Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Chembiochem ; 25(13): e202400201, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38701360

ABSTRACT

Selective modification of peptides is often exploited to improve pharmaceutically relevant properties of bioactive peptides like stability, circulation time, and potency. In Nature, natural products belonging to the class of ribosomally synthesized and post-translationally modified peptides (RiPPs) are known to install a number of highly attractive modifications with high selectivity. These modifications are installed by enzymes guided to the peptide by corresponding leader peptides that are removed as the last step of biosynthesis. Here, we exploit leader peptides and their matching enzymes to investigate the installation of D-Ala post-translationally in a critical position in the hormones, glucagon-like peptides (GLP) 1 and 2. We also offer insight into how precursor peptide design can modulate the modification pattern achieved.


Subject(s)
Escherichia coli , Glucagon-Like Peptide 1 , Glucagon-Like Peptide 2 , Escherichia coli/enzymology , Glucagon-Like Peptide 1/chemistry , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 2/chemistry , Glucagon-Like Peptide 2/metabolism , Protein Processing, Post-Translational , Amino Acid Sequence
2.
Proc Natl Acad Sci U S A ; 119(33): e2202661119, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35939668

ABSTRACT

In Staphylococcus aureus, virulence is under the control of a quorum sensing (QS) circuit encoded in the accessory gene regulator (agr) genomic locus. Key to this pathogenic behavior is the production and signaling activity of a secreted pheromone, the autoinducing peptide (AIP), generated following the ribosomal synthesis and posttranslational modification of a precursor polypeptide, AgrD, through two discrete cleavage steps. The integral membrane protease AgrB is known to catalyze the first processing event, generating the AIP biosynthetic intermediate, AgrD (1-32) thiolactone. However, the identity of the second protease in this biosynthetic pathway, which removes an N-terminal leader sequence, has remained ambiguous. Here, we show that membrane protease regulator of agr QS (MroQ), an integral membrane protease recently implicated in the agr response, is directly involved in AIP production. Genetic complementation and biochemical experiments reveal that MroQ proteolytic activity is required for AIP biosynthesis in agr specificity group I and group II, but not group III. Notably, as part of this effort, the biosynthesis and AIP-sensing arms of the QS circuit were reconstituted together in vitro. Our experiments also reveal the molecular features guiding MroQ cleavage activity, a critical factor in defining agr specificity group identity. Collectively, our study adds to the molecular understanding of the agr response and Staphylococcus aureus virulence.


Subject(s)
Bacterial Proteins , Membrane Proteins , Peptide Hydrolases , Pheromones , Quorum Sensing , Staphylococcus aureus , Trans-Activators , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/physiology , Membrane Proteins/physiology , Peptide Hydrolases/genetics , Peptide Hydrolases/physiology , Pheromones/biosynthesis , Quorum Sensing/genetics , Staphylococcus aureus/pathogenicity , Trans-Activators/genetics , Trans-Activators/metabolism , Virulence
3.
Proc Natl Acad Sci U S A ; 116(16): 7831-7836, 2019 04 16.
Article in English | MEDLINE | ID: mdl-30944220

ABSTRACT

Cyclotides are plant defense peptides that have been extensively investigated for pharmaceutical and agricultural applications, but key details of their posttranslational biosynthesis have remained elusive. Asparaginyl endopeptidases are crucial in the final stage of the head-to-tail cyclization reaction, but the enzyme(s) involved in the prerequisite steps of N-terminal proteolytic release were unknown until now. Here we use activity-guided fractionation to identify specific members of papain-like cysteine proteases involved in the N-terminal cleavage of cyclotide precursors. Through both characterization of recombinantly produced enzymes and in planta peptide cyclization assays, we define the molecular basis of the substrate requirements of these enzymes, including the prototypic member, here termed kalatase A. The findings reported here will pave the way for improving the efficiency of plant biofactory approaches for heterologous production of cyclotide analogs of therapeutic or agricultural value.


Subject(s)
Cyclotides , Cysteine Proteases , Papain , Plant Proteins , Cyclotides/chemistry , Cyclotides/metabolism , Cysteine Proteases/chemistry , Cysteine Proteases/metabolism , Defensins/chemistry , Defensins/metabolism , Models, Molecular , Papain/chemistry , Papain/metabolism , Plant Proteins/chemistry , Plant Proteins/metabolism
4.
Methods Enzymol ; 604: 113-163, 2018.
Article in English | MEDLINE | ID: mdl-29779651

ABSTRACT

Cyanobactin biosynthetic enzymes have exceptional versatility in the synthesis of natural and unnatural products. Cyanobactins are ribosomally synthesized and posttranslationally modified peptides synthesized by multistep pathways involving a broad suite of enzymes, including heterocyclases/cyclodehydratases, macrocyclases, proteases, prenyltransferases, methyltransferases, and others. Here, we describe the enzymology and structural biology of cyanobactin biosynthetic enzymes, aiming at the twin goals of understanding biochemical mechanisms and biosynthetic plasticity. We highlight how this common suite of enzymes may be utilized to generate a large array or structurally and chemically diverse compounds.


Subject(s)
Biosynthetic Pathways , Enzymes/chemistry , Enzymes/metabolism , Peptides, Cyclic/biosynthesis , Peptides, Cyclic/chemistry , Dimethylallyltranstransferase/chemistry , Dimethylallyltranstransferase/metabolism , Peptide Hydrolases/chemistry , Peptide Hydrolases/metabolism , Peptides, Cyclic/metabolism , Tyrosine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL