Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
J Hazard Mater ; 471: 134381, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38663296

ABSTRACT

Surface sediment in urban waterways originates from fine topsoil particles within catchments via surface erosion, often bonded with non-degradable metal(loid)s. This study posited that urban green infrastructures (UGIs) can influence anthropogenic metal(loid) transport from catchment topsoil to waterway sediment by retaining moveable particles. In multiply channeled downtown Suzhou, China, UGIs' spatial patterns were examined in relations to metal(loid)s source (catchment topsoil) - sink (waterway surface sediment) dynamics. Anthropogenic metal(loid)s - As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn - were spatially quantified in sediment at 144 waterway points and in topsoil at 154 UGIs' points across 7 subwatersheds. Integrated metal(loid) loads revealed significantly higher sediment loads (except for As) than topsoil, varying with element specificity and spatial unmatching across the subwatersheds. Loads of metal(loid)s in topsoil showed no significant differences among UGI types, but sediment loads of As, Cr, and Ni correlated positively with topsoil loads in roadside and public facility UGIs within 100 m- and 200 m-wide riparian buffer zones. However, waterfront UGIs negatively impacted on these correlations for Cr, Hg, and Ni loads within the riparian buffer zones. These findings highlight metal(loid) specificity and UGIs' spatial pattern effects on anthropogenic metal(loid) loads between catchment topsoil (source) and waterway surface sediment (sink), offering valuable guidelines for UGIs' design and implementation.

2.
Environ Pollut ; 341: 122966, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37981183

ABSTRACT

Methylmercury (MeHg) is the most neurotoxic and bioaccumulative form of mercury (Hg) present in the terrestrial and aquatic food sources of boreal ecosystems, posing potential risks to wildlife and human health. Harvesting impacts on Hg methylation and MeHg concentrations in forest soils and stream sediment are not fully understood. In this study, a field investigation was carried out in 4 harvested and 2 unharvested boreal forest watersheds, before and after harvest, to better understand impacts on Hg methylation and MeHg concentration in soils and stream sediment, including their responses to different forest management practices. Changes in total Hg (THg) and MeHg concentrations, first-order potential rate constants for Hg methylation and MeHg demethylation (Kmeth and Kdemeth) as well as total carbon content and carbon-to-nitrogen ratio post-harvest in upland, wetland and riparian soils and stream sediment were assessed and compared. Increases in MeHg production were minimal in upland, wetland or riparian soils after harvest. Sediment in streams with minor buffer protection (∼3 m), greater fractions (>75%) of harvested watershed area and more road construction had significantly increased THg and MeHg concentrations, %-MeHg, Kmeth and total carbon content post-harvest. From these patterns, we infer that inputs of carbon and inorganic Hg into harvest-impacted stream sediment are likely sourced from the harvested upland areas and stimulate in situ MeHg production in stream sediment. These findings indicate the importance of stream sediment as potential MeHg pools in harvested forest watersheds. The findings also demonstrate that forest management practices aiming to mitigate organic matter and Hg inputs to streams can effectively alleviate harvesting impacts on Hg methylation and MeHg concentrations in stream sediment.


Subject(s)
Mercury , Methylmercury Compounds , Water Pollutants, Chemical , Humans , Mercury/analysis , Ecosystem , Rivers , Taiga , Soil , Water Pollutants, Chemical/analysis , Forests , Carbon , Environmental Monitoring
3.
J Environ Manage ; 350: 119491, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38007932

ABSTRACT

Agriculture is a main driver of land-cover change globally resulting in decreased biodiversity, increased carbon emissions, and land desertification. Environmental best management practices reduce risk to the environment caused by agricultural operations. However, the adoption of environmental best management practices by farmers often is lower than what would be possible. While prior studies have investigated determinants of environmental best management practices, it is not well understood how social psychological drivers of various best management practices may be modified by contextual factors. To help close this knowledge gap, we conducted a large-scale survey of Ontario farmers investigating how social psychological factors and resource constraints combine to determine adoption of farm forests, riparian buffers and windbreaks, and how these relationships are modified by farmer demographics and farm characteristics. We analyzed survey responses of 490 farmers with structural equation modeling using the Theory of Planned Behavior as theoretical framework. Our results suggest that perceived benefits of environmental best management practices are of relatively low impact on best management practice adoption. Beliefs of a personal obligation for adoption and the perception of the capacity for adoption consistently were of higher impact, with lack of labor as main constraint. The relationships of perceived benefits and social norms with adoption were modified by farmer income, education, and age, as well as by the distance between a farm and the nearest settlement. However, the relationship of control beliefs with adoption was not affected by any contextual factors. We conclude that the improvement of programs in support of labor availability may have positive impacts on the adoption of the investigated environmental best management practices.


Subject(s)
Agriculture , Farmers , Humans , Farmers/psychology , Agriculture/methods , Farms , Surveys and Questionnaires , Biodiversity
4.
Front Environ Sci ; 11: 1-20, 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37841559

ABSTRACT

Freshwater Salinization Syndrome (FSS) refers to groups of biological, physical, and chemical impacts which commonly occur together in response to salinization. FSS can be assessed by the mobilization of chemical mixtures, termed "chemical cocktails", in watersheds. Currently, we do not know if salinization and mobilization of chemical cocktails along streams can be mitigated or reversed using restoration and conservation strategies. We investigated 1) the formation of chemical cocktails temporally and spatially along streams experiencing different levels of restoration and riparian forest conservation and 2) the potential for attenuation of chemical cocktails and salt ions along flowpaths through conservation and restoration areas. We monitored high-frequency temporal and longitudinal changes in streamwater chemistry in response to different pollution events (i.e., road salt, stormwater runoff, wastewater effluent, and baseflow conditions) and several types of watershed management or conservation efforts in six urban watersheds in the Chesapeake Bay watershed. Principal component analysis (PCA) indicates that chemical cocktails which formed along flowpaths (i.e., permanent reaches of a stream) varied due to pollution events. In response to winter road salt applications, the chemical cocktails were enriched in salts and metals (e.g., Na+, Mn, and Cu). During most baseflow and stormflow conditions, chemical cocktails were less enriched in salt ions and trace metals. Downstream attenuation of salt ions occurred during baseflow and stormflow conditions along flowpaths through regional parks, stream-floodplain restorations, and a national park. Conversely, chemical mixtures of salt ions and metals, which formed in response to multiple road salt applications or prolonged road salt exposure, did not show patterns of rapid attenuation downstream. Multiple linear regression was used to investigate variables that influence changes in chemical cocktails along flowpaths. Attenuation and dilution of salt ions and chemical cocktails along stream flowpaths was significantly related to riparian forest buffer width, types of salt pollution, and distance downstream. Although salt ions and chemical cocktails can be attenuated and diluted in response to conservation and restoration efforts at lower concentration ranges, there can be limitations in attenuation during road salt events, particularly if storm drains bypass riparian buffers.

5.
Environ Sci Pollut Res Int ; 30(47): 103703-103717, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37688703

ABSTRACT

In this study, we employed the random forest model to identify the riparian buffer zone in the upper and middle reaches of the Ziwu River, used the Soil and Water Assessment Tool (SWAT) to simulate and calculate the nonpoint source pollution load in the riparian buffer zone, and used empirical formulas to estimate the pollutant concentration when surface runoff passes the edge of the riparian buffer zone. Moreover, through correlation analysis, we identified the main factors that affect the safe width of the riparian buffer zone. By combining these factors with the characteristic parameters of the riparian buffer zone and the water quality demand, we analyzed and calculated the safe width of the riparian buffer zone. Our findings are as follows: ① the simulated values of the SWAT model were highly consistent with the measured values. Specifically, the calibration and verification results of the hydrological station achieved Ens ≥ 0.65, RE < ± 15%, and R2 ≥ 0.85, while the overall total nitrogen and total phosphorus loads achieved Ens ≥ 0.65, RE < ± 15%, and R2 > 0.65. ② We found that the total nitrogen (TN) and total phosphorus (TP) loads in the riparian buffer zone gradually increased from upstream to downstream. Among these loads, the normal season had the largest TN and TP concentrations reaching the edge of the riparian buffer zone, while the dry season had the minimum concentrations. ③ The factors affecting the safe width of the riparian buffer zone included the connectivity, slope of the buffer zone, cultivated land area, and regional population density. For the effective protection of water quality, it is recommended that the upstream, midstream, and downstream buffer zones be at least 77.9 m, 33.37 m, and 60.25 m wide, respectively.


Subject(s)
Rivers , Water Pollutants, Chemical , China , Water Quality , Soil , Nitrogen/analysis , Phosphorus/analysis , Environmental Monitoring , Water Pollutants, Chemical/analysis
6.
Sci Total Environ ; 897: 165342, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37429474

ABSTRACT

Creating and managing riparian buffer zones (RBZs) is regarded as a global best-practice management strategy for maintaining and improving waterway health. Agricultural land often utilises RBZs as highly productive pasture, exposing waterways to increased inputs of nutrients, pollutants, and sediment, in addition to reducing carbon sequestration and habitat for native flora and fauna. This project developed a novel approach to the application of multisystem ecological and economic quantification models to the property-scale, at low cost and high speed. We developed a state-of-the-art dynamic geospatial interface to communicate these outputs when switching from pasture to revegetated riparian zone via planned restoration efforts. The tool was developed using the regional conditions of a south-east Australian catchment as a case study but is designed to be adaptable around globally using equivalent model inputs. Ecological and economic outcomes were determined using existing methods, including an agricultural land suitability analysis to quantify primary production, an estimation of carbon sequestration using historic vegetation datasets and GIS software analysis to determine spatial costings of revegetation and fencing. Economic outcomes are presented in raw values of pasture produced and carbon sequestered, and fencing and revegetation costs can be easily altered for enhanced usability and interoperability. This tool can provide property-specific data for almost 16,000 properties in a catchment area of over 130,000 km2 and 19,600 km of river length. Our results indicated that current financial incentives for revegetation rarely cover the cost of giving up pasture, but these costs may be compensated by social and ecological outcomes achieved over time. This method provides a novel way of informing alternative management approaches, such as incremental revegetation plans and the selective harvesting of timber from RBZ. The model provides an innovative framework for improved RBZ management and can be used to inform property-specific responses and guide discussion among stakeholders.


Subject(s)
Agriculture , Ecosystem , Australia , Agriculture/methods , Rivers
7.
Environ Manage ; 72(5): 945-958, 2023 11.
Article in English | MEDLINE | ID: mdl-37507631

ABSTRACT

Riparian buffers along streams can intercept eroding soils, contaminants, and nutrients, improving stream habitats and increasing the health of aquatic communities. Instream and riparian habitats and fish and benthic invertebrate communities were surveyed in a Minnesota stream draining an agricultural watershed before and after implementation of a state-mandated buffer law passed in 2014 and aimed at protecting water quality. Intensive habitat assessments, electrofishing, and benthic invertebrate sampling were used at the same 13 sites in 2005 and 2018. Average buffer width nearly doubled between surveys, and instream abundance of fine sediments and embeddedness of coarse substrates by fine sediments both declined significantly within 1 to 3 years of buffer establishment. Stream sites also were significantly deeper with faster current velocities, and sites had increased riffle habitat and increased instream vegetative cover for fish after buffer mandates. However, fish and invertebrate biotic integrity scores, and other biotic community metrics, did not display significant improvements after buffer establishment. Stream habitats appear to improve quickly when intact and continuous riparian buffers insulate streams from surrounding agricultural activities, but improvements in biotic communities likely will require more time to adapt to changed habitat conditions.


Subject(s)
Ecosystem , Rivers , Animals , Invertebrates , Agriculture , Soil , Fishes , Environmental Monitoring
8.
Environ Res ; 233: 116434, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37343753

ABSTRACT

Vegetated filter strips (VFS) act as buffer zones between fields and water bodies that are supposed to retain incoming runoff, sediment, and nutrients. The factors that govern nutrient retention and cycling in VFS are complex and act in all three dimensions. A key element that determines VFS effectivity is flow type, e.g., sheet vs. concentrated flow. These aspects are, however, often insufficiently accounted for in VFS research and design recommendations. In this study, we attempt to tackle these shortcomings by examining the nutrient distribution in detail at two field-VFS transitions, applying a three-dimensional sampling array together with extensive laboratory analyses. Concentrated runoff was the dominant type we found and we argue that flow convergence is the norm rather than the exception. Further complicating this issue is that entry locations of runoff may vary, calling for more sophisticated sampling designs. Overall trends were similar across the analyzed nutrient fractions (different K- and P-pools) and there were distinct trends of decreasing nutrients along the longitudinal (from the field to the VFS) and vertical planes. The horizontal plane (from outside to inside the area of concentrated flow) showed mostly inconclusive or U-shaped gradients. Both sites were similar and close to each other, nevertheless, there were significant differences that affected nutrient retention in the VFS which were linked to site-specific factors. The spatial extent (i.e., width) is often considered the main variable in VFS designs. However, other VFS traits such as vegetation type and structure, as well as external factors such as field topography and the severity of erosive events are equally important and should be attributed more significance.


