Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Language
Publication year range
1.
Development ; 151(14)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38884383

ABSTRACT

The specialized cell cycle of meiosis transforms diploid germ cells into haploid gametes. In mammals, diploid spermatogenic cells acquire the competence to initiate meiosis in response to retinoic acid. Previous mouse studies revealed that MEIOC interacts with RNA-binding proteins YTHDC2 and RBM46 to repress mitotic genes and to promote robust meiotic gene expression in spermatogenic cells that have initiated meiosis. Here, we have used the enhanced resolution of scRNA-seq and bulk RNA-seq of developmentally synchronized spermatogenesis to define how MEIOC molecularly supports early meiosis in spermatogenic cells. We demonstrate that MEIOC mediates transcriptomic changes before meiotic initiation, earlier than previously appreciated. MEIOC, acting with YTHDC2 and RBM46, destabilizes its mRNA targets, including the transcriptional repressors E2f6 and Mga, in mitotic spermatogonia. MEIOC thereby derepresses E2F6- and MGA-repressed genes, including Meiosin and other meiosis-associated genes. This confers on spermatogenic cells the molecular competence to, in response to retinoic acid, fully activate the transcriptional regulator STRA8-MEIOSIN, which is required for the meiotic G1/S phase transition and for meiotic gene expression. We conclude that, in mice, mRNA decay mediated by MEIOC-YTHDC2-RBM46 enhances the competence of spermatogenic cells to initiate meiosis.


Subject(s)
Meiosis , RNA, Messenger , RNA-Binding Proteins , Spermatogenesis , Animals , Male , Mice , RNA, Messenger/metabolism , RNA, Messenger/genetics , Spermatogenesis/genetics , Spermatogenesis/physiology , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Spermatogonia/metabolism , Spermatogonia/cytology , Tretinoin/metabolism , Tretinoin/pharmacology , RNA Stability/genetics , Gene Expression Regulation, Developmental , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , RNA Helicases
2.
Protein Cell ; 14(1): 51-63, 2023 01.
Article in English | MEDLINE | ID: mdl-36726756

ABSTRACT

RBM46 is a germ cell-specific RNA-binding protein required for gametogenesis, but the targets and molecular functions of RBM46 remain unknown. Here, we demonstrate that RBM46 binds at specific motifs in the 3'UTRs of mRNAs encoding multiple meiotic cohesin subunits and show that RBM46 is required for normal synaptonemal complex formation during meiosis initiation. Using a recently reported, high-resolution technique known as LACE-seq and working with low-input cells, we profiled the targets of RBM46 at single-nucleotide resolution in leptotene and zygotene stage gametes. We found that RBM46 preferentially binds target mRNAs containing GCCUAU/GUUCGA motifs in their 3'UTRs regions. In Rbm46 knockout mice, the RBM46-target cohesin subunits displayed unaltered mRNA levels but had reduced translation, resulting in the failed assembly of axial elements, synapsis disruption, and meiotic arrest. Our study thus provides mechanistic insights into the molecular functions of RBM46 in gametogenesis and illustrates the power of LACE-seq for investigations of RNA-binding protein functions when working with low-abundance input materials.


Subject(s)
Cell Cycle Proteins , Nuclear Proteins , RNA-Binding Proteins , Animals , Mice , 3' Untranslated Regions/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Gametogenesis/genetics , Meiosis/genetics , Nuclear Proteins/genetics , RNA-Binding Proteins/genetics , Cohesins
3.
Protein & Cell ; (12): 51-63, 2023.
Article in English | WPRIM (Western Pacific) | ID: wpr-971605

ABSTRACT

RBM46 is a germ cell-specific RNA-binding protein required for gametogenesis, but the targets and molecular functions of RBM46 remain unknown. Here, we demonstrate that RBM46 binds at specific motifs in the 3'UTRs of mRNAs encoding multiple meiotic cohesin subunits and show that RBM46 is required for normal synaptonemal complex formation during meiosis initiation. Using a recently reported, high-resolution technique known as LACE-seq and working with low-input cells, we profiled the targets of RBM46 at single-nucleotide resolution in leptotene and zygotene stage gametes. We found that RBM46 preferentially binds target mRNAs containing GCCUAU/GUUCGA motifs in their 3'UTRs regions. In Rbm46 knockout mice, the RBM46-target cohesin subunits displayed unaltered mRNA levels but had reduced translation, resulting in the failed assembly of axial elements, synapsis disruption, and meiotic arrest. Our study thus provides mechanistic insights into the molecular functions of RBM46 in gametogenesis and illustrates the power of LACE-seq for investigations of RNA-binding protein functions when working with low-abundance input materials.


Subject(s)
Animals , Mice , 3' Untranslated Regions/genetics , Cell Cycle Proteins/metabolism , Gametogenesis/genetics , Meiosis/genetics , Nuclear Proteins/genetics , RNA-Binding Proteins/genetics
4.
Mol Cell ; 82(9): 1678-1690.e12, 2022 05 05.
Article in English | MEDLINE | ID: mdl-35305312

ABSTRACT

The functional consequence of N6-methyladenosine (m6A) RNA modification is mediated by "reader" proteins of the YTH family. YTH domain-containing 2 (YTHDC2) is essential for mammalian fertility, but its molecular function is poorly understood. Here, we identify U-rich motifs as binding sites of YTHDC2 on 3' UTRs of mouse testicular RNA targets. Although its YTH domain is an m6A-binder in vitro, the YTH point mutant mice are fertile. Significantly, the loss of its 3'→5' RNA helicase activity causes mouse infertility, with the catalytic-dead mutation being dominant negative. Biochemical studies reveal that the weak helicase activity of YTHDC2 is enhanced by its interaction with the 5'→3' exoribonuclease XRN1. Single-cell transcriptomics indicate that Ythdc2 mutant mitotic germ cells transition into meiosis but accumulate a transcriptome with mixed mitotic/meiotic identity that fail to progress further into meiosis. Finally, our demonstration that ythdc2 mutant zebrafish are infertile highlights its conserved role in animal germ cell development.


Subject(s)
DNA-Binding Proteins/metabolism , Exoribonucleases/metabolism , RNA Helicases , Zebrafish , Animals , Fertility/genetics , Mammals/metabolism , Meiosis , Mice , RNA/genetics , RNA Helicases/genetics , RNA Helicases/metabolism , Zebrafish/genetics
5.
Biol Reprod ; 104(5): 1139-1153, 2021 05 07.
Article in English | MEDLINE | ID: mdl-33524105

ABSTRACT

It has been suggested that many novel RNA-binding proteins (RBPs) are required for gametogenesis, but the necessity of few of these proteins has been functionally verified. Here, we identified one RBP, Rbm46, and investigated its expression pattern and role in zebrafish reproduction. We found that rbm46 is maternally provided and specifically expressed in the germ cells of gonadal tissues using in situ hybridization, reverse transcription-PCR, and quantitative real-time polymerase chain reaction (qRT-PCR). Two independent rbm46 mutant zebrafish lines were generated via the transcription activator-like effector nuclease technique. Specific disruption of rbm46 resulted in masculinization and infertility in the mutants. Although the spermatogonia appeared grossly normal in the mutants, spermatogenesis was impaired, and meiosis events were not observed. The introduction of a tp53M214K mutation could not rescue the female-to-male sex-reversal phenotype, indicating that rbm46 acts independently of the p53-dependent apoptotic pathway. RNA sequencing and qRT-PCR subsequently indicated that Rbm46 might be involved in the posttranscriptional regulation of functional genes essential for germ cell development, such as nanos3, dazl, and sycp3, during gametogenesis. Together, our results reveal for the first time the crucial role of rbm46 in regulating germ cell development in vivo through promotion of germ cell progression through meiosis prophase I.


Subject(s)
Meiosis , RNA-Binding Proteins/genetics , Spermatogenesis/genetics , Zebrafish Proteins/genetics , Zebrafish/genetics , Animals , Male , RNA-Binding Proteins/metabolism , Spermatogonia , Zebrafish/metabolism , Zebrafish Proteins/metabolism
6.
Per Med ; 15(6): 511-520, 2018 11.
Article in English | MEDLINE | ID: mdl-30362892

ABSTRACT

AIM: Cancer-testis antigens (CTAs) have specific expression in gametogenic tissues and aberrant expression in cancers. Materials & methods: We assessed expression of five testis-specific genes namely KIF2B, CST8, TMEM225, RBM46, OAZ3 in bladder cancer tissues, adjacent non-neoplastic tissues and urinary cell pellets (UCPs) of bladder cancer patients compared with nonmalignant conditions. RESULTS: Expressions of all CTAs were higher in UCPs of bladder cancer patients compared with nonmalignant conditions. RBM46 expression in UCPs was higher in patients with recurrent tumors compared with primary tumors and in patients without hematuria compared with those having hematuria. TMEM225 expression in tumoral tissues was higher in high-grade tumors compared with low-grade tumors. CONCLUSION: Expression analysis of CTAs in UCP might provide diagnostic information about bladder cancer.


Subject(s)
Antigens, Neoplasm/genetics , Urinary Bladder Neoplasms/genetics , Aged , Biomarkers, Tumor/genetics , Carrier Proteins/genetics , Cystatins/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , Intracellular Signaling Peptides and Proteins , Kinesins/genetics , Male , Membrane Proteins/genetics , Middle Aged , Neoplasm Recurrence, Local/genetics , RNA-Binding Proteins/genetics , Testis , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL