Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters











Publication year range
1.
ACS Appl Bio Mater ; 7(5): 3337-3345, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38700956

ABSTRACT

A stimuli-responsive drug delivery nanocarrier with a core-shell structure combining photothermal therapy and chemotherapy for killing cancer cells was constructed in this study. The multifunctional nanocarrier ReS2@mSiO2-RhB entails an ReS2 hierarchical nanosphere coated with a fluorescent mesoporous silica shell. The three-dimensional hierarchical ReS2 nanostructure is capable of effectively absorbing near-infrared (NIR) light and converting it into heat. These ReS2 nanospheres were generated by a hydrothermal synthesis process leading to the self-assembly of few-layered ReS2 nanosheets. The mesoporous silica shell was further coated on the surface of the ReS2 nanospheres through a surfactant-templating sol-gel approach to provide accessible mesopores for drug uploading. A fluorescent dye (Rhodamine B) was covalently attached to silica precursors and incorporated during synthesis in the mesoporous silica walls toward conferring imaging capability to the nanocarrier. Doxorubicin (DOX), a known cancer drug, was used in a proof-of-concept study to assess the material's ability to function as a drug delivery carrier. While the silica pores are not capped, the drug molecule loading and release take advantage of the pH-governed electrostatic interactions between the drug and silica wall. The ReS2@mSiO2-RhB enabled a drug loading content as high as 19.83 mg/g doxorubicin. The ReS2@mSiO2-RhB-DOX nanocarrier's cumulative drug release rate at pH values that simulate physiological conditions showed significant pH responsiveness, reaching 59.8% at pH 6.8 and 98.5% and pH 5.5. The in vitro testing using HeLa cervical cancer cells proved that ReS2@mSiO2-RhB-DOX has a strong cancer eradication ability upon irradiation with an NIR laser owing to the combined drug delivery and photothermal effect. The results highlight the potential of ReS2@mSiO2-RhB nanoparticles for combined cancer therapy in the future.


Subject(s)
Doxorubicin , Drug Liberation , Drug Screening Assays, Antitumor , Materials Testing , Nanoparticles , Particle Size , Photothermal Therapy , Rhenium , Silicon Dioxide , Silicon Dioxide/chemistry , Humans , Doxorubicin/pharmacology , Doxorubicin/chemistry , Hydrogen-Ion Concentration , Nanoparticles/chemistry , Rhenium/chemistry , Rhenium/pharmacology , Disulfides/chemistry , Porosity , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemical synthesis , Cell Survival/drug effects , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Drug Carriers/chemistry , HeLa Cells
2.
ACS Nano ; 18(21): 13899-13909, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38757652

ABSTRACT

The ability to precisely identify crystal orientation as well as to nondestructively modulate optical anisotropy in atomically thin rhenium dichalcogenides is critical for the future development of polarization programmable optoelectronic devices, which remains challenging. Here, we report a modified polarized optical imaging (POI) method capable of simultaneously identifying in-plane (Re chain) and out-of-plane (c-axis) crystal orientations of the monolayer to few-layer ReS2, meanwhile, propose a nondestructive approach to modulate the optical anisotropy in ReS2 via twist stacking. The results show that parallel and near-cross POI are effective to independently identify the in-plane and out-of-plane crystal orientations, respectively, while regulating the twist angle allows for giant modulation of in-plane optical anisotropy from highly intrinsic anisotropy to complete optical isotropy in the stacked ReS2 bilayer (with either the same or opposite c-axes), as well modeled by linear electromagnetic theory. Overall, this study not only develops a simple optical method for precise crystal orientation identification but also offers an efficient light polarization control strategy, which is a big step toward the practical application of anisotropic van der Waals materials in the design of nanophotonic and optoelectronic devices.

3.
Heliyon ; 10(7): e28646, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38586325

ABSTRACT

The structural and electronic properties of ReS2 different forms - three-dimensional bulk and two-dimensional monolayer - were studied within density functional theory and pseudopotentials. A method for standardizing the description of bulk unit cells and "artificial" slab unit cells for DFT research has been proposed. The preference of this method for studying zone dispersion has been shown. The influence of the vacuum layer thickness on specified special high-symmetry points is discussed. Electron band dispersion in both classical 3D Brillouin zones and transition to 2D Brillouin zones in the proposed two-dimensional approach using the Niggli form of the unit cell was compared. The proposed two-dimensional approach is preferable for low-symmetry layered crystals such as ReS2. It was established that the bulk ReS2 is a direct gap semiconductor (band gap of 1.20 eV), with the direct transition lying in the X point of the first Brillouin zone, and it is in good agreement with published experimental data. The reduction in material dimension from bulk to monolayer was conducted with an increasing band gap up to 1.45 eV, with a moving direct transition towards the Brillouin zone center. The monolayer of ReS2 is a direct-gap semiconductor in a wide range of temperatures, excluding only a narrow range at low temperatures, where it comes as a quasi-direct gap semiconductor. The transition, situated directly in the Γ-point, lies 3.3 meV below the first direct transition located near this point. The electronic density of states of ReS2 in the bulk and monolayer cases of ReS2 were analyzed. The molecular orbitals were built for both types of ReS2 structures as well as the electron difference density maps. For all types of ReS2 structures, an analysis of populations according to Mulliken and Voronoi was carried out. All calculated data is discussed in the context of weak quantum confinement in the 2D case.

4.
Small ; 20(3): e2305045, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37675813

ABSTRACT

The potential for various future industrial applications has made broadband photodetectors beyond visible light an area of great interest. Although most 2D van-der-Waals (vdW) semiconductors have a relatively large energy bandgap (>1.2 eV), which limits their use in short-wave infrared detection, they have recently been considered as a replacement for ternary alloys in high-performance photodetectors due to their strong light-matter interaction. In this study, a ferroelectric gating ReS2 /WSe2 vdW heterojunction-channel photodetector is presented that successfully achieves broadband light detection (>1300 nm, expandable up to 2700 nm). The staggered type-II bandgap alignment creates an interlayer gap of 0.46 eV between the valence band maximum (VBMAX ) of WSe2 and the conduction band minimum (CBMIN ) of ReS2 . Especially, the control of poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) ferroelectric dipole polarity for a specific wavelength allows a high photoresponsivity of up to 6.9 × 103 A W-1 and a low dark current below 0.26 nA under the laser illumination with a wavelength of 405 nm in P-up mode. The achieved high photoresponsivity, low dark current, and full-range near infrared (NIR) detection capability open the door for next-generation photodetectors beyond traditional ternary alloy photodetectors.

5.
J Photochem Photobiol B ; 250: 112831, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38134574

ABSTRACT

Cancer is a life-threatening disease when it is diagnosed at a late stage or treatment procedures fail. Inhibiting cancer cells in the tumor environment is a significant challenge for anticancer therapy. The photothermal effects of nanomaterials are being studied as a new cancer treatment. In this work, rhenium disulfide (ReS2) nanosheets were made by liquid exfoliation with gum arabic (GA) and coated with silver nanoparticles (AgNPs) to produce reactive oxygen species that destroy cancer cells. The synthesized AgNP-GA-ReS2 NPs were characterized using UV, DLS, SEM, TEM, and photothermal studies. According to the DLS findings, the NPs were about 216 nm in size and had a zeta potential of 76 mV. The TEM and SEM analyses revealed that the GA-ReS2 formed single-layered nanosheets on which the AgNPs were distributed. The photothermal effects of the AgNP-GA-ReS2 NPs at 50 µg/mL were tested with an 808 nm laser at 1.2 W cm-2, and they reached 55.8 °C after 5 min of laser irradiation. MBA-MB-231 cells were used to test the cytotoxicity of the newly designed AgNP-GA-ReS2 NPs with and without laser irradiation for 5 min. At 50 µg/mL, the AgNP-GA-ReS2 showed cytotoxicity, which was confirmed with calcein and EtBr staining. The DCFH-DA and flow cytometry analyses demonstrated that AgNP-GA-ReS2 nanosheets under NIR irradiation generated ROS with high anticancer activity, in addition to the photothermal effects.


Subject(s)
Metal Nanoparticles , Neoplasms , Rhenium , Humans , Metal Nanoparticles/toxicity , Silver/pharmacology
6.
Heliyon ; 9(10): e20678, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37860525

ABSTRACT

This study demonstrates a linearly polarized Er-doped fiber laser system featuring an all-polarization-maintaining (all-PM) architecture. Short pulses were generated by Q-switching operation based on drop-casting rhenium disulfide (ReS2) saturable absorber (SA) onto a fiber connector placed inside the laser cavity. The Q-switching operation of the laser was able to self-start at a low (23 mW) threshold power of the pump and without the need to use a polarization controller. The proposed laser was able to produce stable pulses with a center wavelength and 3-dB bandwidth of 1558.4 nm and 0.13 nm, respectively. The shortest pulse duration measured (2.8 µs) was achieved at a repetition rate of 37.6 kHz while the highest average output power and pulse energy were 2.2 mW and 76.5 nJ, respectively. Furthermore, as the cavity of the laser was designed to be all-PM the laser that it produced was linearly polarized and had a degree of polarization (DOP) at the level of 94.5 % and 40 dB polarization extinction ratio (PER). Therefore, the proposed laser is a suitable light source for optical applications in environments that are complex.

7.
Talanta ; 265: 124842, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37393712

ABSTRACT

We present a flow injection system with a multiple pulse amperometric detection (FIA-MPA)-based methodology for the simultaneous analysis of sunset yellow and tartrazine. As transducer, we have developed a novel electrochemical sensor based on the synergistic effect of ReS2 nanosheets and diamond nanoparticles (DNPs). Among several transition dichalcogenides for the sensor development, we have selected ReS2 nanosheets since it yields a better response towards both colourants. Scanning probe microscopy characterization shows that the surface sensor is composed by scattered and stacked ReS2 flakes and large aggregates of DNPs. With this system, the gap between the oxidation potential values of sunset yellow and tartrazine is wide enough to allow the simultaneous determination of both dyes. Under the optimum potential pulse conditions (0.8 and 1.2 V) during 250 ms, a flow rate of 3 mL/min and a volume injection of 250 µL, detection limits of 3.51 × 10-7 M and 2.39 × 10-7 M for sunset yellow and tartrazine, respectively, were obtained. This method exhibits good accuracy and precision with Er minor than 13% and RSD lower than 8% with a sampling frequency of 66 samples per hour. Pineapple jelly samples were analyzed by the standard addition method, obtaining 53.7 mg/kg and 29.0 mg/kg of sunset yellow and tartrazine, respectively. From the analysis of fortified samples, recoveries of 94% and 105% were obtained.

8.
ACS Appl Mater Interfaces ; 15(19): 23439-23446, 2023 May 17.
Article in English | MEDLINE | ID: mdl-37133360

ABSTRACT

Two-dimensional (2D) van der Waals (vdW) layered materials have provided novel opportunities to explore interesting physical properties such as thickness-dependent bandgap, moiré excitons, superconductivity, and superfluidity. However, the presence of interlayer resistance along the thickness and Schottky barrier in metal-to-2D vdW semiconducting materials causes a limited interlayer charge injection efficiency, perturbing various intrinsic properties of 2D vdW multilayers. Herein, we report a simple but powerful contact electrode design to enhance interlayer carrier injection efficiency along the thickness by constructing vertical double-side contact (VDC) electrodes. A 2-fold extended contact area of VDC not only strongly limits an interlayer resistance contribution to the field-effect mobility and current density at the metal-to-2D semiconductor interface but also significantly suppresses both current transfer length (≤1 µm) and specific contact resistivity (≤1 mΩ·cm2), manifesting clear benefits of VDC in comparison with those in conventional top-contact and bottom-contact configurations. Our layout for contact electrode configuration may suggest an advanced electronic device platform for high-performing 2D optoelectronic devices.

9.
ACS Appl Mater Interfaces ; 15(17): 21162-21170, 2023 May 03.
Article in English | MEDLINE | ID: mdl-37079857

ABSTRACT

It is still challenging to develop anode materials with high capacity and long cycling stability for lithium-ion batteries (LIBs). To address such issues, herein, for the first time, we present a three-dimensional and freestanding ReS2/graphene heterostructure (3DRG) as an anode synthesized via a one-pot hydrothermal method. The hybrid shows a hierarchically sandwich-like, nanoporous, and conductive three-dimensional (3D) network constructed by two-dimensional (2D) ReS2/graphene heterostructural nanosheets, which can be directly utilized as a freestanding and binder-free anode for LIBs. When the current density is 100 mA g-1, the 3DRG anode delivers a high reversible specific capacity of 653 mAh g-1. The 3DRG anode also delivers higher rate capability and cycling stability than the bare ReS2 anode. The markedly boosted electrochemical properties derive from the unique nanoarchitecture, which guarantees massive electrochemical active sites, short channels of lithium-ion diffusion, fast electron/ion transportation, and inhibition of the volume change of ReS2 for LIBs.

10.
Nano Lett ; 23(4): 1211-1218, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36748951

ABSTRACT

Interfacial atomic configuration and its evolution play critical roles in the structural stability and functionality of mixed zero-dimensional (0D) metal nanoparticles (NPs) and two-dimensional (2D) semiconductors. In situ observation of the interface evolution at atomic resolution is a vital method. Herein, the directional migration and structural evolution of Au NPs on anisotropic ReS2 were investigated in situ by aberration-corrected transmission electron microscopy. Statistically, the migration of Au NPs with diameters below 3 nm on ReS2 takes priority with greater probability along the b-axis direction. Density functional theory calculations suggest that the lower diffusion energy barrier enables the directional migration. The coalescence kinetics of Au NPs is quantitatively described by the relation of neck radius (r) and time (t), expressed as r2=Kt. Our work provides an atomic-resolved dynamic analysis method to study the interfacial structural evolution of metal/2D materials, which is essential to the study of the stability of nanodevices based on mixed-dimensional nanomaterials.

11.
J Colloid Interface Sci ; 634: 32-43, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36528969

ABSTRACT

The interfacial catalytic reaction plays a crucial role in determining hydrogen production efficiency of a photocatalyst. In this work, hollow spherical nano-shell composite (g-C3N4/CdS/ReS2) formed by graphitic carbon nitride (g-C3N4), cadmium sulfide (CdS), and rhenium disulfide (ReS2) was prepared for photocatalytic hydrogen production, with ReS2 introduced as a relatively inexpensive co-catalyst with excellent performance. It was found that two-electron catalytic reaction took place in this photocatalytic system due to the unique trion behavior of ReS2 co-catalyst, which greatly enhances the rate of photocatalytic hydrogen production. The tightly bound excitons in the ReS2 co-catalyst could easily capture the photogenerated electrons in the photocatalytic system to form trions, while g-C3N4 in the inner shell and CdS in the middle shell provided sufficient electrons for the formation of trions. The active edge sites of ReS2 also facilitated the generation and desorption of hydrogen, which creates conditions favoring two-electron catalytic reaction. In addition, oxidation and reduction reactions occurred inside and outside of the hollow spherical nano-shell, respectively, which effectively inhibits the recombination of photogenerated carriers. The unique trion behavior of ReS2 alters the interfacial catalytic reaction compared to the widely used platinum (Pt) co-catalyst in photocatalytic hydrogen production, which provides a new approach for enhancing the activity of photocatalytic systems.

12.
ACS Nano ; 16(10): 16271-16280, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36205574

ABSTRACT

Two-dimensional (2D) material bubbles, as a straightforward method to induce strain, represent a potentially powerful platform for the modulation of different properties of 2D materials and the exploration of their strain-related applications. Here, we prepare ReS2/graphene heterojunction bubbles (ReS2/gr heterobubbles) and investigate their strain and interference synergistically modulated optical and electrical properties. We perform Raman and photoluminescence (PL) spectra to verify the continuously varying strain and the microcavity induced optical interference in ReS2/gr heterobubbles. Kelvin probe force microscopy (KPFM) is carried out to explore the photogenerated carrier transfer behavior in both strained ReS2/gr heterobubbles and ReS2/gr interfaces, as well as the oscillation of surface potential caused by optical interference under illumination conditions. Moreover, the switching of in-plane crystal orientation and the modulation of optical anisotropy of ReS2/gr heterobubbles are observed by azimuth-dependent reflectance difference microscopy (ADRDM), which can be attributed to the action of both strain effect and interference. Our study proves that the optical and electrical properties can be effectively modulated by the synergistical effect of strain and interference in a 2D material bubble.

13.
Adv Mater ; 34(30): e2202722, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35610176

ABSTRACT

Coupling charge impurity scattering effects and charge-carrier modulation by doping can offer intriguing opportunities for atomic-level control of resistive switching (RS). Nonetheless, such effects have remained unexplored for memristive applications based on 2D materials. Here a facile approach is reported to transform an RS-inactive rhenium disulfide (ReS2 ) into an effective switching material through interfacial modulation induced by molybdenum-irradiation (Mo-i) doping. Using ReS2 as a model system, this study unveils a unique RS mechanism based on the formation/dissolution of metallic ß-ReO2 filament across the defective ReS2 interface during the set/reset process. Through simple interfacial modulation, ReS2 of various thicknesses are switchable by modulating the Mo-irradiation period. Besides, the Mo-irradiated ReS2 (Mo-ReS2 ) memristor further exhibits a bipolar non-volatile switching ratio of nearly two orders of magnitude, programmable multilevel resistance states, and long-term synaptic plasticity. Additionally, the fabricated device can achieve a high MNIST learning accuracy of 91% under a non-identical pulse train. The study's findings demonstrate the potential for modulating RS in RS-inactive 2D materials via the unique doping-induced charged impurity scattering property.

14.
ACS Nano ; 16(6): 9222-9227, 2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35605130

ABSTRACT

ReS2 is a group-VII chalcogenide with a crystal structure that has inversion symmetry only. Due to the low symmetry, it has in-plane anisotropy, and the two vertical orientations are not equivalent. The in-plane anisotropy leads to optical birefringence that can be observed by using polarized optical microscopy. We found ReS2 crystals with domains of inequivalent vertical orientations but with the same Re-chain directions. Polarized Raman spectroscopy was used to determine the vertical orientations and the b-axis (Re-chain) directions of the domains, and high-resolution scanning transmission electron microscopy measurements confirmed that the Re-chain directions of the two types of the neighboring domains are exactly parallel. From polarized optical reflectivity measurements of the two types of domains, we found that the optical slow axis is not along the b-axis as previously believed but is tilted by ∼2.4° from the b-axis of the crystal. This offset makes the two neighboring domains with parallel Re-chains optically inequivalent and enables one to observe optical contrast between the two types of domains in polarized optical microscopy. We propose a quick and easy method to determine the crystallographic orientations of such domains by using polarized optical microscopy only.

15.
ACS Nano ; 16(4): 6404-6413, 2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35426299

ABSTRACT

Electrical tuning of second-order nonlinearity in optical materials is attractive to strengthen and expand the functionalities of nonlinear optical technologies, though its implementation remains elusive. Here, we report the electrically tunable second-order nonlinearity in atomically thin ReS2 flakes benefiting from their distorted 1T crystal structure and interlayer charge transfer. Enabled by the efficient electrostatic control of the few-atomic-layer ReS2, we show that second harmonic generation (SHG) can be induced in odd-number-layered ReS2 flakes which are centrosymmetric and thus without intrinsic SHG. Moreover, the SHG can be precisely modulated by the electric field, reversibly switching from almost zero to an amplitude more than 1 order of magnitude stronger than that of the monolayer MoS2. For the even-number-layered ReS2 flakes with the intrinsic SHG, the external electric field could be leveraged to enhance the SHG. We further perform the first-principles calculations which suggest that the modification of in-plane second-order hyperpolarizability by the redistributed interlayer-transferring charges in the distorted 1T crystal structure underlies the electrically tunable SHG in ReS2. With its active SHG tunability while using the facile electrostatic control, our work may further expand the nonlinear optoelectronic functions of two-dimensional materials for developing electrically controllable nonlinear optoelectronic devices.

16.
Small ; 18(17): e2108028, 2022 04.
Article in English | MEDLINE | ID: mdl-35315231

ABSTRACT

In-plane anisotropy in 2D rhenium disulfide (ReS2 ) offers intriguing opportunities for designing future electronic and optical devices, and toward such applications, it is crucial to identify the crystal orientation in such 2D anisotropic materials. Existing spectroscopy or electron microscopy methods for determining the crystalline orientation often require complicated sample preparing procedures and specialized equipment, which could sometimes limit their application. In this work, a dichromatic polarized reflectance method is demonstrated, which can quickly and accurately resolve the crystal orientation (Re-Re chain) in 2D ReS2 crystals with different thicknesses. Furthermore, it can be readily extended to multi-chromatic schemes to achieve greater measurement capability and can be easily tailored to work for different 2D materials. The method offers a simple and effective approach for studying anisotropy in 2D materials.


Subject(s)
Optical Devices , Rhenium , Anisotropy , Disulfides
17.
Adv Mater ; 34(48): e2106321, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34779068

ABSTRACT

Hardware realization of in-memory computing for efficient data-intensive computation is regarded as a promising paradigm beyond the Moore era. However, to realize such functions, the device structure using traditional Si complementary metal-oxide-semiconductor (CMOS) technology is complex with a large footprint. 2D material-based heterostructures have a unique advantage to build versatile logic functions based on novel heterostructures with simplified device footprint and low power. Here, by adopting the charge-trapping mechanism between a black phosphorus (BP) channel and a phosphorus oxide (POx ) layer, a nonvolatile CMOS logic circuit based on 2D BP and rhenium disulfide (ReS2 ) with a high voltage gain of ≈275 is realized with a persistent hysteresis window. A Schmidt-like flip-flop using only two transistors is also demonstrated, with far fewer transistor numbers than the conventional silicon counterpart, which usually requires six transistors. Furthermore, four-transistor (4T) nonvolatile ternary content-addressable memory (nvTCAM) cells are demonstrated with far fewer transistors for parallel data search. The nvTCAM cells exhibit high resistance ratios (Rratio ) up to ≈103 between match and mismatch states with zero standby power thanks to the nonvolatility of the BP transistors. This back-end-of-line compatible nvTCAM shows advantages over other structures with reduced complexity and thermal budget.

18.
Nanotechnology ; 32(50)2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34587588

ABSTRACT

Two samples with [001] orientated rhenium disulfide (ReS2) nanowalls (NWs) grown above and in front of precursor (NH4ReO4) by chemical vapor deposition were investigated. The temperature-dependent photoluminescence (PL) indicated that the PL peak exhibited linear blue-shift at a rate of ∼0.24 meV K-1with increasing the temperature from 10 to 300 K, while the linewidth monotonically increased due to the exciton-phonon interaction. This abnormal blue-shift of PL emission energy, which is explained by a competition between the band gap shrinkage and the energy level degeneracy with respect to the increase of temperature and lattice constant, enables ReS2NWs to possess great potential for development of thermal sensors. In addition, exciton localization effect in the ReS2NWs from abundant edges and weak interlayer interaction was also observed to be related to the height and density of ReS2NWs. These results not only enrich the understanding for exciton dynamics in ReS2NWs, but also help to exploit ReS2NWs for device applications.

19.
Nanomaterials (Basel) ; 11(9)2021 Sep 12.
Article in English | MEDLINE | ID: mdl-34578683

ABSTRACT

Rhenium Disulfide (ReS2) has evolved as a novel 2D transition-metal dichalcogenide (TMD) material which has promising applications in optoelectronics and photonics because of its distinctive anisotropic optical properties. Saturable absorption property of ReS2 has been utilized to fabricate saturable absorber (SA) devices to generate short pulses in lasers systems. The results were outstanding, including high-repetition-rate pulses, large modulation depth, multi-wavelength pulses, broadband operation and low saturation intensity. In this review, we emphasize on formulating SAs based on ReS2 to produce pulsed lasers in the visible, near-infrared and mid-infrared wavelength regions with pulse durations down to femtosecond using mode-locking or Q-switching technique. We outline ReS2 synthesis techniques and integration platforms concerning solid-state and fiber-type lasers. We discuss the laser performance based on SAs attributes. Lastly, we draw conclusions and discuss challenges and future directions that will help to advance the domain of ultrafast photonic technology.

20.
Adv Mater ; 33(40): e2102980, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34423469

ABSTRACT

Optogenetics refers to a technique that uses light to modulate neuronal activity with a high spatiotemporal resolution, which enables the manipulation of learning and memory functions in the human brain. This strategy of controlling neuronal activity using light can be applied for the development of intelligent systems, including neuromorphic and in-memory computing systems. Herein, a flexible van der Waals (vdW) optoelectronic synapse is reported, which is a core component of optogenetics-inspired intelligent systems. This synapse is fabricated on 2D vdW layered rhenium disulfide (ReS2 ) that features an inherent photosensitive memory nature derived from the persistent photoconductivity (PPC) effect, successfully mimicking the dynamics of biological synapses. Based on first-principles calculations, the PPC effect is identified to originate from sulfur vacancies in ReS2 that have an inherent tendency to form shallow defect states near the conduction band edges and under optical excitation lead to large lattice relaxation. Finally, the feasibility of applying the synapses in optogenetics-inspired intelligent systems is demonstrated via training and inference tasks for the CIFAR-10 dataset using a convolutional neural network composed of vdW optoelectronic synapse devices.


Subject(s)
Electronics , Neural Networks, Computer , Optogenetics , Biomimetics/instrumentation , Biomimetics/methods , Electric Conductivity , Light , Rhenium/chemistry , Sulfides/chemistry , Synapses/physiology
SELECTION OF CITATIONS
SEARCH DETAIL