Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 18.203
Filter
1.
J Environ Sci (China) ; 147: 131-152, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003035

ABSTRACT

Biomineralization has garnered significant attention in the field of wastewater treatment due to its notable cost reduction compared to conventional methods. The reinjection water from oilfields containing an exceedingly high concentration of calcium and ferric ions will pose a major hazard in production. However, the utilization of biomineralization for precipitating these ions has been scarcely investigated due to limited tolerance among halophiles towards such extreme conditions. In this study, free and immobilized halophiles Virgibacillus dokdonensis were used to precipitate these ions and the effects were compared, at the same time, biomineralization mechanisms and mineral characteristics were further explored. The results show that bacterial concentration and carbonic anhydrase activity were higher when additionally adding ferric ion based on calcium ion; the content of protein, polysaccharides, deoxyribonucleic acid and humic substances in the extracellular polymers also increased compared to control. Calcium ions were biomineralized into calcite and vaterite with multiple morphology. Due to iron doping, the crystallinity and thermal stability of calcium carbonate decreased, the content of OC = O, NC = O and CO-PO3 increased, the stable carbon isotope values became much more negative, and ß-sheet in minerals disappeared. Higher calcium concentrations facilitated ferric ion precipitation, while ferric ions hindered calcium precipitation. The immobilized bacteria performed better in ferric ion removal, with a precipitation ratio exceeding 90%. Free bacteria performed better in calcium removal, and the precipitation ratio reached a maximum of 56%. This research maybe provides some reference for the co-removal of calcium and ferric ions from the oilfield wastewater.


Subject(s)
Calcium , Iron , Virgibacillus , Calcium/chemistry , Iron/chemistry , Virgibacillus/metabolism , Waste Disposal, Fluid/methods , Chemical Precipitation , Wastewater/chemistry , Biomineralization , Calcium Carbonate/chemistry
2.
J Environ Sci (China) ; 147: 370-381, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003055

ABSTRACT

Two strains of Fe/Mn oxidizing bacteria tolerant to high concentrations of multiple heavy metal(loid)s and efficient decontamination for them were screened. The surface of the bio-Fe/Mn oxides produced by the oxidation of Fe(II) and Mn(II) by Pseudomonas taiwanensis (marked as P4) and Pseudomonas plecoglossicida (marked as G1) contains rich reactive oxygen functional groups, which play critical roles in the removal efficiency and immobilization of heavy metal(loid)s in co-contamination system. The isolated strains P4 and G1 can grow well in the following environments: pH 5-9, NaCl 0-4%, and temperature 20-30°C. The removal efficiencies of Fe, Pb, As, Zn, Cd, Cu, and Mn are effective after inoculation of the strains P4 and G1 in the simulated water system (the initial concentrations of heavy metal(loid) were 1 mg/L), approximately reaching 96%, 92%, 85%, 67%, 70%, 54% and 15%, respectively. The exchangeable and carbonate bound As, Cd, Pb and Cu are more inclined to convert to the Fe-Mn oxide bound fractions in P4 and G1 treated soil, thereby reducing the phytoavailability and bioaccessible of heavy metal(loid)s. This research provides alternatives method to treat water and soil containing high concentrations of multi-heavy metal(loid)s.


Subject(s)
Metals, Heavy , Soil Pollutants , Water Pollutants, Chemical , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/analysis , Soil Pollutants/metabolism , Oxidation-Reduction , Pseudomonas/metabolism , Manganese , Iron/chemistry , Iron/metabolism , Soil/chemistry , Biodegradation, Environmental , Soil Microbiology
3.
J Environ Sci (China) ; 147: 404-413, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003058

ABSTRACT

Salinity was considered to have effects on the characteristics, performance microbial communities of aerobic granular sludge. This study investigated granulation process with gradual increase of salt under different gradients. Two identical sequencing batch reactors were operated, while the influent of Ra and Rb was subjected to stepwise increments of NaCl concentrations (0-4 g/L and 0-10 g/L). The presence of filamentous bacteria may contribute to granules formed under lower salinity conditions, potentially leading to granules fragmentation. Excellent removal efficiency achieved in both reactors although there was a small accumulation of nitrite in Rb at later stages. The removal efficiencies of chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) in Ra were 95.31%, 93.70% and 88.66%, while the corresponding removal efficiencies in Rb were 94.19%, 89.79% and 80.74%. Salinity stimulated extracellular polymeric substances (EPS) secretion and enriched EPS producing bacteria to help maintain the integrity and stability of the aerobic granules. Heterotrophic nitrifying bacteria were responsible for NH4+-N and NO2--N oxidation of salinity systems and large number of denitrifying bacteria were detected, which ensure the high removal efficiency of TN in the systems.


Subject(s)
Bioreactors , Nitrogen , Sewage , Waste Disposal, Fluid , Waste Disposal, Fluid/methods , Bioreactors/microbiology , Sewage/microbiology , Phosphorus/metabolism , Salinity , Sodium Chloride , Bacteria/metabolism , Microbiota , Biological Oxygen Demand Analysis
4.
J Environ Sci (China) ; 147: 538-549, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003069

ABSTRACT

The multi-soil-layering (MSL) systems is an emerging solution for environmentally-friendly and cost-effective treatment of decentralized rural domestic wastewater. However, the role of the seemingly simple permeable layer has been overlooked, potentially holding the breakthroughs or directions to addressing suboptimal nitrogen removal performance in MSL systems. In this paper, the mechanism among diverse substrates (zeolite, green zeolite and biological ceramsite) coupled microorganisms in different systems (activated bacterial powder and activated sludge) for rural domestic wastewater purification was investigated. The removal efficiencies performed by zeolite coupled with microorganisms within 3 days were 93.8% for COD, 97.1% for TP, and 98.8% for NH4+-N. Notably, activated sludge showed better nitrification and comprehensive performance than specialized nitrifying bacteria powder. Zeolite attained an impressive 89.4% NH4+-N desorption efficiency, with a substantive fraction of NH4+-N manifesting as exchanged ammonium. High-throughput 16S rRNA gene sequencing revealed that aerobic and parthenogenetic anaerobic bacteria dominated the reactor, with anaerobic bacteria conspicuously absent. And the heterotrophic nitrification-aerobic denitrification (HN-AD) process was significant, with the presence of denitrifying phosphorus-accumulating organisms (DPAOs) for simultaneous nitrogen and phosphorus removal. This study not only raises awareness about the importance of the permeable layer and enhances comprehension of the HN-AD mechanism in MSL systems, but also provides valuable insights for optimizing MSL system construction, operation, and rural domestic wastewater treatment.


Subject(s)
Waste Disposal, Fluid , Waste Disposal, Fluid/methods , Nitrification , Nitrogen/metabolism , Soil/chemistry , Denitrification , Wastewater/chemistry , Sewage/microbiology , Soil Microbiology , Zeolites/chemistry , Phosphorus/metabolism , Bioreactors/microbiology , Bacteria/metabolism
5.
J Environ Sci (China) ; 147: 677-687, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003082

ABSTRACT

Due to their resistance to degradation, wide distribution, easy diffusion and potential uptake by organisms, microplastics (MPs) pollution has become a major environmental concern. In this study, PEG-modified Fe3O4 magnetic nanoparticles demonstrated superior adsorption efficiency against polyethylene (PE) microspheres compared to other adsorbents (bare Fe3O4, PEI/Fe3O4 and CA/Fe3O4). The maximum adsorption capacity of PE was found to be 2203 mg/g by adsorption isotherm analysis. PEG/Fe3O4 maintained a high adsorption capacity even at low temperature (5°C, 2163 mg/g), while neutral pH was favorable for MP adsorption. The presence of anions (Cl-, SO42-, HCO3-, NO3-) and of humic acids inhibited the adsorption of MPs. It is proposed that the adsorption process was mainly driven by intermolecular hydrogen bonding. Overall, the study demonstrated that PEG/Fe3O4 can potentially be used as an efficient control against MPs, thus improving the quality of the aquatic environment and of our water resources.


Subject(s)
Microplastics , Water Pollutants, Chemical , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Kinetics , Adsorption , Polyethylene/chemistry , Magnetite Nanoparticles/chemistry , Polyethylene Glycols/chemistry , Models, Chemical
6.
J Environ Sci (China) ; 147: 714-725, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003084

ABSTRACT

In this study, an efficient stabilizer material for cadmium (Cd2+) treatment was successfully prepared by simply co-milling olivine with magnesite. Several analytical methods including XRD, TEM, SEM and FTIR, combined with theoretical calculations (DFT), were used to investigate mechanochemical interfacial reaction between two minerals, and the reaction mechanism of Cd removal, with ion exchange between Cd2+ and Mg2+ as the main pathway. A fixation capacity of Cd2+ as high as 270.61 mg/g, much higher than that of the pristine minerals and even the individual/physical mixture of milled olivine and magnesite, has been obtained at optimized conditions, with a neutral pH value of the solution after treatment to allow its direct discharge. The as-proposed Mg-based stabilizer with various advantages such as cost benefits, green feature etc., will boosts the utilization efficiency of natural minerals over the elaborately prepared adsorbents.


Subject(s)
Cadmium , Iron Compounds , Magnesium Compounds , Silicates , Water Pollutants, Chemical , Cadmium/chemistry , Water Pollutants, Chemical/chemistry , Magnesium Compounds/chemistry , Silicates/chemistry , Iron Compounds/chemistry , Adsorption , Models, Chemical , Water Purification/methods
7.
J Environ Sci (China) ; 148: 420-436, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095177

ABSTRACT

Mercury (Hg) pollution has been a global concern in recent decades, posing a significant threat to entire ecosystems and human health due to its cumulative toxicity, persistence, and transport in the atmosphere. The intense interaction between mercury and selenium has opened up a new field for studying mercury removal from industrial flue gas pollutants. Besides the advantages of good Hg° capture performance and low secondary pollution of the mineral selenium compounds, the most noteworthy is the relatively low regeneration temperature, allowing adsorbent regeneration with low energy consumption, thus reducing the utilization cost and enabling recovery of mercury resources. This paper reviews the recent progress of mineral selenium compounds in flue gas mercury removal, introduces in detail the different types of mineral selenium compounds studied in the field of mercury removal, reviews the adsorption performance of various mineral selenium compounds adsorbents on mercury and the influence of flue gas components, such as reaction temperature, air velocity, and other factors, and summarizes the adsorption mechanism of different fugitive forms of selenium species. Based on the current research progress, future studies should focus on the economic performance and the performance of different carriers and sizes of adsorbents for the removal of Hg0 and the correlation between the gas-particle flow characteristics and gas phase mass transfer with the performance of Hg0 removal in practical industrial applications. In addition, it remains a challenge to distinguish the oxidation and adsorption of Hg0 quantitatively.


Subject(s)
Air Pollutants , Mercury , Mercury/chemistry , Adsorption , Air Pollutants/chemistry , Selenium/chemistry , Gases/chemistry , Selenium Compounds/chemistry
8.
J Environ Sci (China) ; 148: 38-45, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095173

ABSTRACT

Nitrate (NO3-) is a widespread pollutant in high-salt wastewater and causes serious harm to human health. Although electrochemical removal of nitrate has been demonstrated to be a promising treatment method, the development of low-cost electro-catalysts is still challenging. In this work, a phosphate modified iron (P-Fe) cathode was prepared for electrochemical removal of nitrate in high-salt wastewater. The phosphate modification greatly improved the activity of iron, and the removal rate of nitrate on P-Fe was three times higher than that on Fe electrode. Further experiments and density functional theory (DFT) calculations demonstrated that the modification of phosphoric acid improved the stability and the activity of the zero-valent iron electrode effectively for NO3- removal. The nitrate was firstly electrochemically reduced to ammonium, and then reacted with the anodic generated hypochlorite to N2. In this study, a strategy was developed to improve the activity and stability of metal electrode for NO3- removal, which opened up a new field for the efficient reduction of NO3- removal by metal electrode materials.


Subject(s)
Electrodes , Iron , Nitrates , Phosphates , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical , Wastewater/chemistry , Nitrates/chemistry , Iron/chemistry , Phosphates/chemistry , Water Pollutants, Chemical/chemistry , Waste Disposal, Fluid/methods , Electrochemical Techniques/methods
9.
J Environ Sci (China) ; 148: 625-636, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095195

ABSTRACT

Woodchip bioreactors are an eco-friendly technology for removing nitrogen (N) pollution. However, there needs to be more clarity regarding the dissolved organic matter (DOM) characteristics and bacterial community succession mechanisms and their association with the N removal performance of bioreactors. The laboratory woodchip bioreactors were continuously operated for 360 days under three influent N level treatments, and the results showed that the average removal rate of TN was 45.80 g N/(m3·day) when the influent N level was 100 mg N/L, which was better than 10 mg N/L and 50 mg N/L. Dynamic succession of bacterial communities in response to influent N levels and DOM characteristics was an important driver of TN removal rates. Medium to high N levels enriched a copiotroph bacterial module (Module 1) detected by network analysis, including Phenylobacterium, Xanthobacteraceae, Burkholderiaceae, Pseudomonas, and Magnetospirillaceae, carrying N-cycle related genes for denitrification and ammonia assimilation by the rapid consumption of DOM. Such a process can increase carbon limitation to stimulate local organic carbon decomposition to enrich oligotrophs with fewer N-cycle potentials (Module 2). Together, this study reveals that the compositional change of DOM and bacterial community succession are closely related to N removal performance, providing an ecological basis for developing techniques for N-rich effluent treatment.


Subject(s)
Bacteria , Bioreactors , Nitrogen , Waste Disposal, Fluid , Bioreactors/microbiology , Nitrogen/analysis , Bacteria/metabolism , Waste Disposal, Fluid/methods , Microbiota
10.
J Environ Sci (China) ; 147: 74-82, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003085

ABSTRACT

Endocrine disruptors such as bisphenol A (BPA) adversely affect the environment and human health. Laccases are used for the efficient biodegradation of various persistent organic pollutants in an environmentally safe manner. However, the direct application of free laccases is generally hindered by short enzyme lifetimes, non-reusability, and the high cost of a single use. In this study, laccases were immobilized on a novel magnetic three-dimensional poly(ethylene glycol) diacrylate (PEGDA)-chitosan (CS) inverse opal hydrogel (LAC@MPEGDA@CS@IOH). The immobilized laccase showed significant improvement in the BPA degradation performance and superior storage stability compared with the free laccase. 91.1% of 100 mg/L BPA was removed by the LAC@MPEGDA@CS@IOH in 3 hr, whereas only 50.6% of BPA was removed by the same amount of the free laccase. Compared with the laccase, the outstanding BPA degradation efficiency of the LAC@MPEGDA@CS@IOH was maintained over a wider range of pH values and temperatures. Moreover, its relative activity of was maintained at 70.4% after 10 cycles, and the system performed well in actual water matrices. This efficient method for preparing immobilized laccases is simple and green, and it can be used to further develop ecofriendly biocatalysts to remove organic pollutants from wastewater.


Subject(s)
Benzhydryl Compounds , Enzymes, Immobilized , Laccase , Phenols , Polyethylene Glycols , Water Pollutants, Chemical , Laccase/chemistry , Laccase/metabolism , Phenols/chemistry , Water Pollutants, Chemical/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Polyethylene Glycols/chemistry , Chitosan/chemistry , Hydrogels/chemistry , Biodegradation, Environmental , Endocrine Disruptors/chemistry
11.
J Environ Sci (China) ; 149: 79-87, 2025 Mar.
Article in English | MEDLINE | ID: mdl-39181680

ABSTRACT

Nano zero-valent iron (nZVI) is a promising phosphate adsorbent for advanced phosphate removal. However, the rapid passivation of nZVI and the low activity of adsorption sites seriously limit its phosphate removal performance, accounting for its inapplicability to meet the emission criteria of 0.1 mg P/L phosphate. In this study, we report that the oxalate modification can inhibit the passivation of nZVI and alter the multi-stage phosphate adsorption mechanism by changing the adsorption sites. As expected, the stronger anti-passivation ability of oxalate modified nZVI (OX-nZVI) strongly favored its phosphate adsorption. Interestingly, the oxalate modification endowed the surface Fe(III) sites with the lowest chemisorption energy and the fastest phosphate adsorption ability than the other adsorption sites, by in situ forming a Fe(III)-phosphate-oxalate ternary complex, therefore enabling an advanced phosphate removal process. At an initial phosphate concentration of 1.00 mg P/L, pH of 6.0 and a dosage of 0.3 g/L of adsorbents, OX-nZVI exhibited faster phosphate removal rate (0.11 g/mg/min) and lower residual phosphate level (0.02 mg P/L) than nZVI (0.055 g/mg/min and 0.19 mg P/L). This study sheds light on the importance of site manipulation in the development of high-performance adsorbents, and offers a facile surface modification strategy to prepare superior iron-based materials for advanced phosphate removal.


Subject(s)
Iron , Oxalates , Phosphates , Water Pollutants, Chemical , Phosphates/chemistry , Adsorption , Iron/chemistry , Water Pollutants, Chemical/chemistry , Oxalates/chemistry , Water Purification/methods , Models, Chemical
12.
J Environ Sci (China) ; 149: 99-112, 2025 Mar.
Article in English | MEDLINE | ID: mdl-39181682

ABSTRACT

With the increasing demand for water in hydroponic systems and agricultural irrigation, viral diseases have seriously affected the yield and quality of crops. By removing plant viruses in water environments, virus transmission can be prevented and agricultural production and ecosystems can be protected. But so far, there have been few reports on the removal of plant viruses in water environments. Herein, in this study, easily recyclable biomass-based carbon nanotubes catalysts were synthesized with varying metal activities to activate peroxymonosulfate (PMS). Among them, the magnetic 0.125Fe@NCNTs-1/PMS system showed the best overall removal performance against pepper mild mottle virus, with a 5.9 log10 removal within 1 min. Notably, the key reactive species in the 0.125Fe@NCNTs-1/PMS system is 1O2, which can maintain good removal effect in real water matrices (river water and tap water). Through RNA fragment analyses and label free analysis, it was found that this system could effectively cleave virus particles, destroy viral proteins and expose their genome. The capsid protein of pepper mild mottle virus was effectively decomposed where serine may be the main attacking sites by 1O2. Long viral RNA fragments (3349 and 1642 nt) were cut into smaller fragments (∼160 nt) and caused their degradation. In summary, this study contributes to controlling the spread of plant viruses in real water environment, which will potentially help protect agricultural production and food safety, and improve the health and sustainability of ecosystems.


Subject(s)
Biomass , Nanotubes, Carbon , Nanotubes, Carbon/chemistry , Plant Viruses/physiology , Water Purification/methods , Tobamovirus , Peroxides
13.
Food Chem ; 460(Pt 2): 140667, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39094348

ABSTRACT

As a highly toxic aldehyde, acrolein is widely found in diet and environment, and can be produced endogenously, posing a serious threat to human health. Herein, we designed a novel fluorescent nanoplatform integrating carbon dots­manganese dioxide (CDs-MnO2) and glutathione (GSH) for all-in-one sensing and removal of acrolein. By converting Mn4+ to free Mn2+, GSH inhibited the inner filter effect (IFE) of MnO2 nanosheets, and the Michael addition of acrolein with GSH inhibited the GSH-induced Mn4+ conversion, forming an "off-on-off" fluorescence response of CDs. The developed fluorescent nanoplatform exhibited high sensitivity (LOD was 0.067 µM) and selectivity for the simultaneous detection and removal of acrolein. The combination of CDs-MnO2 hydrogels with smartphones realized the point-of-care detection of acrolein, yielding satisfactory results (recovery rates varied between 97.01-104.65%, and RSD ranged from 1.42 to 4.16%). Moreover, the capability of the nanoplatform was investigated for on-site evaluating acrolein scavengers' efficacy, demonstrating excellent potential for practical application.

14.
Ophthalmol Retina ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39098637

ABSTRACT

TOPIC: This systematic review and meta-analysis investigates the efficacy and safety of anti-vascular endothelial growth factor (anti-VEGF) injections compared to surgical intervention in improving visual acuity (VA) and reducing complications for patients with submacular hemorrhage (SMH) due to neovascular age-related macular degeneration (AMD). CLINICAL RELEVANCE: Determining the optimal intervention for SMH in AMD is crucial for patient care. METHODS: We included studies on anti-VEGF injections or surgical interventions for SMH in AMD from 7 databases, searched up to May 2024. Data extraction and quality assessment were done by two independent reviewers. Certainty of evidence was assessed GRADE approach. Meta-analysis employed random-effects models. Primary outcomes were pooled mean logMAR VA difference (initial examination minus last follow-up VA) and adverse events rates. RESULTS: A total of 43 observational studies were included: 21 (960 eyes) on anti-VEGF and 22 (455 eyes) on surgery. Comparisons were made across separate studies due to lack of head-to-head studies. Meta-analysis included 11 anti-VEGF studies (444 eyes) and 12 surgical studies (195 eyes) for VA outcomes. The mean difference (MD) in VA was -0.16 (95%CI: -0.26,-0.07) for anti-VEGF and -0.36 (95%CI: -0.68,-0.04) for surgery, with no significant difference between groups (X2=1.70, df =1, p=0.19). Heterogeneity was high in surgical studies (I2=96.2%, tau2=0.23, p<0.01) and negligible in anti-VEGF studies (I2=7%, tau2=0.003, p=0.38). GRADE certainty was moderate for anti-VEGF and low for surgery. Anti-VEGF had lower rates of cataract (0% vs 4.6%), proliferative vitreoretinopathy (PVR, 0.1% vs 2.0%), and retinal detachment (RD, 0.1% vs 10.6%), but similar rates of recurrent hemorrhage (5.4% vs 5.3%). Complications were summarized descriptively due to zero cell problem. CONCLUSION: Both anti-VEGF and surgery treat SMH in AMD with similar VA outcomes but different safety profiles. Anti-VEGF is preferred for less severe hemorrhage, while surgery is suited for extensive hemorrhage. Despite uncertain comparative VA outcomes, treatment should be guided by clinical judgment and patient factors.

15.
Environ Pollut ; : 124657, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39098643

ABSTRACT

In this study, a Ce-loading biochar (Ce-BC) was synthesized by the optimal modification method of pre-pyrolysis impregnation, a pyrolysis temperature at 600 °C, and a CeCl3 concentration of 1.00 mol·L-1 for efficient adsorption phosphorus (P) from wastewater. The results revealed that Ce-BC could achieve a maximum P removal rate of 100% under specific conditions: an adsorbent concentration of 2.00 g·L-1, an initial solution pH of 3.00, an adsorption temperature of 25°C, and an initial P concentration of 20.00 mg·L-1. The adsorption process followed the quasi-secondary kinetic model, suggesting the Ce-BC was particularly effective in acidic environments. Meanwhile, Ce-BC has a strong resistance to anion interference and good cycling performance (the P adsorption capacity of Ce-BC was 59.77% of its initial value after four cycles). Field emission scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) indicated that Ce-BC contained a porous structure and rich functional groups (hydroxyl and carboxyl), and compounds of CeO2 and MgCeO3 were formed. The Ce loading favored the exchange with P through ligands, inner-sphere complexation, ion exchange, and electrostatic interaction to form inner-sphere complex-cerium P (CePO4), and surface complex of Ce-O-P replaced O-H. In addition, the Ce-BC adsorption columns had a substantial effect on P removal in actual wastewater. Overall, Ce-BC is a promising material for the treating P-containing acidic wastewater.

16.
Article in English | MEDLINE | ID: mdl-39101319

ABSTRACT

OBJECTIVE: Mandibular plate reconstruction (MPR) is often indicated after tumor ablation, osteoradionecrosis excision, and traumatic bone loss to restore oral functionality and facial cosmetics. There are limited analyses identifying risk factors that lead to plate infection (PIn), exposure, and removal ("plate complications"). STUDY DESIGN: Retrospective cohort study. SETTING: Academic tertiary medical center. METHODS: Patients who underwent MPR from 2013 to 2022 were identified. Risk factors for plate complications were analyzed based on demographic, clinical, intraoperative, and postoperative factors. Multivariable analysis was conducted with logistic regression. Survival analysis was conducted with a Cox model. RESULTS: Of the 188 patients analyzed, 48 (25.5%) had a plate complication [infection: 22 (11.7%); exposure: 23 (12.2%); removal: 35 (18.6%)]. Multivariate analysis revealed predictive associations between at least 1 plate complication and the following variables: smoking status, soft tissue defect size, number of plates, average screw length, and various postoperative complications. Other associations approached the threshold for significance. Prior and adjuvant radiation therapy, type of free flap, stock versus custom plates, and perioperative antibiotic prophylaxis regimens were not associated with plate complications. No plate complication was independently associated with lower overall survival. PIn (hazard ratio, HR: 7.99, confidence interval, CI [4.11, 15.54]) and exposure (HR: 3.56, CI [1.79, 7.08]) were independently associated with higher rates of plate removal. CONCLUSION: Plate complications are relatively common after MPR. Smoking history, specific disease characteristics, hardware used during surgery, and postoperative complications may help identify higher-risk patients, but additional larger-scale studies are needed to validate our findings and resolve discrepancies in the current literature.

17.
Article in English | MEDLINE | ID: mdl-39102139

ABSTRACT

Nitrate pollution of water emerging from various anthropogenic activities has become a major environmental concern because of its deleterious effects on natural water resources. The present work deals with the synthesis of the ternary nanocomposite based on chitosan, iron oxide (Fe3O4), and titanium dioxide (TiO2) and its application for the removal of nitrates from model-contaminated water. Fe3O4 derived through a coprecipitation method was incorporated into the chitosan matrix which was fabricated in the form of beads. The wet gel beads were then successfully coated with sol-gel-derived silver-doped titanium dioxide sol followed by drying under suitable conditions to get the functional nanocomposite beads. The synthesized functional materials were further characterized for their structural, morphological, and textural features using X-ray diffraction analysis, physical property measurement (PPMS), Fourier transform infrared (FTIR) analysis, UV visible spectroscopy analysis (UV-vis), BET surface area analysis (BET), field emission scanning electron microscopic (FESEM), and transmission electron microscopy (TEM) analysis. The ternary nanocomposites were further used for the removal of nitrates via adsorption cum photocatalytic reduction technique from the model contaminated water when subjected to an adsorption study under dark conditions and photocatalytic study under UV/visible/sunlight for a definite time. Fe3O4 in the nanocomposite provides enhanced adsorption features whereas the functional coating of titanium dioxide aids in the removal of nitrates through the photocatalytic reduction technique. The functional beads containing 3% Fe3O4 in the wet gel form (CTA-F3) have excellent nitrate removal efficiency of ~ 97% via adsorption cum solar photocatalysis towards the removal of nitrate ions from 50 ppm nitrate solution, whereas the dried nanocomposite beads have got a nitrate removal efficiency of ~ 68% in 1 h from 100 ppm nitrate solution. Continuous flow adsorption cum photocatalytic study was performed further using the oven-dried functional beads in which flow rate and bed height were varied while maintaining the concentration of feed solution as constant. A nitrate removal efficiency of 65% and an adsorption capacity of 4.1 mgg-1 were obtained for the CTA-F3 beads in the continuous flow adsorption cum photocatalysis experiment for up to 5 h when using an inlet concentration of 100 ppm, bed height 12 cm, and flow rate 5.0 ml min-1. A representative fixed-bed column adsorption experiment conducted using CTA-F3 beads for the treatment of a real groundwater sample shows reasonable results for nitrate removal (71.7% efficiency) along with a significant removal rate for the other anions as well. Thus, the novel adsorbent/photocatalyst developed is suitable for the removal of nitrates from water due to the synergistic effect between Fe3O4, chitosan, and titanium dioxide.

18.
Article in English | MEDLINE | ID: mdl-39102148

ABSTRACT

Biological methods do not effectively remove pharmaceutical products (PPs) and antibiotic resistance genes (ARGs) from wastewater at low temperatures, leading to environmental pollution. Therefore, anaerobic-aerobic-coupled upflow bioelectrochemical reactors (AO-UBERs) were designed to improve the removal of PPs at low temperatures (10 ± 2 °C). The result shows that diclofenac (DIC) and ibuprofen (IBU) removals in the system with aerobic anodic and anaerobic cathodic chambers were 91.7% and 94.7%, higher than that in the control system (12.2 ± 1.5%, 36.5 ± 5.9%), and aerobic zone favors DIC and IBU removal; fluoroquinolone antibiotics (FQs) removals in the system with aerobic cathodic and anaerobic anodic chambers were 17.5-22.4% higher than that in the control system (9.1-22.4%), and anaerobic zone favors FQs removal. Analysis of microbial community structure and ARGs showed that different electrotrophic microbes (Flavobacterium, Acinetobacter, and Delftia) with cold-resistant ability to degrade PPs were enriched in different electrode combinations, and the aerobic cathodic chambers could remove certain ARGs. These results showed that AO-UBERs under intermittent electrical stimulation mode are an alternative method for the effective removal of PPs and ARGs at low temperatures.

19.
Iran Endod J ; 19(3): 189-192, 2024.
Article in English | MEDLINE | ID: mdl-39086711

ABSTRACT

Introduction: Ultrasonic vibration for metallic post removal seems to be a unanimous choice between endodontists and general practitioners for providing the best results and having the highest safety. This study compared the time required by ultrasonic vibration for removing metallic post (MP) when 1 or 2 ultrasonics devices are used. Materials and Methods: One hundred and fifteen teeth with MPs from 105 patients, indicated for nonsurgical endodontic retreatment were divided into 2 groups according to the number of ultrasonic devices used (G1-1 device) and (G2-2 devices). In G1, the MP was worn with a transmetal bur, alongside the wear of the cement line (around 2 mm deep). Then, an ultrasonic tip attached to an ultrasonic unit, with a power of 100% was activated at the level of the post, with constant water spray at a level of 1 mm above the axial surface of the tooth. The position of the tip was changed between buccal and lingual surfaces every 10 seconds until the MP was removed. In G2 the same procedures were performed as described in G1, but two ultrasonic tips were activated simultaneously at buccal and lingual surfaces until the MP was removed. The vibration time necessary for removing each MP was recorded using a chronometer. Results: The mean time was 131.10±29.68 seconds (mean±standard error of the mean) for MP removal using one ultrasonic device, and 24.86±6.88 seconds for two devices. The time required for MP removal using two ultrasonic devices was significantly less than when using one ultrasonic device (P<0.001). Conclusion: The technique with 2 ultrasonic devices proved to be more efficient than the one using only 1 ultrasonic device.

20.
R Soc Open Sci ; 11(7): 240409, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39086817

ABSTRACT

Vultures provide the key ecosystem service of quickly removing carrion, so they have recently been assumed to be top scavengers. To challenge the concept of top scavenger (i.e. the most influential in the scavenging community and process), between 2012 and 2019, we recorded the consumption of 45 equine carcasses available for two different avian scavenger guilds in the Tropical Andes; each guild included the Andean Condor, the alleged top scavenger. The carcasses eaten by Andean Condors were consumed, on average, 1.75 times faster than those they did not eat. Furthermore, the greater abundance of feeding condors shortened carcass consumption time more than a greater abundance of any other species by 1.65 to 5.96 times, on average. These findings support the hypothesis that the Andean Condor significantly drives scavenging dynamics and is, therefore, an unrestricted top scavenger. Additionally, we established a gradient of tolerance of avian scavengers to domestic dog disturbance at carcasses, from highest to lowest: vultures > caracaras > condors. Our study framework holds great potential for advancing in food webs' comprehension through quantifying the relative functional role of scavenging communities' members and for guiding efforts to weigh up the ecological contributions of top scavengers and foster their conservation.

SELECTION OF CITATIONS
SEARCH DETAIL