Subject(s)
Agriculture , Phosphorus , Agriculture/methods
9.
J Environ Manage ; 336: 117646, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36871447

ABSTRACT

The transport of excess nutrients into freshwater systems constitutes a serious risk to both water quality and aquatic health. Vegetated buffer zones (VBZs) next to waterways are increasingly used in many parts of the world to successfully intercept and eliminate pollutants and other materials in overland flow, especially in warm or temperate regions. The major processes for the retention of pollutants in VBZ are microbial degradation, infiltration, deposition, filtration, adsorption, degradation, assimilation, etc. The effectiveness of the VBZ relies on several environmental factors, including BZ width, runoff intensity, slope, soil texture, temperature, vegetation type, etc. Among the reported factors, cold weather possesses the most detrimental impact on many of the processes that VBZ are designed to carry out. The freezing temperatures result in ice formation, interrupting biological activity, infiltration and sorption, etc. In the last twenty years, burgeoning research has been carried out on the reduction of diffuse nutrient pollution losses from agricultural lands using VBZ. Nonetheless, a dearth of studies has dealt with the problems and concerns in cold climates, representing an important knowledge gap in this area. In addition, the effectiveness of VBZ in terms of nutrient removal abilities varies from -136% to 100%, a range that reveals the incertitude surrounding the role of VBZ in cold regions. Moreover, frozen soils and plants may release nutrients after undergoing several freeze-thaw cycles followed by runoff events in spring snowmelt. This review suggests that the management and design of VBZ in cold climates needs close examination, and these systems might not frequently serve as a good management approach to decrease nutrient movement.


Subject(s)
Soil Pollutants , Water Pollutants, Chemical , Cold Climate , Agriculture , Soil Pollutants/analysis , Phosphorus , Water Pollutants, Chemical/analysis , Soil , Nutrients , Nitrogen/analysis
10.
Sci Total Environ ; 870: 161921, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-36739023

ABSTRACT

Riparian buffer systems (RBS) are a common agroforestry practice that involves maintaining a forested boundary adjacent to water bodies to protect the aquatic ecosystems in agricultural landscapes. While RBS have potential for carbon sequestration, they also can be sources of methane emissions. Our study site at Washington Creek in Southern Ontario, includes a rehabilitated tree buffer (RH), a grassed buffer (GRB), an undisturbed deciduous forest (UNF), an undisturbed coniferous forest (CF), and an adjacent agricultural field (AGR). The objective of this study was to assess the diversity and activity of CH4 cycling microbial communities in soils sampled during hot moments of methane fluxes (July 04 and August 15). We used qPCR and high-throughput amplicon sequencing from both DNA and cDNA to target methanogen and methanotroph communities. Methanogens, including the archaeal genera Methanosaeta, Methanosarcina, Methanomassiliicoccus, and Methanoreggula, were abundant in all RBSs, but they were significantly more active in UNF soils, where CH4 emissions were highest. Methylocystis was the most prevalent taxon among methanotrophs in all the riparian sites, except for AGR soils where the methanotrophs community was composed primarily of members of rice paddy clusters (RPCs and RPC-1) and upland soil clusters (TUSC and USCα). The main factors influencing the composition and assembly of methane-cycling microbiomes were soil carbon and moisture content. We concluded that the differences in CH4 fluxes observed between RBSs were primarily caused by differences in the presence and activity of methanogens, which were influenced by total soil carbon and water content. Overall, this study emphasizes the importance of understanding the microbial drivers of CH4 fluxes in RBSs in order to maximize RBS environmental benefits.


Subject(s)
Methane , Microbiota , Methane/analysis , Archaea/genetics , Soil/chemistry , Carbon , Soil Microbiology
11.
Ambio ; 52(2): 440-452, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36208407

ABSTRACT

Forested riparian buffers are retained along streams during forest harvest to maintain a number of ecological functions. In this paper, we examine how recently established riparian buffers along northern Swedish streams provide deadwood, a key objective for riparian buffer management in Sweden. We used observational and experimental data to show that the investigated buffers provided large volumes of deadwood to streams and riparian zones shortly after their establishment, likely jeopardizing continued recruitment over the long term. Deadwood volume decreased with increasing buffer width, and the narrowest buffers tended to blow down completely. Wider buffers (~ 15 m) provided similar volumes of deadwood as narrow buffers due to blowdowns but were, overall, more resistant to wind-felling. It is clear from our study, that wider buffers are currently a safer strategy for riparian management that aims to sustain provision of deadwood and other ecological objectives continuously on the long term.


Subject(s)
Forests , Rivers , Sweden , Ecosystem , Trees
12.
Ying Yong Sheng Tai Xue Bao ; 34(12): 3203-3213, 2023 Dec.
Article in Chinese | MEDLINE | ID: mdl-38511358

ABSTRACT

River water quality is influenced by land use and landscape distribution patterns. Quantifying the relationship between land use, landscape pattern and water quality factor at different riparian buffer zone scales is of great significance for rational land use planning and water quality improvement. Based on water quality data from 91 sites in May 2021 in the Gaya River Basin, we analyzed the spatial characteristics of land use types and landscape patterns at the riparian buffer zone scales. With redundancy analysis (RDA) and generalized additive models (GAM), we examined the effects of land use and landscape patterns on river water quality. The results showed that water quality was primarily impacted by total nitrogen (TN). Farmland was the dominant land use type at riparian buffer zone of 50, 100 and 500 m. The sampling sites were classified into farmland dominant group and farmland other group. Forest was dominant at riparian buffer zone of 1000, 1500, 2000 m, and the sampling sites were classified into forest dominant group and forest other group. 100 m riparian buffer zone was the strongest scale in the Gaya River, and 1000 m was the second. Land use types in the forest dominant group were closely related with electrical conductivity, dissolved oxygen, phosphate, permanganate index and ammonium (NH4+-N) of water. NH4+-N was positively correlated with proportion of forest and farmland area. Phosphate was significantly affected by Shannon diversity index (SHDI). SHDI and largest patch index (LPI) was the key landscape indices affecting permanganate index. TN was significantly impacted by area proportion of forest, grassland and LPI in farmland dominant group, showing decreasing trend with the area proportion of forest increasing from 8% to 40%. Total suspended solids in farmland other group were significantly correlated with proportion of farmland area, while negatively correlated with proportion of forest area. Water quality in the Gaya River was mainly affected by proportion of forest area, followed by proportion of farmland area. The combined effects of LPI, SHDI and other land use types played an important role in affecting water quality.


Subject(s)
Manganese Compounds , Oxides , Rivers , Water Quality , Environmental Monitoring/methods , China , Phosphates , Nitrogen/analysis
13.
Sustainability ; 14(19): 1-33, 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36406588

ABSTRACT

Riparian buffer zones (RBZs) have been shown to be effective best management practices (BMPs) in controlling non-point source pollutants in waterbodies. However, the holistic sustainability assessment of individual RBZ designs is lacking. We present a methodology for evaluating the holistic sustainability of RBZ policy scenarios by integrating environmental and economic indicators simulated in three watersheds in the southeastern USA. We developed three unique sets of 40, 32, and 48 RBZ policy scenarios as decision management objectives (DMOs), respectively, in Back Creek, Sycamore Creek, and Greens Mill Run watersheds (Virginia and North Carolina) by combining the RBZ-widths with vegetation types (grass, urban, naturalized, wildlife, three-zone forest, and two-zone forest). We adapted the RBZ-hydrologic and water quality system assessment data of instream water quality parameters (dissolved oxygen, total phosphorus, total nitrogen, total suspended solids-sediment and biochemical oxygen demand) as environmental indicators, recently published by U.S. EPA. We calculated 20-year net present value costs as economic indicators using the RBZ's establishment, maintenance, and opportunity costs data published by the Natural Resources Conservation Service. The mean normalized net present value costs varied by DMOs ranging from 4% (grass RBZ-1.9 m) to 500% (wildlife RBZ-91.4 m) across all watersheds, due primarily to the width and the opportunity costs. The mean normalized environmental indicators varied by watersheds, with the largest change in total nitrogen due to urban RBZs in Back Creek (60-95%), Sycamore Creek (37-91%), and Greens Mill (52-93%). The holistic sustainability assessments revealed the least to most sustainable DMOs for each watershed, from least sustainable wildlife RBZ (score of 0.54), three-zone forest RBZ (0.32), and three-zone forest RBZ (0.62), respectively, for Back Creek, Sycamore Creek, and Greens Mill, to most sustainable urban RBZ (1.00) for all watersheds.

14.
Plant Soil ; 477(1-2): 297-318, 2022.
Article in English | MEDLINE | ID: mdl-36120385

ABSTRACT

Purpose: Nitrous oxide (N2O) and methane (CH4) are some of the most important greenhouse gases in the atmosphere of the 21st century. Vegetated riparian buffers are primarily implemented for their water quality functions in agroecosystems. Their location in agricultural landscapes allows them to intercept and process pollutants from adjacent agricultural land. They recycle organic matter, which increases soil carbon (C), intercept nitrogen (N)-rich runoff from adjacent croplands, and are seasonally anoxic. Thus processes producing environmentally harmful gases including N2O and CH4 are promoted. Against this context, the study quantified atmospheric losses between a cropland and vegetated riparian buffers that serve it. Methods: Environmental variables and simultaneous N2O and CH4 emissions were measured for a 6-month period in a replicated plot-scale facility comprising maize (Zea mays L.). A static chamber was used to measure gas emissions. The cropping was served by three vegetated riparian buffers, namely: (i) grass riparian buffer; (ii) willow riparian buffer and; (iii) woodland riparian buffer, which were compared with a no-buffer control. Results: The no-buffer control generated the largest cumulative N2O emissions of 18.9 kg ha- 1 (95% confidence interval: 0.5-63.6) whilst the maize crop upslope generated the largest cumulative CH4 emissions (5.1 ± 0.88 kg ha- 1). Soil N2O and CH4-based global warming potential (GWP) were lower in the willow (1223.5 ± 362.0 and 134.7 ± 74.0 kg CO2-eq. ha- 1 year- 1, respectively) and woodland (1771.3 ± 800.5 and 3.4 ± 35.9 kg CO2-eq. ha- 1 year- 1, respectively) riparian buffers. Conclusions: Our results suggest that in maize production and where no riparian buffer vegetation is introduced for water quality purposes (no buffer control), atmospheric CH4 and N2O concerns may result.

15.
Huan Jing Ke Xue ; 43(9): 4576-4586, 2022 Sep 08.
Article in Chinese | MEDLINE | ID: mdl-36096598

ABSTRACT

In October-November 2020, the phytoplankton and the aquatic environment from 62 sites in the mainstream of the Qinhe River and the largest tributary of the Qinhe River (Danhe River) in the Jincheng region were investigated to clarify the spatial pattern of phytoplankton communities and their driving factors. A total of 7 phyla and 47 species of phytoplankton were identified in the Qinhe River basin and were composed of Cryptophyta, Chlorophyta, Pyrrophyta, Chrysophyta, Bacillariophyta, Cyanophyta, and Crytophyta. Six dominant species in the Qinhe River included:Chlorella vulgaris, Cryptomonas erosa, Chroomonas acuta, Cyclotella stelligera, Chlorococcum, and Euglena viridis. Six dominant species in the Danhe River included:C. erosa, Frustulia vulgaris, E. viridis, C. vulgaris, Trachelomonas oblonga Lemm, and C. stelligera. The Shannon-Wiener diversity index (H') varied from 0.35 to 3.15, with a mean value 1.40. The Pielou evenness index (J) varied from 0.24 to 1.00, with a mean value of 0.68. H' values in the Qinhe River were higher than those in the Danhe River. J values were relatively low in the middle reaches of the Qinhe River and middle-low reaches of the Danhe River. The results in the Qinhe River through a canonical correspondence analysis (CCA) showed that the percent of forest land at a 300 m buffer was the driving factor of Chlorococcum in Chlorophyta, and nitrate, total phosphorus, and the percent of forest land at the 300 m buffer were the driving factors of E. viridis. Cyclotella stelligera was mainly influenced by the percent of urban land and water temperature, whereas C. vulgaris, C. erosa, and C. acuta were mainly influenced by the percent of farmland and residential land at the 300 m buffer. The results in the Danhe River via CCA showed that C. erosa and C. stelligera were mainly influenced by pH and sulfate, E. viridis was mainly influenced by the percent of urban land and grass land, T. oblonga Lemm was mainly influenced by chloride and the percent of forest land, F. vulgaris was mainly influenced by water temperature and the percent of farmland, and C. vulgaris was mainly influenced by ammonia and the percent of farmland.


Subject(s)
Chlorella vulgaris , Chlorophyta , Diatoms , Phytoplankton , Rivers/chemistry , Seasons , Water
16.
Ecol Appl ; 32(4): e2552, 2022 06.
Article in English | MEDLINE | ID: mdl-35112418

ABSTRACT

Expansion of oil palm has caused widespread declines in biodiversity and changes in ecosystem functioning across the tropics. A major driver of these changes is loss of habitat heterogeneity as forests are converted into oil palm plantations. Therefore, one strategy to help support biodiversity and functioning in oil palm is to increase habitat heterogeneity, for instance, by retaining forested buffers around rivers when new plantations are established, or maintaining buffers made of mature oil palms ("mature palm buffers") when old plantations are replanted. While forested buffers are known to benefit oil palm systems, the impacts of mature palm buffers are less certain. In this study, we assessed the benefits of mature palm buffers, which were being passively restored (in this case, meaning that buffers were treated with no herbicides, pesticides, or fertilizers) by sampling environmental conditions and arthropods within buffers and in surrounding non-buffer areas (i.e., areas that were 25 and 125 m from buffers, and receiving normal business-as-usual management) across an 8-year chronosequence in industrial oil palm plantations (Sumatra, Indonesia). We ask (1) Do environmental conditions and biodiversity differ between buffer and non-buffer areas? (2) Do buffers affect environmental conditions and biodiversity in adjacent non-buffer areas (i.e., areas that were 25 m from buffers)? (3) Do buffers become more environmentally complex and biodiverse over time? We found that buffers can have environmental conditions (canopy openness, variation in openness, vegetation height, ground cover, and soil temperature) and levels of arthropod biodiversity (total arthropod abundance and spider abundance in the understory and spider species-level community composition in all microhabitats) that are different from those in non-buffer areas, but that these differences are inconsistent across the oil palm commercial life cycle. We also found that buffers might contribute to small increases in vegetation height and changes in ground cover in adjacent non-buffer areas, but do not increase levels of arthropod biodiversity in these areas. Finally, we found that canopy openness, variation in openness, and ground cover, but no aspects of arthropod biodiversity, change within buffers over time. Collectively, our findings indicate that mature palm buffers that are being passively restored can have greater environmental complexity and higher levels of arthropod biodiversity than non-buffer areas, particularly in comparison to recently replanted oil palm, but these benefits are not consistent across the crop commercial life cycle. If the goal of maintaining riparian buffers is to consistently increase habitat heterogeneity and improve biodiversity, an alternative to mature palm buffers or a move toward more active restoration of these areas is, therefore, probably required.


Subject(s)
Arecaceae , Arthropods , Agriculture , Animals , Biodiversity , Conservation of Natural Resources , Ecosystem , Forests , Soil
17.
Huan Jing Ke Xue ; 43(2): 770-781, 2022 Feb 08.
Article in Chinese | MEDLINE | ID: mdl-35075851

ABSTRACT

The impact of non-point source pollution on the water quality of the North Canal River is becoming increasingly prominent. In this study, the riparian buffer zones (RBZ) of the Nansha River and Beisha River, the inlet tributaries of the Shahe Reservoir in the North Canal basin, were selected to investigate the purification effect of riparian buffer zones on runoff pollution during the rainfall process. Two RBZ types, Type I RBZ (levee-flood control retaining wall-woodland-grassland) and Type Ⅱ RBZ (levee-woodland-grassland), were classified by the distribution characteristics of RBZ structure and plant communities in the North Canal River basin. The north bank of the Nansha River (NB) and the south bank of the Beisha River (BN) are typical of Type I RBZ, with low total vegetation cover, "short and steep" slopes, and low herbaceous cover but high diversity. The south bank of the Nansha River (NN) is a typical representative of Type Ⅱ RBZ, with "long and slow" slopes and high herbaceous cover (29.16%) but low diversity. In order to investigate the impacts of rainfall characteristics and RBZ types on the runoff pollutant, a 1 km area in each of the three RBZs was selected to carry out the RBZ non-point source pollution prevention and control engineering trials. The results indicated that Type I RBZ required less time and rainfall to produce runoff and had a greater peak runoff. Type Ⅱ RBZ produced runoff only under heavy rainstorm conditions, with greater runoff retention capacity. Energy dissipation ponds with gravel as the main fillers were set up at the runoff inlets of the RBZ, which effectively reduced runoff pollution. ρ(NH4+-N) and ρ(NO3--N) in the runoff were below 1.6 mg·L-1; ρ(TN) was below 5 mg·L-1; and ρ(PO43-P), ρ(DTP), and ρ(TP) were below 1.0 mg·L-1. The grass ditch of the RBZs effectively reduced ρ(NH4+-N) of the runoff. The retention rate of SS and the reduction effect of pollutants in Type Ⅱ RBZ were better than those in Type I except under heavy rainstorm conditions, which is related to the different RBZ structures and vegetation cover. The correlation analysis results showed that slope length, slope gradient, vegetation cover, and rainfall characteristics were significantly correlated with runoff SS, COD, nitrogen, and phosphorus pollution.


Subject(s)
Rivers , Water Pollutants, Chemical , China , Environmental Monitoring , Nitrogen/analysis , Phosphorus/analysis , Rain , Water Movements , Water Pollutants, Chemical/analysis , Water Quality
18.
Ecol Evol ; 11(17): 11786-11798, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34522341

ABSTRACT

Novel insights into habitat suitability for two Unionida freshwater mussels, Castalia ambigua Lamarck, 1819 (Hyriidae) and Anodontites elongatus (Swainson, 1823) (Mycetopodidae), are presented on the basis of hydraulic variables linked with the riverbed in six 500-m reaches in an eastern Amazonian river basin. Within the reaches, there was strong habitat heterogeneity in hydrodynamics and substrate composition. In addition, we investigated stressors based on landscape modification that are associated with declines in mussel density. We measured hydraulic variables for each 500-m reach, and landscape stressors at two spatial scales (subcatchment and riparian buffer forest). We used the Random Forest algorithm, a tree-based model, to predict the hydraulic variables linked with habitat suitability for mussels, and to predict which landscape stressors were most associated with mussel density declines. Both mussel species were linked with low substrate heterogeneity and greater riverbed stability (low Froude and Reynolds numbers), especially at high flow (low stream power). Different sediment grain size preferences were observed between mussel species: Castalia ambigua was associated with medium sand and Anodontites elongatus with medium and fine sand. Declines in mussel density were associated with modifications linked to urbanization at small scales (riparian buffer forest), especially with percent of and distance from rural settlements, distance to the nearest street, and road density. In summary, the high variance explained in both hydraulic and landscape models indicated high predictive power, suggesting that our findings may be extrapolated and used as a baseline to test hypotheses of habitat suitability in other Amazonian rivers for Castalia ambigua and Anodontites elongatus and also for other freshwater mussel species. Our results highlight the urgent need for aquatic habitat conservation to maintain sheltered habitats during high flow as well as mitigate the effects of landscape modifications at the riparian buffer scale, both of which are important for maintaining dense mussel populations and habitat quality.

19.
Sci Total Environ ; 796: 149037, 2021 Nov 20.
Article in English | MEDLINE | ID: mdl-34280631

ABSTRACT

Phosphorus (P) loss from soil may trigger freshwater eutrophication and endanger supply with drinking water regionally. The present paper aims at encouraging discussion and development of sophisticated strategies for risk assessment of P loss from soils of riparian buffer zones (RBZ) as a prerequisite for targeted and effective mitigation of such P losses and their effects on freshwater eutrophication. We use data from a case study on RBZ soils in Germany to compare the performance of different environmental indicators of a risk for P loss from soil. Our data suggest that RBZ soils are temporarily sinks or sources for P. The spatial hotspots of P loss are the topsoils and the deep P stocks (labile P enriched in RBZ subsoils below on average 87.5 cm depth). We discuss four aspects to be considered conceptually and methodologically in the assessment of a risk for P loss from RBZ soils: (1) spatial heterogeneity and spatial bias; (2) temporal heterogeneity and temporal bias; (3) conceptual bias caused by different dynamics of individual P fractions; and (4) adequacy of threshold values. To minimize bias, we propose to assess risk for P loss from RBZ soils using a geospatial, temporally resolved sampling strategy, site-specific or regional threshold values, and a P fractionation approach. For this purpose, we introduce PdHCl as a risk indicator, which is not susceptible to very short-term dynamics (in contrast to water-soluble P).


Subject(s)
Phosphorus , Soil , Eutrophication , Fresh Water , Risk Assessment
20.
Sci Total Environ ; 798: 149238, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34325145

ABSTRACT

Following decades of riparian buffer zone (RBZ) studies there remains a need to look across individual site data for collective evidence on the site-specific pollution mitigation and river water quality. We explored primary study evidence on runoff, sediment, P, N, coliforms and pesticides using complimentary styles of metadata interpretation. A quantitative assessment of pollution retention (75 studies, 474 data rows) derived relationships for retention versus width, including significant covariates of clay particle size and buffer slope for sediment, total and dissolved P. Total N and coliforms related to texture and slope but were independent of width. Other factors across pollutants were inconsistently reported. With limitations on quantitative studies a second approach examined factor significance (formal testing versus inferred; 93 studies) across source pressure, transport/physical, vegetation and soil biogeochemical factors on pollution effectiveness. The RBZ evidence showed considerable disagreement and bias in shorter term study implications on longer-term processes. Screening for stronger evidence by study number and agreement left fifteen factors informing on at least one pollutant, whereas only rainfall intensity, preferential deposition, tree planting, soil infiltration remained addressing three or more pollutants. Key messages were that: data complexities, from short-term trapping in upper buffer edges and so-called 'negative effectiveness' associated with internal recycling and/or errors in constraining mass inputs for dissolved pollutant and subsurface transport require careful interpretation; RBZ intervention and study durations were limited compared to effect times (particularly vegetation management and changing soil conditions); factors affect pollutants with particulate and dissolved phases differently and must be understood to limit RBZ pollution swapping. Buffer functioning is highly site-specific. To understand this better attention should be given to revisiting studies of vegetation management to extend timeframes, wider study of belowground (soil biogeochemical and transport) processes and studies should document site contexts across source pressures, riparian hydrological, soil and vegetation factors.


Subject(s)
Environmental Pollutants , Pesticides , Ecosystem , Pesticides/analysis , Rivers , Soil
SELECTION OF CITATIONS
SEARCH DETAIL