, including flow cytometry, cell invasion assays, cell adhesion assays, Western blotting, and RT‒PCR, were used. Our findings showed that genistein, 1,25(OH)2D3, and the two combined all effectively declined the growth of MCF-7 and MDA-MB-231 cells by arresting the cells in the G0/G1 phase and inducing an apoptotic pathway. Stimulation of apoptosis was achieved by upregulating the expression of BAX and CASP3 genes and downregulating the expression levels of BCL-2 gene. Furthermore, both compounds suppress metastasis by reducing cell adhesion and cell migration/invasion by elevating the expression level of E-cadherin and reducing the expression level of P-cadherin and N-cadherin. Additionally, both genistein and 1,25(OH)2D3 increased the expression level of ERK1 and reduced the expression levels of JNK, p38, Ras, and MEK proteins, which reduced metastasis, enhanced the response to cancer treatment, and improved overall survival. Thus, genistein and 1,25(OH)2D3 can both be considered key candidates in the search for new breast cancer treatments.

14.
Front Oncol ; 13: 1235418, 2023.
Article in English | MEDLINE | ID: mdl-37869088

ABSTRACT

Endometrial cancer (EC), the most common adenocarcinoma, represents 90% of uterine cancer in women with an increased incidence of occurrence attributed to age, obesity, hypertension, and hypoestrogenism. Being the most common gynecological malignancy in women, it shows a relation with the activation of different components of the renin-angiotensin system (RAS), which is predominantly involved in maintaining blood pressure, salt, water, and aldosterone secretion, thereby playing a significant role in the etiology of hypertension. The components of the RAS, i.e., ACE-I, ACE-II, AT1R, AT2R, and Pro(renin) receptor, are widely expressed in both glandular and stromal cells of the endometrium, with varying levels throughout the different phases of the menstrual cycle. This causes the endometrial RAS to implicate angiogenesis, neovascularization, and cell proliferation. Thus, dysfunctioning of the endometrial RAS could predispose the growth and spread of EC. Interestingly, the increased expression of AngII, AGTR1, and AGTR2 showed advancement in the stages and progression of EC via the prorenin/ATP6AP2 and AngII/AGTR1 pathway. Therefore, this review corresponds to unraveling the relationship between the progression and development of endometrial cancer with the dysfunction in the expression of various components associated with RAS in maintaining blood pressure.

15.
Viruses ; 15(7)2023 06 29.
Article in English | MEDLINE | ID: mdl-37515160

ABSTRACT

Patients with stage IV gastric cancer suffer from dismal outcomes, a challenge especially in many Asian populations and for which new therapeutic options are needed. To explore this issue, we used oncolytic reovirus in combination with currently used chemotherapeutic drugs (irinotecan, paclitaxel, and docetaxel) for the treatment of gastric and other gastrointestinal cancer cells in vitro and in a mouse model. Cell viability in vitro was quantified by WST-1 assays in human cancer cell lines treated with reovirus and/or chemotherapeutic agents. The expression of reovirus protein and caspase activity was determined by flow cytometry. For in vivo studies, athymic mice received intratumoral injections of reovirus in combination with irinotecan or paclitaxel, after which tumor size was monitored. In contrast to expectations, we found that reoviral oncolysis was only poorly correlated with Ras pathway activation. Even so, the combination of reovirus with chemotherapeutic agents showed synergistic cytopathic effects in vitro, plus enhanced reovirus replication and apoptosis. In vivo experiments showed that reovirus alone can reduce tumor size and that the combination of reovirus with chemotherapeutic agents enhances this effect. Thus, we find that oncolytic reovirus therapy is effective against gastric cancer. Moreover, the combination of reovirus and chemotherapeutic agents synergistically enhanced cytotoxicity in human gastric cancer cell lines in vitro and in vivo. Our data support the use of reovirus in combination with chemotherapy in further clinical trials, and highlight the need for better biomarkers for reoviral oncolytic responsiveness.


Subject(s)
Oncolytic Virotherapy , Oncolytic Viruses , Orthoreovirus , Reoviridae , Stomach Neoplasms , Mice , Animals , Humans , Irinotecan , Stomach Neoplasms/therapy , Cell Line, Tumor , Reoviridae/physiology , Paclitaxel
16.
Diagnostics (Basel) ; 13(8)2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37189588

ABSTRACT

Next-generation sequencing technology has improved molecular genetic analysis, and many molecular genetic studies have been utilized for diagnostic classification, risk stratification, and prognosis prediction of acute lymphoblastic leukemia (ALL). Inactivation of neurofibromin or Nf1, a protein derived from the NF1 gene, causes Ras pathway regulation failure, which is related to leukemogenesis. Pathogenic variants of the NF1 gene in B-cell lineage ALL are uncommon, and in this study, we reported a pathogenic variant that is not registered in any public database. The patient diagnosed with B-cell lineage ALL had no clinical symptoms of neurofibromatosis. Studies on the biology, diagnosis, and treatment of this uncommon disease, as well as other related hematologic neoplasms, such as acute myeloid leukemia and juvenile myelomonocytic leukemia, were reviewed. Biological studies included epidemiological differences among age intervals and pathways for leukemia, such as the Ras pathway. Diagnostic studies included cytogenetic, FISH, and molecular tests for leukemia-related genes and ALL classification, such as Ph-like ALL or BCR-ABL1-like ALL. Treatment studies included pathway inhibitors and chimeric antigen cell receptor T-cells. Resistance mechanisms related to leukemia drugs were also investigated. We believe that these literature reviews will enhance medical care for the uncommon diagnosis of B-cell lineage ALL.

17.
Mod Pathol ; 36(8): 100198, 2023 08.
Article in English | MEDLINE | ID: mdl-37105495

ABSTRACT

Plasmablastic lymphoma (PBL) is a rare and aggressive B-cell lymphoma with overlapping characteristics with diffuse large B-cell lymphoma (DLBCL) and multiple myeloma. Hyperactive Wnt signaling derails homeostasis and promotes oncogenesis and chemoresistance in DLBCL and multiple myeloma. Evidence suggests active cross-talk between the Wnt and RAS pathways impacting metastasis in solid cancers in which combined targeted therapies show effective results. Recent genomic studies in PBL demonstrated a high frequency of mutations linked with the RAS signaling pathway. However, the role of RAS and Wnt signaling pathway molecule expression in PBL remained unknown. We examined the expression of Wnt and RAS pathway-related genes in a well-curated cohort of PBL. Because activated B cells are considered immediate precursors of plasmablasts in B cell development, we compared this data with activated B-cell type DLBCL (ABC-DLBCL) patients, employing NanoString transcriptome analysis (770 genes). Hierarchical clustering revealed distinctive differential gene expression between PBL and ABC-DLBCL. Gene set enrichment analysis labeled the RAS signaling pathway as the most enriched (37 genes) in PBL, including upregulating critical genes, such as NRAS, RAF1, SHC1, and SOS1. Wnt pathway genes were also enriched (n = 22) by gene set enrichment analysis. Molecules linked with Wnt signaling activation, such as ligands or targets (FZD3, FZD7, c-MYC, WNT5A, WNT5B, and WNT10B), were elevated in PBL. Our data also showed that, unlike ABC-DLBCL, the deranged Wnt signaling activity in PBL was not linked with hyperactive nuclear factor κB and B-cell receptor signaling. In divergence, Wnt signaling inhibitors (CXXC4, SFRP2, and DKK1) also showed overexpression in PBL. The high expression of RAS signaling molecules reported may indicate linkage with gain-in-function RAS mutations. In addition, high expression of Wnt and RAS signaling molecules may pave pathways to explore benefiting from combined targeted therapies, as reported in solid cancer, to improve prognosis in PBL patients.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Multiple Myeloma , Plasmablastic Lymphoma , Humans , Wnt Signaling Pathway/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Gene Expression , DNA-Binding Proteins/genetics , Transcription Factors/genetics
18.
Arch Toxicol ; 97(6): 1599-1611, 2023 06.
Article in English | MEDLINE | ID: mdl-37029817

ABSTRACT

The RAS pathway participates in the cascade of proliferation and cell division process, and the activated RAS pathway can lead to tumorigenesis including hepatocellular carcinoma (HCC). However, few studies have explored the effects of genetic variants in the RAS pathway-related genes on the survival of patients with HBV-related HCC. In the present study, we assessed the associations between 11,658 single-nucleotide polymorphisms (SNPs) in 62 RAS pathway genes and the overall survival (OS) of 866 HBV-related HCC individuals, which were randomly split (1:1) into discovery and validation datasets. As a result, three potentially functional SNPs were identified, based on multivariable cox proportional hazards regression analyses, in SOS Ras/Rho guanine nucleotide exchange factor 2 (SOS2, rs4632055 A > G), Ras protein-specific guanine nucleotide releasing factor 2 (RASGRF2, rs26418A > G) and mitogen-activated protein kinase 1 (MAP2K1,rs57120695 C > T), which were significantly and independently associated with OS of HBV-related HCC patients [adjusted hazards ratios (HRs) of 1.42, 1.32 and 1.50, respectively; 95% confidence intervals (CI), 1.14 to 1.76, 1.15 to 1.53 and 1.15 to 1.97, respectively; P = 0.001, < 0.001 and 0.003, respectively]. Additionally, the joint effects as the unfavorable genotypes of these three SNPs showed a significant association with the poor survival of HCC (trend test P < 0.001). The expression quantitative trait loci (eQTL) analysis further revealed that the rs4632055 G allele and the rs26418 A allele were associated with lower mRNA expression levels of SOS2 and RASGRF2, respectively. Collectively, these potentially functional SNPs of RASGRF2, SOS2 and M2PAK1 may become potential prognostic biomarkers for HBV-related HCC after hepatectomy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Hepatitis B virus/genetics , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Genotype , Alleles , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease , MAP Kinase Kinase 1/genetics , ras Guanine Nucleotide Exchange Factors/genetics
19.
Reprod Biol Endocrinol ; 21(1): 33, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37005590

ABSTRACT

BACKGROUND: The pathogenesis of deep infiltrating endometriosis (DIE) is poorly understood. It is considered a benign disease but has histologic features of malignancy, such as local invasion or gene mutations. Moreover, it is not clear whether its invasive potential is comparable to that of adenomyosis uteri (FA), or whether it has a different biological background. Therefore, the aim of this study was to molecularly characterize the gene expression signatures of both diseases in order to gain insight into the common or different underlying pathomechanisms and to provide clues to pathomechanisms of tumor development based on these diseases. METHODS: In this study, we analyzed formalin-fixed and paraffin-embedded tissue samples from two independent cohorts. One cohort involved 7 female patients with histologically confirmed FA, the other cohort 19 female patients with histologically confirmed DIE. The epithelium of both entities was microdissected in a laser-guided fashion and RNA was extracted. We analyzed the expression of 770 genes using the nCounter expression assay human PanCancer (Nanostring Technology). RESULTS: In total, 162 genes were identified to be significantly down-regulated (n = 46) or up-regulated (n = 116) in DIE (for log2-fold changes of < 0.66 or > 1.5 and an adjusted p-value of < 0.05) compared to FA. Gene ontology and KEGG pathway analysis of increased gene expression in DIE compared to FA revealed significant overlap with genes upregulated in the PI3K pathway and focal adhesion signaling pathway as well as other solid cancer pathways. In FA, on the other hand, genes of the RAS pathway showed significant expression compared to DIE. CONCLUSION: DIE and FA differ significantly at the RNA expression level: in DIE the most expressed genes were those belonging to the PI3K pathway, and in FA those belonging to the RAS pathway.


Subject(s)
Adenomyosis , Endometriosis , Neoplasms , Humans , Female , Adenomyosis/genetics , Adenomyosis/pathology , Endometriosis/metabolism , Phosphatidylinositol 3-Kinases/genetics , Oncogenes , Uterus/metabolism , Gene Expression
20.
Int J Mol Sci ; 24(6)2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36982349

ABSTRACT

Over the years, several studies have shown that kinase-regulated signaling pathways are involved in the development of rare genetic diseases. The study of the mechanisms underlying the onset of these diseases has opened a possible way for the development of targeted therapies using particular kinase inhibitors. Some of these are currently used to treat other diseases, such as cancer. This review aims to describe the possibilities of using kinase inhibitors in genetic pathologies such as tuberous sclerosis, RASopathies, and ciliopathies, describing the various pathways involved and the possible targets already identified or currently under study.


Subject(s)
TOR Serine-Threonine Kinases , Tuberous Sclerosis , Humans , TOR Serine-Threonine Kinases/metabolism , Signal Transduction , Tuberous Sclerosis/drug therapy , Tuberous Sclerosis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL