Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 259
Filter
1.
Acta Pharm Sin B ; 14(7): 3068-3085, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39027244

ABSTRACT

Sepsis progression is significantly associated with the disruption of gut eubiosis. However, the modulatory mechanisms of gut microbiota operating during sepsis are still unclear. Herein, we investigated how gut commensals impact sepsis development in a pre-clinical model. Cecal ligation and puncture (CLP) surgery was used to establish polymicrobial sepsis in mice. Mice depleted of gut microbiota by an antibiotic cocktail (ABX) exhibited a significantly higher level of mortality than controls. As determined by metabolomics analysis, ABX treatment has depleted many metabolites, and subsequent supplementation with l-rhamnose (rhamnose, Rha), a bacterial carbohydrate metabolite, exerted profound immunomodulatory properties with a significant enhancement in macrophage phagocytosis, which in turn improved organ damage and mortality. Mechanistically, rhamnose binds directly to and activates the solute carrier family 12 (potassium-chloride symporter), member 4 (SLC12A4) in macrophages and promotes phagocytosis by activating the small G-proteins, Ras-related C3 botulinum toxin substrate1 (Rac1) and cell division control protein 42 homolog (Cdc42). Interestingly, rhamnose has enhanced the phagocytosis capacity of macrophages from sepsis patients. In conclusion, by identifying SLC12A4 as the host interacting protein, we disclosed that the gut commensal metabolite rhamnose is a functional molecular that could promote the phagocytosis capacity of macrophages and protect the host against sepsis.

2.
J Biotechnol ; 391: 81-91, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38825191

ABSTRACT

Solanum xanthocarpum fruits are used in the treatment of cough, fever, and heart disorders. It possesses antipyretic, hypotensive, antiasthmatic, aphrodisiac and antianaphylactic properties. In the present study, 24 elicitors (both biotic and abiotic) were used to enhance the production of glycoalkaloids in cell cultures of S. xanthocarpum. Four concentrations of elicitors were added into the MS culture medium. The maximum accumulation (5.56-fold higher than control) of demissidine was induced by sodium nitroprusside at 50 mM concentration whereas the highest growth of cell biomass (4.51-fold higher than control) stimulated by systemin at 30 mM concentration. A total of 17 genes of biosynthetic pathways of glycoalkaloids were characterized from the cells of S. xanthocarpum. The greater accumulation of demissidine was confirmed with the expression analysis of 11 key biosynthetic pathway enzymes e.g., acetoacetic-CoA thiolase, 3- hydroxy 3-methyl glutaryl synthase, ß-hydroxy ß-methylglutaryl CoA reductase, mevalonate kinase, farnesyl diphosphate synthase, squalene synthase, squalene epoxidase, squalene-2,3- epoxide cyclase, cycloartenol synthase, UDP-glucose: solanidine glucosyltransferase and UDP-rhamnose: solanidine rhamno-galactosyl transferase. The maximum expression levels of UDP-rhamnose: solanidine rhamno-galactosyl transferase gene was recorded in this study.


Subject(s)
Biosynthetic Pathways , Solanum , Solanum/genetics , Solanum/metabolism , Biosynthetic Pathways/genetics , Gene Expression Regulation, Plant/drug effects , Alkaloids/metabolism , Alkaloids/biosynthesis , Plant Proteins/genetics , Plant Proteins/metabolism , Solanaceous Alkaloids/metabolism
3.
Carbohydr Res ; 540: 109145, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38759341

ABSTRACT

The cell wall of endophytic strain Rathayibacter oskolensis VKM Ac-2121T (family Microbacteriaceae, class Actinomycetes) was found to contain neutral and acidic glycopolymers. The neutral polymer is a block-type rhamnomannan partially should be substitutied by xylose residues, [→2)-α-[ß-D-Xylp-(1 â†’ 3)]-D-Manp-(1 â†’ 3)-α-D-Rhap-(1→]∼30 [→2)-α-D-Manp-(1 â†’ 3)-α-D-Rhap-(1→]∼45. The acidic polymer has branched chain, bearing lactate and pyruvate residues, →4)-α-D-[S-Lac-(2-3)-α-L-Rhap-(1 â†’ 3)]-D-Manp-(1 â†’ 3)-α-D-[4,6-R-Pyr]-D-Galp-(1 â†’ 3)-ß-D-Glcp-(1 â†’. The structures of both glycopolymers were not described in the Gram-positive bacteria to date. The glycopolymers were studied by chemical and NMR spectroscopic methods. The results of this study provide new data on diversity of bacterial glycopolymers and may prove useful in the taxonomy of the genus Rathayibacter and for understanding the molecular mechanisms of interaction between plants and plant endophytes.


Subject(s)
Cell Wall , Xylose , Cell Wall/chemistry , Cell Wall/metabolism , Xylose/chemistry , Xylose/metabolism , Lactic Acid/chemistry , Lactic Acid/metabolism , Pyruvic Acid/chemistry , Pyruvic Acid/metabolism , Mannans/chemistry , Carbohydrate Sequence , Actinobacteria/chemistry , Actinobacteria/metabolism , Rhamnose/chemistry , Polysaccharides, Bacterial/chemistry , Polysaccharides/chemistry , Actinomycetales/chemistry , Actinomycetales/metabolism
4.
Appl Microbiol Biotechnol ; 108(1): 279, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38564031

ABSTRACT

A novel L-rhamnose isomerase was identified and cloned from an extreme-temperature aquatic habitat metagenome. The deduced amino acid sequence homology suggested the possible source of this metagenomic sequence to be Chloroflexus islandicus. The gene expression was performed in a heterologous host, Escherichia coli, and the recombinant protein L-rhamnose isomerase (L-RIM) was extracted and purified. The catalytic function of L-RIM was characterized for D-allulose to D-allose bioconversion. D-Allose is a sweet, rare sugar molecule with anti-tumour, anti-hypertensive, cryoprotective, and antioxidative properties. The characterization experiments showed L-RIM to be a Co++- or Mn++-dependent metalloenzyme. L-RIM was remarkably active (~ 80%) in a broad spectrum of pH (6.0 to 9.0) and temperature (70 to 80 °C) ranges. Optimal L-RIM activity with D-allulose as the substrate occurred at pH 7.0 and 75 °C. The enzyme was found to be excessively heat stable, displaying a half-life of about 12 days and 5 days at 65 °C and 70 °C, respectively. L-RIM catalysis conducted at slightly acidic pH of 6.0 and 70 °C achieved biosynthesis of about 30 g L-1 from 100 g L-1 D-allulose in 3 h. KEY POINTS: • The present study explored an extreme temperature metagenome to identify a novel gene that encodes a thermostable l-rhamnose isomerase (L-RIM) • L-RIM exhibits substantial (80% or more) activity in a broad spectrum of pH (6.0 to 9.0) and temperature (70 to 80 °C) ranges • L-RIM is excessively heat stable, displaying a half-life of about 12 days and 5 days at 65 °C and 70 °C, respectively.


Subject(s)
Aldose-Ketose Isomerases , Fructose , Glucose , Antihypertensive Agents , Escherichia coli/genetics
5.
Molecules ; 29(7)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38611771

ABSTRACT

To explore the composition of anthocyanins and expand their biological activities, anthocyanins were systematically isolated and purified from tubers of Solanum tuberosum L., and their tyrosinase inhibitory activity was investigated. In this study, two new anthocyanin degradation compounds, norpetanin (9) and 4-O-(p-coumaryl) rhamnose (10), along with 17 known anthocyanins and their derivatives, were isolated and purified from an acid-ethanolic extract of fresh purple potato tubers. Their structures were elucidated via 1D and 2D NMR and HR-ESI-MS and compared with those reported in the literature. The extracts were evaluated for anthocyanins and their derivatives using a tyrosinase inhibitor screening kit and molecular docking technology, and the results showed that petanin, norpetanin, 4-O-(p-coumaryl) rhamnose, and lyciruthephenylpropanoid D/E possessed tyrosinase inhibitory activity, with 50% inhibiting concentration (IC50) values of 122.37 ± 8.03, 115.53 ± 7.51, 335.03 ± 12.99, and 156.27 ± 11.22 µM (Mean ± SEM, n = 3), respectively. Furthermore, petanin was validated against melanogenesis in zebrafish; it was found that it could significantly inhibit melanin pigmentation (p < 0.001), and the inhibition rate of melanin was 17% compared with the normal group. This finding may provide potential treatments for diseases with abnormal melanin production, and high-quality raw materials for whitening cosmetics.


Subject(s)
Anthocyanins , Solanum tuberosum , Animals , Anthocyanins/pharmacology , Monophenol Monooxygenase , Melanins , Molecular Docking Simulation , Rhamnose , Zebrafish
6.
Food Chem ; 447: 138942, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38484542

ABSTRACT

The development of a sustainable and efficient bioconversion strategy is crucial for the full-component utilization of naringin. In this study, an engineering Pichia pastoris co-culture system was developed to produce L-rhamnose and 2S/2R-naringenin. By optimizing transformation conditions, the co-culture system could completely convert naringin while fully consuming glucose. The production of 2S/2R-naringenin reached 59.5 mM with a molar conversion of 99.2%, and L-rhamnose reached 59.1 mM with a molar conversion of 98.5%. In addition, an engineering Escherichia coli co-culture system was developed to produce 2R-naringenin and kaempferol from 2S/2R-naringenin. Maximal kaempferol production reached 1050 mg/L with a corresponding molar conversion of 99.0%, and 996 mg/L 2R-naringenin was accumulated. Finally, a total of 17.4 g 2R-naringenin, 18.0 g kaempferol, and 26.1 g L-rhamnose were prepared from 100 g naringin. Thus, this study provides a novel strategy for the production of value-added compounds from naringin with an environmentally safe process.


Subject(s)
Flavanones , Rhamnose , Kaempferols
7.
Appl Microbiol Biotechnol ; 108(1): 249, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38430263

ABSTRACT

A recombinant L-rhamnose isomerase (L-RhI) from probiotic Lactobacillus rhamnosus Probio-M9 (L. rhamnosus Probio-M9) was expressed. L. rhamnosus Probio-M9 was isolated from human colostrum and identified as a probiotic lactic acid bacterium, which can grow using L-rhamnose. L-RhI is one of the enzymes involved in L-rhamnose metabolism and catalyzes the reversible isomerization between L-rhamnose and L-rhamnulose. Some L-RhIs were reported to catalyze isomerization not only between L-rhamnose and L-rhamnulose but also between D-allulose and D-allose, which are known as rare sugars. Those L-RhIs are attractive enzymes for rare sugar production and have the potential to be further improved by enzyme engineering; however, the known crystal structures of L-RhIs recognizing rare sugars are limited. In addition, the optimum pH levels of most reported L-RhIs are basic rather than neutral, and such a basic condition causes non-enzymatic aldose-ketose isomerization, resulting in unexpected by-products. Herein, we report the crystal structures of L. rhamnosus Probio-M9 L-RhI (LrL-RhI) in complexes with L-rhamnose, D-allulose, and D-allose, which show enzyme activity toward L-rhamnose, D-allulose, and D-allose in acidic conditions, though the activity toward D-allose was low. In the complex with L-rhamnose, L-rhamnopyranose was found in the catalytic site, showing favorable recognition for catalysis. In the complex with D-allulose, D-allulofuranose and ring-opened D-allulose were observed in the catalytic site. However, bound D-allose in the pyranose form was found in the catalytic site of the complex with D-allose, which was unfavorable for recognition, like an inhibition mode. The structure of the complex may explain the low activity toward D-allose. KEY POINTS: • Crystal structures of LrL-RhI in complexes with substrates were determined. • LrL-RhI exhibits enzyme activity toward L-rhamnose, D-allulose, and D-allose. • The LrL-RhI is active in acidic conditions.


Subject(s)
Aldose-Ketose Isomerases , Lacticaseibacillus rhamnosus , Humans , X-Rays , Rhamnose , Monosaccharides
8.
J Control Release ; 367: 848-863, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38355053

ABSTRACT

Transdermal drug delivery systems (TDDS) demand both high drug loading capacity and efficient delivery. In order to improve both simultaneously, this study aims to develop a novel rhamnose-induced pressure-sensitive adhesive (HPR) by dispersing the drug in the supramolecular helical structure. Ten model drugs, categorized as acidic and basic compounds, were chosen to understand the characteristics of the HPR and its inner mechanism. Notably, it enhanced drug loading by 1.41 to 5 times over commercially available pressure-sensitive adhesives Duro-Tak@ 87-4098 and Duro-Tak@ 87-2287, in addition to increasing drug release efficiency by a factor of about 5. Pharmacokinetic evaluation demonstrated that the HPR group had >4-fold (Tulobuterol TUL) and 3-fold (Diclofenac DIC) more area under the blood drug concentration curve (AUC) than the commercial TUL and DIC patches in the absence of added excipients and a significantly prolonged mean residence time (MRT) of >4-fold (TUL) and 3-fold (DIC), demonstrating the potential for highly efficacious and prolonged dosing. Furthermore, its safety and mechanical properties meet the requisite standards. Mechanistic inquiries unveiled that both acidic and basic drugs establish hydrogen bonds with HPR and become encapsulated within supramolecular helical structures. The supramolecular helical structures, significantly elevated both the enthalpy of the drug-HPR and entropy of the drugs release, thereby substantially enhancing drug delivery efficiency. In summary, HPR enabled a significant simultaneous enhancement of drug loading and drug delivery, which, together with its unique spatial structure, would contribute to the development of TDDS. In addition, the establishment of rhamnose-induced supramolecular helical structures would provide innovative pathways for different drug delivery systems.


Subject(s)
Rhamnose , Transdermal Patch , Pharmaceutical Preparations , Solubility , Administration, Cutaneous , Excipients/chemistry , Adhesives/chemistry , Drug Liberation
9.
ACS Appl Mater Interfaces ; 16(8): 9799-9815, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38380628

ABSTRACT

This study introduces a dendronized pressure-sensitive adhesive, TMPE@Rha, addressing Food and Drug Administration (FDA) concerns about traditional pressure-sensitive adhesives (PSAs) in transdermal drug delivery systems. The unique formulation, composed of rhamnose, trihydroxypropane, and poly(ethylene glycol), significantly enhances cohesion and tissue adhesion. Leveraging rhamnose improves intermolecular interactions and surface chain mobility, boosting tissue adhesion. Compared to acrylic pressure-sensitive adhesive 87-DT-4098, TMPE@Rha shows substantial advantages, with up to 5 to 6 times higher peel strength on porcine and wood substrates. Importantly, it maintains strong human skin adhesion beyond 7 days without the typical "dark ring" phenomenon. When loaded with diclofenac, the adhesive exhibits 3.12 times greater peeling strength than commercial alternatives, sustaining human adhesion for up to 6 days. Rigorous analyses confirm rhamnose's role in increasing interaction strength. In vitro studies and microscopy demonstrate the polymer's ability to enhance drug loading and distribution on the skin, improving permeability. Biocompatibility tests affirm TMPE@Rha as nonirritating. In summary, TMPE@Rha establishes a new standard for PSAs in transdermal drug delivery systems, offering exceptional adhesion, robustness, and biocompatibility. This pioneering work provides a blueprint for next-generation, highly adhesive, drug-loaded PSAs that meet and exceed FDA criteria.


Subject(s)
Dendrimers , Humans , Animals , Swine , Rhamnose , Tissue Adhesions , Administration, Cutaneous , Skin , Pharmaceutical Preparations , Adhesives/chemistry , Drug Delivery Systems
10.
Adv Sci (Weinh) ; 11(13): e2307613, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38286668

ABSTRACT

Cetuximab resistance is a significant challenge in cancer treatment, requiring the development of novel therapeutic strategies. In this study, a series of multivalent rhamnose (Rha)-modified nanobody conjugates are synthesized and their antitumor activities and their potential to overcome cetuximab resistance are investigated. Structure-activity relationship studies reveal that the multivalent conjugate D5, bearing sixteen Rha haptens, elicits the most potent innate fragment crystallizable (Fc) effector immunity in vitro and exhibits an excellent in vivo pharmacokinetics by recruiting endogenous antibodies. Notably, it is found that the optimal conjugate D5 represents a novel entity capable of reversing cetuximab-resistance induced by serine protease (PRSS). Moreover, in a xenograft mouse model, conjugate D5 exhibits significantly improved antitumor efficacy compared to unmodified nanobodies and cetuximab. The findings suggest that Rha-Nanobody (Nb) conjugates hold promise as a novel therapeutic strategy for the treatment of cetuximab-resistant tumors by enhancing the innate Fc effector immunity and enhancing the recruitment of endogenous antibodies to promote cancer cell clearance by innate immune cells.


Subject(s)
Drug Resistance, Neoplasm , ErbB Receptors , Rhamnose , Single-Domain Antibodies , Animals , Humans , Mice , Antibodies, Monoclonal, Humanized/therapeutic use , Cell Line, Tumor , Cetuximab/pharmacology , Cetuximab/therapeutic use , ErbB Receptors/immunology , Immunity, Innate , Single-Domain Antibodies/pharmacology , Drug Resistance, Neoplasm/immunology
11.
Carbohydr Res ; 536: 109038, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38219633

ABSTRACT

Therapeutic monoclonal antibodies (mAbs) against the epidermal growth factor receptor (EGFR) have shown clinical efficacy in colorectal cancer and other solid cancers. Enhancing the effector functions of these anti-EGFR mAbs is believed to be a valuable approach to achieve improved efficacy in clinical setting. Here, we report the development of an effector function-enhanced antibody by rhamnose (Rha) functionalization. Cetuximab, a human/mouse chimeric anti-EGFR mAb, was selected and site-specifically conjugated with Rha haptens. The obtained cetuximab-Rha conjugate was shown to be able to selectively redirect amounts of endogenous anti-Rha antibodies onto EGFR-positive solid tumor cells and thereby provide more Fc domains to achieve enhancement of effector functions including complement-dependent cytotoxicity (CDC) and antibody-dependent cell-mediated phagocytosis (ADCP). Particularly, CDC, one powerful cell killing mechanism which is inactive in cetuximab, was dramatically improved. This study demonstrates the potential of rhamnose-modified antibody for EGFR-positive solid tumor immunotherapy.


Subject(s)
Antineoplastic Agents , Rhamnose , Animals , Humans , Mice , Cetuximab/pharmacology , Rhamnose/pharmacology , Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , ErbB Receptors , Cell Line, Tumor
12.
Nat Prod Res ; : 1-6, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38230560

ABSTRACT

Isoquercitrin has superior in vivo bioactivities with respect to its primary glycoside rutin. Its conventional preparation was ineffective, with large chemical consumption and many by-products. Rhamnose, a high value-added monosaccharide, is usually separated from acid hydrolytes of rutin. This study aimed to establish a novel enzymatic hydrolysis-based approach for their preparation. α-L-rhamnosidase was expressed in Pichia pastoris GS115 and applied to enzymolysis of rutin. Then, one-factor-at-a-time optimisation of hydrolysis conditions was performed. Two compounds were produced in 0.02 M HAc-NaAc buffer (pH4.50) containing α-L-rhamnosidase/rutin (1:4, w/w) at 60 °C. Consequently, 20.0 g/L rutin was completely hydrolysed in 2 hrs, and isoquercitrin was obtained after purification by HPD-100 resin. Additionally, rhamnose was enriched by decolorisation and crystallisation. MD simulation analysis suggested that rutin was catalysed on the hydrophobic surface of r-Rha1 with van-der-Waals force being main driving force. This strategy is an efficient approach for preparation of isoquercitrin and rhamnose.

13.
Int J Biol Macromol ; 254(Pt 2): 127859, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37924916

ABSTRACT

D-Allose and D-allulose are two important rare natural monosaccharides found in meager amounts. They are considered to be the ideal substitutes for table sugar (sucrose) for, their significantly lower calorie content with around 80 % and 70 % of the sweetness of sucrose, respectively. Additionally, both monosaccharides have gained much attention due to their remarkable physiological properties and excellent health benefits. Nevertheless, D-allose and D-allulose are rare in nature and difficult to produce by chemical methods. Consequently, scientists are exploring bioconversion methods to convert D-allulose into D-allose, with a key enzyme, L-rhamnose isomerase (L-RhIse), playing a remarkable role in this process. This review provides an in-depth analysis of the extractions, physiological functions and applications of D-allose from D-allulose. Specifically, it provides a detailed description of all documented L-RhIse, encompassing their biochemical properties including, pH, temperature, stabilities, half-lives, metal ion dependence, molecular weight, kinetic parameters, specific activities and specificities of the substrates, conversion ratio, crystal structure, catalytic mechanism as well as their wide-ranging applications across diverse fields. So far, L-RhIses have been discovered and characterized experimentally by numerous mesophilic and thermophilic bacteria. Furthermore, the crystal forms of L-RhIses from E. coli and Stutzerimonas/Pseudomonas stutzeri have been previously cracked, together with their catalytic mechanism. However, there is room for further exploration, particularly the molecular modification of L-RhIse for enhancing its catalytic performance and thermostability through the directed evolution or site-directed mutagenesis.


Subject(s)
Escherichia coli , Fructose , Escherichia coli/metabolism , Fructose/chemistry , Monosaccharides/metabolism , Sucrose/metabolism
14.
Bioresour Technol ; 393: 130080, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37993068

ABSTRACT

Rhamnolipids can serve as a precursor for rhamnose production, but using ion exchange resin in purifying rhamnolipids hydrolysate results in excessive high-salinity wastewater, making the process environmentally and economically unfeasible. This study introduced electrodialysis technology as an alternative for purifying rhamnolipids hydrolysate, significantly reducing wastewater to less than 5 % compared to the resin method. To achieve zero wastewater discharge, the electrodialysis-treated wastewater was repurposed into a water-soluble fertilizer containing 7.1 g/L of rhamnolipids, 11.4 g/L of fatty acid, 2.4 g/L of amino acid, and 8.2 g/L of potassium. Unlike traditional fertilizers, the nutritional components with rhamnolipids showed remarkable potential in enhancing tomato plant growth, flowering, and fruit quality. Taken together, the electrodialysis treatment of rhamnolipids hydrolysate largely reduced the water volume, the economic cost, and took a full use of the final wastewater as efficient water-soluble fertilizers, making it applicable for large-scale rhamnose production.


Subject(s)
Fertilizers , Wastewater , Rhamnose , Glycolipids
15.
Biotechnol Adv ; 69: 108279, 2023 12.
Article in English | MEDLINE | ID: mdl-37913948

ABSTRACT

The Streptococcus genus comprises both commensal and pathogenic species. Additionally, Streptococcus thermophilus is exploited in fermented foods and in probiotic preparations. The ecological and metabolic diversity of members of this genus is matched by the complex range of cell wall polysaccharides that they present on their cell surfaces. These glycopolymers facilitate their interactions and environmental adaptation. Here, current knowledge on the genetic and compositional diversity of streptococcal cell wall polysaccharides including rhamnose-glucose polysaccharides, exopolysaccharides and teichoic acids is discussed. Furthermore, the species-specific cell wall polysaccharide combinations and specifically highlighting the presence of rhamnose-glucose polysaccharides in certain species, which are replaced by teichoic acids in other species. This review highlights model pathogenic and non-pathogenic species for which there is considerable information regarding cell wall polysaccharide composition, structure and genetic information. These serve as foundations to predict and focus research efforts in other streptococcal species for which such data currently does not exist.


Subject(s)
Rhamnose , Teichoic Acids , Teichoic Acids/analysis , Rhamnose/analysis , Rhamnose/metabolism , Polysaccharides/chemistry , Streptococcus/genetics , Streptococcus/chemistry , Streptococcus/metabolism , Polysaccharides, Bacterial/genetics , Polysaccharides, Bacterial/analysis , Polysaccharides, Bacterial/metabolism , Cell Wall/metabolism , Glucose
16.
EMBO J ; 42(24): e114835, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37953666

ABSTRACT

Natural selection drives the acquisition of organismal resilience traits to protect against adverse environments. Horizontal gene transfer (HGT) is an important evolutionary mechanism for the acquisition of novel traits, including metazoan acquisitions in immunity, metabolic, and reproduction function via interdomain HGT (iHGT) from bacteria. Here, we report that the nematode gene rml-3 has been acquired by iHGT from bacteria and that it enables exoskeleton resilience and protection against environmental toxins in Caenorhabditis elegans. Phylogenetic analysis reveals that diverse nematode RML-3 proteins form a single monophyletic clade most similar to bacterial enzymes that biosynthesize L-rhamnose, a cell-wall polysaccharide component. C. elegans rml-3 is highly expressed during larval development and upregulated in developing seam cells upon heat stress and during the stress-resistant dauer stage. rml-3 deficiency impairs cuticle integrity, barrier functions, and nematode stress resilience, phenotypes that can be rescued by exogenous L-rhamnose. We propose that interdomain HGT of an ancient bacterial rml-3 homolog has enabled L-rhamnose biosynthesis in nematodes, facilitating cuticle integrity and organismal resilience to environmental stressors during evolution. These findings highlight a remarkable contribution of iHGT on metazoan evolution conferred by the domestication of a bacterial gene.


Subject(s)
Nematoda , Resilience, Psychological , Animals , Caenorhabditis elegans/metabolism , Phylogeny , Gene Transfer, Horizontal , Rhamnose/metabolism , Bacteria/genetics
17.
J Agric Food Chem ; 71(42): 15713-15722, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37823838

ABSTRACT

d-Allose is a low-calorie rare sugar with great application potential in the food and pharmaceutical industries. The production of d-allose has been accomplished using l-rhamnose isomerase (L-RI), but concomitantly increasing the enzyme's stability and activity remains challenging. Here, we rationally engineered an L-RI from Clostridium stercorarium to enhance its stability by comprehensive computation-aided redesign of its flexible regions, which were successively identified using molecular dynamics simulations. The resulting combinatorial mutant M2-4 exhibited a 5.7-fold increased half-life at 75 °C while also exhibiting improved catalytic efficiency. Especially, by combining structure modeling and multiple sequence alignment, we identified an α0 region that was universal in the L-RI family and likely acted as a "helix-breaker". Truncating this region is crucial for improving the thermostability of related enzymes. Our work provides a significantly stable biocatalyst with potential for the industrial production of d-allose.


Subject(s)
Aldose-Ketose Isomerases , Bacterial Proteins , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Glucose/chemistry , Aldose-Ketose Isomerases/chemistry , Enzyme Stability
18.
J Physiol ; 601(20): 4573-4589, 2023 10.
Article in English | MEDLINE | ID: mdl-37695123

ABSTRACT

The aim of this set of randomised cross-over studies was to determine the impact of progressive heat exposure and carbohydrate or protein feeding during exertional stress on small intestine permeability using a dual sugar test. In our previous work, and typically in the field, recovery of lactulose and l-rhamnose is measured cumulatively in urine. This follow-up study exploits our novel high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) protocol to accurately quantify the sugars in plasma. Endurance-trained participants completed experimental trial A (ET-A; n = 8), consisting of 2 h running at 60% V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ in temperate, warm and hot ambient conditions, and/or experimental trial B (ET-B; n = 9), consisting of 2 h running at 60% V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ in the heat while consuming water, carbohydrate or protein. Blood samples were collected and plasma lactulose (L) and l-rhamnose (R) appearance, after dual sugar solution ingestion at 90 min of exercise, was quantified by HPAEC-PAD to measure plasma L/R and reveal new information about intestinal permeability immediately post-exercise and during recovery. In ET-A, plasma L/R increased immediately post-exercise in hot compared with temperate and warm conditions, while, in ET-B, carbohydrate alleviated this, and this information was otherwise missed when measuring urine L/R. Consuming carbohydrate or protein before and during exercise attenuated small intestine permeability throughout recovery from exertional heat stress. We recommend using the dual sugar test with quantification of plasma sugars by HPAEC-PAD at intervals to maximise intestinal permeability data collection in exercise gastroenterology research, as this gives additional information compared to urinary measurements. KEY POINTS: Intestinal permeability is typically assessed using a dual sugar test, by administering a drink containing non-metabolisable sugars (e.g. lactulose (L) and l-rhamnose (R)) that can enter the circulation by paracellular translocation when the epithelium is compromised, and are subsequently measured in urine. We demonstrate that our recently developed ion chromatography protocol can be used to accurately quantify the L/R ratio in plasma, and that measuring L/R in plasma collected at intervals during the post-exercise recovery period reveals novel acute response information compared to measuring 5-h cumulative urine L/R. We confirm that exercising in hot ambient conditions increases intestinal epithelial permeability immediately after exercise, while consuming carbohydrate or protein immediately before and during exercise attenuates this. We recommend using our dual sugar absorption test protocol to maximise intestinal epithelial permeability data collection in exercise gastroenterology research and beyond.


Subject(s)
Heat Stress Disorders , Lactulose , Humans , Lactulose/urine , Rhamnose/urine , Follow-Up Studies , Carbohydrates , Permeability , Intestinal Absorption/physiology
19.
Biomedicines ; 11(8)2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37626813

ABSTRACT

Metastatic renal cell carcinoma (RCC) is not sufficiently responsive to anticancer drugs, and thus, developing new drugs for advanced RCC remains vital. We previously reported that the treatment of globotriaosylceramide (Gb3)-expressing cells with catfish (Silurus asotus) egg lectin (SAL) increased the intracellular uptake of propidium iodide (PI) and sunitinib (SU). Herein, we investigated whether SAL pretreatment affects the intracellular uptake and cytotoxic effects of molecular-targeted drugs in RCC cells. We analyzed Gb3 expression in TOS1, TOS3, TOS3LN, and ACHN human RCC cells. Surface Gb3 expression was higher in TOS1 and TOS3 cells than in TOS3LN and ACHN cells. In the PI uptake assay, 41.5% of TOS1 cells and 21.1% of TOS3 cells treated with SAL were positive for PI. TOS1 cell viability decreased to 70% after treatment with 25 µM SU alone and to 48% after pretreatment with SAL (50 µg/mL). Time-series measurements of the intracellular fluorescence of SU revealed significantly enhanced SU uptake in SAL-treated TOS1 cells compared to control cells. SAL treatment did not increase PI uptake in normal renal cells. Our findings suggest that adequate cytotoxic activity may be achieved even when SU is administered at a sufficiently low dose not to cause side effects in combination with SAL.

SELECTION OF CITATIONS
SEARCH DETAIL