Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 188
Filter
1.
Front Microbiol ; 15: 1437799, 2024.
Article in English | MEDLINE | ID: mdl-39161598

ABSTRACT

The forage grass factory could break through the restrictions of land resources, region and climate to achieve efficient production throughout the year by accurate and intelligent management. However, due to its closed environment, mold outbreaks in the forage grass factory were severe, significantly affecting barley production. In this study, 9 contaminated barley tissues were collected and 45 strains were isolated in forage grass factory. After ITS sequencing, 45 strains were all identified as Rhizopus oryzae. Through stress factor assays, R. oryzae growth was seriously hindered by low concentration of sodium nitrate, high pH value and ozone water treatment. High pH and ozone water affected growth mainly by altering membrane integrity of R. oryzae. Sodium nitrate inhibited the growth of R. oryzae mainly by affecting the amount of sporulation. Low concentration of sodium nitrate and ozone water did not affect the growth of barley. High concentrations of sodium nitrate (100 mM) and pH values (8-8.5) inhibited barley growth. Among them, ozone water had the most obvious inhibition effect on R. oryzae. Large-scale ozone water treatment in the forage grass factory had also played a role in restoring barley production. Taken together, the green techonology to control mold disease and maintain the safety of forage through different physicochemical methods was selected, which was of considerable application value in animal husbandry.

2.
Food Chem ; 461: 140799, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39154464

ABSTRACT

Plant secondary metabolites have attracted considerable attention due to the increasing demand for finite fossil resources and environmental concerns. However, the biosynthesis of aromatic aldehydes or alcohols from renewable resources remains challenging and costly. This study explores a novel approach performed by the aromatic catabolizing organism Rhizopus oryzae, which enables a ferulic acid-activated co-production of 4-vinyl guaiacol (4-VG) and fumaric acid. The strain produced 4.60 g/L 4-VG and 11.25 g/L fumaric acid from a mixed carbon source of glucose and xylose, suggesting that this new pathway allows the potential production of natural 4-VG from low-cost substrates. This green route, which utilizes Rhizopus oryzae's ability to efficiently convert various renewable resources into valuable chemicals, paves the way for improved catalytic efficiency in 4-VG production.

3.
Heliyon ; 10(15): e34793, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39144949

ABSTRACT

Fermentation alters the protein content and composition of foods. To characterize fungal catabolism of peanut proteins, defatted peanut flour was fermented by Rhizopus oryzae (R. oryzae) for up to 48 h and evaluated by SDS-PAGE, mass spectrometry, and antibody binding. A clear change in peanut protein migration was observed by SDS-PAGE after 16 h of fermentation. Mass spectrometric analysis indicated changes in allergen peptides and R. oryzae proteins. Several low molecular weight allergen fragments produced during fermentation were identified by mass spectrometry. Immunoassays using anti-peanut allergen antibodies demonstrated reduced allergen content as early as 16 h of fermentation. However, ELISA with peanut allergic IgE indicated only slightly reduced allergen binding even after 48 h. These results indicate that while R. oryzae fermentation efficiently metabolizes peanut allergens, significant IgE binding remains in lower molecular mass peptides, and therefore R. oryzae fermented peanut products would not be safe for peanut allergic individuals.

4.
Sci Rep ; 14(1): 17435, 2024 07 29.
Article in English | MEDLINE | ID: mdl-39075211

ABSTRACT

Adlay millet seeds are well known for excellent health benefits. However, using fungal fermentation to improve their nutritional and functional constituents and the underlying mechanisms has not been thoroughly investigated. Herein, we used Rhizopus oryzae as starter and applied metabolomics combining with quantitative verification to understand the changes of the nutritional and functional profiles of adlay millet seeds. Results showed that a total of 718 metabolites from 18 compound classes were identified. The fermentation with R. oryzae varied 203 differential metabolites, of which 184 became more abundant and 19 got less abundant, and many components such as amino acids, nucleotides, vitamins, flavonoids, terpenoids, and phenols significantly increased after the fermentation process. Interestingly, we found that R. oryzae synthesized high levels of two important beneficial compounds, S-adenosylmethionine (SAMe) and ß-Nicotinamide mononucleotide (ß-NMN), with their contents increased from 0.56 to 370.26 µg/g and 0.55 to 8.32 µg/g, respectively. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of enriched metabolites revealed the amino acid metabolic pathways were important for conversion of the primary and secondary metabolites. Specifically, aspartate can up-regulate the biosynthesis of SAMe and ß-NMN. These findings improved our understanding into the effects of R. oryzae fermentation on enhancing the nutritional and functional values of cereal foods.


Subject(s)
Fermentation , Metabolomics , Rhizopus oryzae , Seeds , Seeds/metabolism , Metabolomics/methods , Rhizopus oryzae/metabolism , Millets/metabolism , Metabolome , Rhizopus/metabolism
5.
AMB Express ; 14(1): 76, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38942930

ABSTRACT

Rhizopus arrhizus is a saprotrophic, sometimes clinically- and industrially-relevant mold (Mucorales) and distributed worldwide, suggesting it can assimilate a broad spectrum of substrates. Here, 69 strains of R. arrhizus were investigated by using the Biolog FF MicroPlate for the profiles of utilizing 95 carbon and nitrogen substrates. The study showed that most R. arrhizus strains were similar in average well color development (AWCD) and substrate richness (SR). Nevertheless, 13 strains were unique in principal component analyses, heatmap, AWCD, and SR analyses, which may imply a niche differentiation within R. arrhizus. The species R. arrhizus was able to utilize all the 95 carbon and nitrogen substrates, consistent with the hypothesis of a great metabolic diversity. It possessed a substrate preference of alcohols, and seven substrates were most frequently utilized, with N-acetyl-D-galactosamine and L-phenylalanine ranking at the top of the list. Eight substrates, especially L-arabinose and xylitol, were capable of promoting sporulation and being applied for rejuvenating degenerated strains. By phenotyping R. arrhizus strains in carbon and nitrogen assimilation capacity, this study revealed the extent of intra-specific variability and laid a foundation for estimating optimum substrates that may be useful for industrial applications.

6.
Sci Rep ; 14(1): 14913, 2024 06 28.
Article in English | MEDLINE | ID: mdl-38942961

ABSTRACT

Β-glucans are polysaccharide macromolecules that can be found in the cell walls of molds, such as Rhizopus oryzae. They provide functional properties in food systems and have immunomodulatory activity, anticancer, and prebiotic effects; reduce triglycerides and cholesterol; and prevent obesity, among others benefits. Furthermore, potato starch production requires a large amount of water, which is usually discharged into the environment, creating problems in soils and bodies of water. The physical parameters to produce ß-glucans were determined, liquid waste from potato starch processing was used and native Rhizopus oryzae was isolated and identified from cereal grains. The isolates grew quickly on the three types of agars used at 25 °C and 37 °C, and they did not grow at 45 °C. Rhizopus oryzae M10A1 produced the greatest amount of ß-glucans after six days of culture at 30 °C, pH 6, a stirring rate of 150 rpm and a fermentation volume of 250 mL. By establishing the physical fermentation parameters and utilizing the liquid waste from potato starch, Rhizopus oryzae M10A1 yielded 397.50 mg/100 g of ß-glucan was obtained.


Subject(s)
Fermentation , Rhizopus oryzae , Solanum tuberosum , Starch , beta-Glucans , beta-Glucans/metabolism , Solanum tuberosum/microbiology , Solanum tuberosum/metabolism , Starch/metabolism , Rhizopus oryzae/metabolism , Hydrogen-Ion Concentration , Rhizopus/metabolism , Temperature
7.
J Agric Food Chem ; 72(26): 14912-14921, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38913033

ABSTRACT

Lipase from Rhizopus oryzae (ROL) exhibits remarkable sn-1,3 stereoselectivity and catalytic activity, but its poor thermostability limits its applications in the production of 1,3-dioleoyl-2-palmitoyl glycerol (OPO, a high-quality substitute for human milk fat). In this work, a semirational method was proposed to engineer the thermostability and catalytic activity of 4M (ROL mutant in our previous study). First, a computer-aided design is performed using 4M as a template, and N-glycosylation mutants are then recombinantly expressed and screened in Pichia pastoris, the optimal mutant N227 exhibited a half-life of 298.8 h at 45 °C, which is 7.23-folds longer than that of 4M. Its catalytic activity also reached 1043.80 ± 61.98 U/mg, representing a 29.2% increase compared to 4M (808.02 ± 47.02 U/mg). Molecular dynamics simulations of N227 suggested that the introduction of glycan enhanced the protein rigidity, while the strong hydrogen bonds formed between the glycan and the protein stabilized the lipase structure, thereby improving its thermostability. The acidolysis reaction between oleic acid (OA) and glycerol tripalmitate (PPP) was successfully carried out using immobilized N227, achieving a molar conversion rate of 90.2% for PPP. This engineering strategy guides the modification of lipases, while the glycomutants obtained in this study have potential applications in the biosynthesis of OPO.


Subject(s)
Biocatalysis , Enzyme Stability , Fungal Proteins , Lipase , Rhizopus oryzae , Lipase/chemistry , Lipase/genetics , Lipase/metabolism , Glycosylation , Fungal Proteins/genetics , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Rhizopus oryzae/enzymology , Rhizopus oryzae/genetics , Rhizopus oryzae/chemistry , Rhizopus oryzae/metabolism , Hot Temperature , Kinetics , Rhizopus/enzymology , Rhizopus/genetics
8.
Photochem Photobiol Sci ; 23(7): 1323-1339, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38806860

ABSTRACT

Mucormycosis is an extremely aggressive fungal disease with a high mortality rate, especially in people with compromised immune systems. Most cases of mucormycosis are caused by the fungus Rhizopus oryzae. The treatments used are based on high doses of antifungals, associated with surgical resections, when it is possible. However, even with this aggressive treatment, the estimated attributable mortality rate is high. There is therefore a need to develop adjuvant treatments. Photodynamic Inactivation (PDI) may be an auxiliary therapeutic option for mucormycosis. Due to the lack of reports in the literature on the morphology and photodynamic inactivation of R. oryzae, characterization of the fungus using Confocal Microscopy and Transmission Electron Microscopy, and different protocols using Photodithazine® (PDZ), a chlorin e6 compound, as a photosensitizer, were performed. The fungus growth rate under different concentrations and incubation times of the photosensitizer and its association with the surfactant Sodium Dodecyl Sulphate (SDS) was evaluated. For the hyphae, both in the light and dark phases, in the protocols using only PDZ, no effective photodynamic response was observed. Meanwhile with the combination of SDS 0.05% and PDZ, inhibition growth rates of 98% and 72% were achieved for the white and black phase, respectively. In the conidia phase, only a 1.7 log10 reduction of the infective spores was observed. High concentration of melanin and the complex and resistant structures, especially at the black phase, results in a high limitation of the PDI inactivation response. The combined use of the SDS resulted in an improved response, when compared to the one obtained with the amphotericin B treatment.


Subject(s)
Photosensitizing Agents , Rhizopus oryzae , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Rhizopus oryzae/drug effects , Porphyrins/pharmacology , Porphyrins/chemistry , Photochemotherapy , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Sodium Dodecyl Sulfate/pharmacology , Sodium Dodecyl Sulfate/chemistry , Light , Microbial Sensitivity Tests
9.
Curr Res Microb Sci ; 6: 100242, 2024.
Article in English | MEDLINE | ID: mdl-38799088

ABSTRACT

Mucormycosis is a severe fungal infection that demands immediate and decisive intervention upon suspicion. The causative agents of mucormycosis exhibit inherent resistance to echinocandins and voriconazole, and their in vitro susceptibility to terbinafine is highly variable and species-specific. Considering these factors and the limitations of currently available antifungal therapies, the identification of novel antifungals with potent activity against mucormycosis is of paramount importance. This study aims to identify compounds from the MMV Pathogen Box® presenting antifungal activity against selected mucormycosis agents and to evaluate their potential synergistic effects when combined with antifungal drugs. A screening of the Pathogen Box® compounds was conducted, isolated or in combination with sub-inhibitory concentrations of amphotericin B, isavuconazole or posaconazole, against a Rhizopus oryzae strain. Hits from the screenings were further evaluated against eight Mucoralean strains for minimal inhibitory and fungicidal concentration determinations and to confirm synergistic interactions using the checkerboard method. Ultrastructural studies were performed using scanning electron microscopy. MMV675968 exhibited fungicidal activity against a R. oryzae strain. All but one Rhizopus spp. strains presented MIC ≤ 1 µg/mL, with a geometric mean of 0.78 µg/mL observed across all isolates for this compound, which did not change significantly the cellular structure of this fungus. The combination screening with antifungal drugs revealed six additional compounds potentially active against the R. oryzae strain, two of them demonstrated proven synergism through the checkerboard assay. This first study with the MMV Pathogen Box® and Zigomycetes highlights promising new treatment options for mucormycosis in the future.

10.
Front Microbiol ; 15: 1346252, 2024.
Article in English | MEDLINE | ID: mdl-38486702

ABSTRACT

The fungus Rhizopus arrhizus (=R. oryzae) is commonly saprotrophic, exhibiting a nature of decomposing organic matter. Additionally, it serves as a crucial starter in food fermentation and can act as a pathogen causing mucormycosis in humans and animals. In this study, two distinct endofungal bacteria (EFBs), associated with individual strains of R. arrhizus, were identified using live/dead staining, fluorescence in situ hybridization, transmission electron microscopy, and 16S rDNA sequencing. The roles of these bacteria were elucidated through antibiotic treatment, pure cultivation, and comparative genomics. The bacterial endosymbionts, Pandoraea sputorum EFB03792 and Mycetohabitans endofungorum EFB03829, were purified from the host fungal strains R. arrhizus XY03792 and XY03829, respectively. Notably, this study marks the first report of Pandoraea as an EFB genus. Compared to its free-living counterparts, P. sputorum EFB03792 exhibited 28 specific virulence factor-related genes, six specific CE10 family genes, and 74 genes associated with type III secretion system (T3SS), emphasizing its pivotal role in invasion and colonization. Furthermore, this study introduces R. arrhizus as a new host for EFB M. endofungorum, with EFB contributing to host sporulation. Despite a visibly reduced genome, M. endofungorum EFB03829 displayed a substantial number of virulence factor-related genes, CE10 family genes, T3SS genes, mobile elements, and significant gene rearrangement. While EFBs have been previously identified in R. arrhizus, their toxin-producing potential in food fermentation has not been explored until this study. The discovery of these two new EFBs highlights their potential for toxin production within R. arrhizus, laying the groundwork for identifying suitable R. arrhizus strains for fermentation processes.

11.
Front Cell Infect Microbiol ; 14: 1366472, 2024.
Article in English | MEDLINE | ID: mdl-38500502

ABSTRACT

Pulmonary Mucormycosis is a fatal infectious disease with high mortality rate. The occurrence of Mucormycosis is commonly related to the fungal virulence and the host's immunological defenses against pathogens. Mucormycosis infection and granulation tissue formation occurred in the upper airway was rarely reported. This patient was a 60-year-old male with diabetes mellitus, who was admitted to hospital due to progressive cough, sputum and dyspnea. High-resolution computed tomography (HRCT) and bronchoscopy revealed extensive tracheal mucosal necrosis, granulation tissue proliferation, and severe airway stenosis. The mucosal necrotic tissue was induced by the infection of Rhizopus Oryzae, confirmed by metagenomic next-generation sequencing (mNGS) in tissue biopsy. This patient was treated with the placement of a covered stent and local instillation of amphotericin B via bronchoscope. The tracheal mucosal necrosis was markedly alleviated, the symptoms of cough, shortness of breath, as well as exercise tolerance were significantly improved. The placement of airway stent and transbronchial microtube drip of amphotericin B could conduce to rapidly relieve the severe airway obstruction due to Mucormycosis infection.


Subject(s)
Airway Obstruction , Mucormycosis , Male , Humans , Middle Aged , Amphotericin B/therapeutic use , Mucormycosis/diagnosis , Mucormycosis/microbiology , Mucormycosis/pathology , Rhizopus oryzae , Necrosis/pathology , Airway Obstruction/etiology , Airway Obstruction/pathology , Granulation Tissue/pathology , Cough/pathology
12.
Plant Dis ; 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38319631

ABSTRACT

Epimedium sagittatum is a collective term for herbaceous plants belonging to the family Berberidaceae. Their dried leaves and stems have significant therapeutic effects on tumor inhibition, hypertension control, and coronary heart disease (Ke et al. 2023; Zhao et al. 2019). In 2021 and 2022, plants with similar leaf rot symptoms ranging from 30% to 55% was observed on E. sagittatum in Congjiang County, Guizhou province. The initial symptoms of the disease manifest locally on the leaf, with yellowing on the surface edge of the affected tissue, browning in the middle part, and brown-white discoloration in the innermost part (Supplementary Figure S1B). As the disease progresses, the entire infected leaf gradually softens, while the veins remain intact (Supplementary Figure S1C). Ultimately, the leaf withers and dehisces. The nine samples with typical symptoms were collected from Congjiang County, Guizhou province (26.598°N, 106.707°E). Twenty-seven fungi were isolated, including ten isolates of Rhizopus and seventeen isolates of seven other genera. On isolate YYH-CJ-17 many sporangia were formed and turned to a brown-gray to black color on potato dextrose agar medium (PDA) after culturing 5 days under dark at 25 ℃ (Supplementary Figure S2A and S2B). The branches of mycelium were finger-shaped or root-shaped. The sporangium was spherical or nearly spherical, 60-250 µm in diameter, and sporangiospores were elliptical or spherical and 4-8 µm in diameter. The obtained 547 bp ITS fragment (accession OR225970) and 1231 bp EF-1α region (accession OR242258) from isolate YYH-CJ-17 were compared with NR database using the BLAST tool provided by NCBI, which revealed more than 99.5% identity (query cover more than 98%) with the sequences of ITS (accessions MF522822.1) and EF-1α (accession AB281541.1) of Rhizopus oryzae Went & H.C. Prinsen Geerlings (Gao et al. 2022; Zhang et al. 2022). The phylogenetic tree constructed with the ITS and EF-1α gene sequences demonstrates that strain YYH-CJ-17 clusters with R. oryzae in the same branch and the bootstrap value was greater than 99% (Supplementary Figure S3). Based on the morphological characteristics and ITS and EF-1a sequences, the isolate YYH-CJ-17 is identified as R. oryzae. Pathogenicity tests were performed on detached healthy leaves and living plants of E. sagittatum. Healthy leaves of E. sagittatum were subjected to inoculation with isolate YYH-CJ-17 with 5 × 105 CFU mL-1 concentration in sterile culture dishes. The progression of the disease was marked by the gradual softening of the infected leaves and the expansion of the lesions, which ultimately produced black-brown sporangium (Supplementary Figure S4A). Furthermore, the E. sagittatum living plants were sprayed with 5 × 105 CFU mL-1 conidial suspension of isolate YYH-CJ-17, with ddH2O as a negative control, and then were cultivated at 25℃ and 90% humidity for 21 days in the greenhouse. This assay found that the E. sagittatum leaves treated with isolate YYH-CJ-17 exhibited the same symptoms observed on plants in fields (Supplementary Figure S4B). The fungus re-isolated from the inoculated leaves were identified as R. oryzae by ITS sequencing and were blasted with NR database, which highest matched with the sequence of ITS (accessions MF522822.1) mentioned above, thus fulfilling Koch's postulates. R. oryzae has been identified as a causative agent of a diverse array of host diseases, including leaf mildew of tobacco, fruit rot of yellow oleander and pears, and soft rot of bananas (Farooq et al. 2017; Khokhar et al. 2019; Kwon et al. 2012; Pan et al. 2021). To the best of our knowledge, this is the first report of leaf rot on E. sagittatum caused by R. oryzae in China, which will provide clear prevention and management target for the leaf rot disease of E. sagittatum.

13.
Microorganisms ; 12(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38399717

ABSTRACT

In this article, we report the pathogenicity of a new strain of fungus, Rhizopus oryzae to honeybee larvae, isolated from the chalkbrood-diseased mummies of honeybee larvae and pupae collected from apiaries in China. Based on morphological observation and internal transcribed spacer (ITS) region analyses, the isolated pathogenic fungus was identified as R. oryzae. Koch's postulates were performed to determine the cause-and-effect pathogenicity of this isolate fungus. The in vitro pathogenicity of this virulent fungus in honeybees was tested by artificially inoculating worker larvae in the lab. The pathogenicity of this new fungus for honeybee larvae was both conidial-concentration and exposure-time dependent; its highly infectious and virulent effect against the larvae was observed at 1 × 105 conidia/larva in vitro after 96 h of challenge. Using probit regression analysis, the LT50 value against the larvae was 26.8 h at a conidial concentration of 1 × 105 conidia/larva, and the LC50 was 6.2 × 103 conidia/larva. These results indicate that the new isolate of R. oryzae has considerable pathogenicity in honeybee larvae. Additionally, this report suggests that pathogenic phytofungi may harm their associated pollinators. We recommend further research to quantify the levels, mechanisms, and pathways of the pathogenicity of this novel isolated pathogen for honeybee larvae at the colony level.

14.
J Fungi (Basel) ; 9(12)2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38132767

ABSTRACT

Mucorales are a group of non-septated filamentous fungi widely distributed in nature, frequently associated with human infections, and are intrinsically resistant to many antifungal drugs. For these reasons, there is an urgent need to improve the clinical management of mucormycosis. Miltefosine, which is a phospholipid analogue of alkylphosphocholine, has been considered a promising repurposing drug to be used to treat fungal infections. In the present study, miltefosine displayed antifungal activity against a variety of Mucorales species, and it was also active against biofilms formed by these fungi. Treatment with miltefosine revealed modifications of cell wall components, neutral lipids, mitochondrial membrane potential, cell morphology, and the induction of oxidative stress. Treated Mucorales cells also presented an increased susceptibility to SDS. Purified ergosterol and glucosylceramide added to the culture medium increased miltefosine MIC, suggesting its interaction with fungal lipids. These data contribute to elucidating the effect of a promising drug repurposed to act against some relevant fungal pathogens that significantly impact public health.

15.
Food Sci Nutr ; 11(10): 5908-5917, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37823114

ABSTRACT

Potato peel waste (PPW), a zero-value by-product generated from potato processing, is a promising fermentation substrate due to its large quantity of starch, nonstarch polysaccharides, lignin, protein, and lipid. Rhizopus oryzae is a filamentous fungus that is mainly known as a lactic acid producer and can ferment various agro-wastes. This study aimed to use R. oryzae for the fermentation of PPW. A series of batch fermentations were conducted to investigate the effects of different PPW loading rates (2%-8%) and particle sizes (0-4 mm). Under an initial PPW loading rate of 8% and particle size of 1-2 mm, the maximum ethanol (18.83 g/L) and lactic acid (3.14 g/L) concentrations, the highest ethanol (9.41 g/L·day) and lactic acid (1.89 g/L·day) average production rates were obtained. Under these conditions, the yield of ethanol and lactic acid was 0.235 g/gPPW and 0.039 g/gPPW, respectively. R. oryzae was shown to utilize PPW as a substrate to produce value-added bioproducts such as ethanol (major product) and lactic acid.

16.
Molecules ; 28(17)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37687063

ABSTRACT

As a biodegradable and renewable material, polylactic acid is considered a major environmentally friendly alternative to petrochemical plastics. Microbial fermentation is the traditional method for lactic acid production, but it is still too expensive to compete with the petrochemical industry. Agro-industrial wastes are generated from the food and agricultural industries and agricultural practices. The utilization of agro-industrial wastes is an important way to reduce costs, save energy and achieve sustainable development. The present study aimed to develop a method for the valorization of Zizania latifolia waste and cane molasses as carbon sources for L-lactic acid fermentation using Rhizopus oryzae LA-UN-1. The results showed that xylose derived from the acid hydrolysis of Z. latifolia waste was beneficial for cell growth, while glucose from the acid hydrolysis of Z. latifolia waste and mixed sugars (glucose and fructose) from the acid hydrolysis of cane molasses were suitable for the accumulation of lactic acid. Thus, a three-stage carbon source utilization strategy was developed, which markedly improved lactic acid production and productivity, respectively reaching 129.47 g/L and 1.51 g/L·h after 86 h of fermentation. This work demonstrates that inexpensive Z. latifolia waste and cane molasses can be suitable carbon sources for lactic acid production, offering an efficient utilization strategy for agro-industrial wastes.


Subject(s)
Molasses , Rhizopus oryzae , Canes , Industrial Waste , Lactic Acid , Carbon , Glucose
17.
Med Mycol ; 61(9)2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37715309

ABSTRACT

Early diagnosis of mucormycosis, a severe and potentially fatal complication in immunocompromised and COVID-19 patients, is crucial for initiating timely antifungal therapy and reducing infection mortality. In this study, the diagnostic performance of a duplex polymerase chain reaction (PCR) assay was evaluated to detect Mucorales-specific and Rhizopus oryzae-specific targets in 160 clinical samples collected from 112 COVID-19 patients suspected of invasive fungal rhinosinusitis (IFRS). During potassium hydroxide (KOH) direct microscopy, non-septate hyphae were observed in 73 out of 160 samples (45.63%); however, using duplex PCR, 82 out of 160 specimens (51.25%) tested positive. Among the positive PCR samples, 67 (81.71%) exhibited a double band (both 175 and 450 base pairs [bp]) indicating the presence of R. oryzae, and 15 (18.29%) showed only a single band (175 bp), suggesting the presence of non-R. oryzae Mucorales. DNAs from 10 microscopically negative samples and 4 samples with septate hyphae in microscopy were successfully amplified in PCR. Considering Calcofluor white fluorescence microscopy as the gold standard for laboratory diagnosis of mucormycosis, the duplex PCR assay utilized in this study exhibited a sensitivity of 93.88%, a specificity of 100%, a negative predictive value of 91.18%, and a positive predictive value of 100% for detecting mucormycosis in IFRS specimens. The duplex PCR assay demonstrated higher sensitivity compared to direct examination with KOH (82 vs. 73) and culture (82 vs. 41), enabling rapid detection/identification of Mucorales even in samples with negative culture or in biopsies with only a few hyphal elements.


Early diagnosis of mucormycosis, a severe complication in COVID-19 patients, is critical for reducing the mortality of the infection. In this study, a sensitive and rapid PCR assay to detect all Mucorales and delineate Rhizopus oryzae was developed and assessed to improve the diagnosis of mucormycosis.


Subject(s)
COVID-19 , Mucorales , Mucormycosis , Humans , Mucormycosis/diagnosis , Mucormycosis/veterinary , COVID-19/diagnosis , COVID-19/veterinary , Mucorales/genetics , Polymerase Chain Reaction/veterinary , COVID-19 Testing/veterinary
18.
Cureus ; 15(7): e42219, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37605691

ABSTRACT

Isolated renal mucormycosis (IRM) is a rare disease with high mortality, more commonly seen in immunocompromised patients. Management has traditionally included antifungal drugs with or without nephrectomy. We present the case of a 34-year-old female with a past medical history of type 1 diabetes mellitus and intravenous heroin use who presented with fever, flank pain, hematuria, and vomiting. She was found to have an oliguric acute kidney injury (AKI) with a serum creatinine (Cr) of 2.5 mg/dL. CT showed bilateral emphysematous pyelonephritis and ureteral cultures grew Rhizopus species. Amphotericin B was started before being switched to isavuconazole due to worsening AKI, and hemodialysis was only required transiently. Rather than the traditional approach to treatment, a conservative approach that preserved kidney function was utilized, and the patient was successfully treated with six months of isavuconazole.

19.
Saudi J Biol Sci ; 30(7): 103679, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37305654

ABSTRACT

Tofu wastewater can be utilized as a substrate for microorganisms that produce single-cell proteins (SCPs). Because different microorganisms have different cellular components, the composition of SCPs varies. Electro-stimulation has the potential to speed up fermentation and increase product yield. The goal of this study was to find the best way to produce SCPs from Aspergillus awamori, Rhizopus oryzae, and Saccharomyces cerevisiae in the tofu wastewater substrate using electro-stimulation. The experimental method was used in the study, the data were analyzed using independent t-test statistical analysis, and the best treatment was identified using the effective index method. This treatment consisted of producing SCP with electro-stimulation of -1.5 V and without electro-stimulation for 72 h for the yeast and 96 h for the mold at 25 °C in tofu wastewater that had already been conditioned to a pH of 5. The parameters measured included measurement of population of microorganism, change in pH, dry biomass weight, carbohydrate content, and protein content. Electro-stimulation reduced the optimum fermentation time of A. awamori SCP from 56 to 32 h, resulting in 0.0406 g/50 mL of dry biomass, 30.09% carbohydrate content, and 6.86% protein content. Meanwhile, the optimal fermentation time on R. oryzae and S. cerevisiae were not accelerated by electro-stimulation. The best treatment was A. awamori without electro-stimulation, which produced 0.0931 g/50 mL of dry biomass, 20.29% carbohydrate, and 7.55% protein.

20.
Biomedica ; 43(1): 27-36, 2023 03 30.
Article in English, Spanish | MEDLINE | ID: mdl-37167471

ABSTRACT

Fungal sinusitis is a pathology that can occur in patients with diabetes mellitus and be associated with a hyperglycemic crisis. It is an aggressive entity with local complications that include involvement of the orbit or the central nervous system, and vascular involvement. Despite surgical and antifungal treatment, mortality raises up to 75%. We report the case of a female patient with a diagnosis of diabetic ketoacidosis and signs of unilateral ophthalmoplegia, which led to the study with magnetic resonance imaging of the central nervous system, finding signs of sinusitis, meningitis, and cerebritis. Initial microbiological studies were negative, and biomarkers such as serum galactomannan and Cryptococcus antigen were also negative. After surgical management and the identification of Aspergillus flavus and Rhizopus spp. in sinus tissue, the patient received treatment with posaconazole and after two months of follow-up she presented clinical improvement. Dual fungal infection and infection by A. flavus are uncommon and clinically relevant entities, with no cases previously reported in our country, therefore this corresponds to a case of clinical interest.


La sinusitis micótica es una condición patológica que puede presentarse en pacientes con diabetes mellitus y estar asociada a una crisis hiperglucémica. Es una entidad agresiva con complicaciones locales que incluyen afectación de la órbita y el sistema nervioso central, y compromiso vascular. A pesar del tratamiento quirúrgico y antimicótico, la mortalidad es de hasta el 75 %. Se describe el caso de una paciente con diagnóstico de cetoacidosis diabética y signos de oftalmoplejía unilateral que llevaron al estudio con resonancia magnética del sistema nervioso central; se encontraron signos de sinusitis, meningitis y cerebritis. Los estudios microbiológicos iniciales fueron negativos, y los biomarcadores galactomanano sérico y el antígeno de Cryptococcus también fueron negativos. Tras el manejo quirúrgico, se llegó a la identificación de Aspergillus flavus y Rhizopus spp. en el tejido de los senos paranasales. La paciente recibió tratamiento con posaconazol y, tras dos meses de seguimiento, había presentado mejoría clínica. La infección fúngica dual y la infección por A. flavus son entidades poco frecuentes y de relevancia clínica, sin casos presentados previamente en nuestro país por lo que este corresponde a un caso de interés clínico.


Subject(s)
Diabetes Mellitus , Rhizopus oryzae , Humans , Aspergillus flavus , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL