Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters











Publication year range
1.
Ying Yong Sheng Tai Xue Bao ; 35(6): 1608-1614, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-39235019

ABSTRACT

As a kind of tonic Chinese medicine with dual use in medicine and food, there is a large market demanding for Codonopsis pilosula. Taking one-year-old C. pilosula seedlings as materials, we conducted a field experiment to examine the effect of compound fertilizer (750 kg·hm-2), organic fertilizer (15 t·hm-2) and Streptomyces pactum Act12 agent (9 t·hm-2 Act12+10 t·hm-2 organic fertilizer) treatments on root morphology, secondary metabolite content and expression level of lobetyolin metabolic pathway gene of C. pilosula, to clarify the effects of three fertilizers on the root morphology and medicinal quality. Compared to the control (10 t·hm-2 organic fertilizer, conventional fertilization), three fertilization treatments could promote root growth and formation. All fertilization treatments promoted the accumulation of C. pilosula polysaccharides and secondary metabolites. Act12 agent significantly increased the content of lobetyolin, atractylenolideIII, and 5-hydroxymethylfurfural. The qRT-PCR analysis indicated that three fertilization treatments increased the expression level of lobetyolin metabolic pathway genes, with Act12 agent treatment showing the most significant effect. Pearson correlation analysis demonstrated that the expression level of CpHCT and CpFAD genes was significantly positively correlated with atractylenolide III content. In conclusion, three fertilization treatments could effectively improve the yield and quality of C. pilosula. Among the three treatments, Act12 agent performed better than that of compound fertilizer and organic fertilizer, which was an effective measure to increase the yield and quality of C. pilosula.


Subject(s)
Codonopsis , Fertilizers , Plant Roots , Streptomyces , Codonopsis/growth & development , Codonopsis/metabolism , Streptomyces/growth & development , Streptomyces/metabolism , Streptomyces/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Plants, Medicinal/growth & development , Plants, Medicinal/metabolism , Plants, Medicinal/chemistry
2.
Front Nutr ; 11: 1417526, 2024.
Article in English | MEDLINE | ID: mdl-39036490

ABSTRACT

Abscisic acid (ABA) significantly regulates plant growth and development, promoting tuberous root formation in various plants. However, the molecular mechanisms of ABA in the tuberous root development of Pseudostellaria heterophylla are not yet fully understood. This study utilized Illumina sequencing and de novo assembly strategies to obtain a reference transcriptome associated with ABA treatment. Subsequently, integrated transcriptomic and proteomic analyses were used to determine gene expression profiles in P. heterophylla tuberous roots. ABA treatment significantly increases the diameter and shortens the length of tuberous roots. Clustering analysis identified 2,256 differentially expressed genes and 679 differentially abundant proteins regulated by ABA. Gene co-expression and protein interaction networks revealed ABA positively induced 30 vital regulators. Furthermore, we identified and assigned putative functions to transcription factors (PhMYB10, PhbZIP2, PhbZIP, PhSBP) that mediate ABA signaling involved in the regulation of tuberous root development, including those related to cell wall metabolism, cell division, starch synthesis, hormone metabolism. Our findings provide valuable insights into the complex signaling networks of tuberous root development modulated by ABA. It provided potential targets for genetic manipulation to improve the yield and quality of P. heterophylla, which could significantly impact its cultivation and medicinal value.

3.
FEBS Lett ; 598(15): 1855-1863, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38782630

ABSTRACT

The identification of chemicals that modulate plant development and adaptive responses to stresses has attracted increasing attention for agricultural applications. Recent basic studies have identified functional amino acids that are essential for plant organogenesis, indicating that amino acids can regulate plant growth. In this study, we newly identified 2-aminopimelic acid (2APA), a nonproteinogenic amino acid, as a novel bioactive compound involved in root morphogenesis. This biological effect was confirmed in several plant species. Our phenotypic analysis revealed that the bioactive 2APA is an l-form stereoisomer. Overall, our study identified a promising root growth regulator and provided insight into the intricate metabolism related to root morphology.


Subject(s)
Indoleacetic Acids , Plant Roots , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/drug effects , Plant Roots/genetics , Indoleacetic Acids/metabolism , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism , Gene Expression Regulation, Plant/drug effects , Stereoisomerism , Arabidopsis/growth & development , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/drug effects
4.
Zhongguo Zhong Yao Za Zhi ; 47(24): 6573-6580, 2022 Dec.
Article in Chinese | MEDLINE | ID: mdl-36604905

ABSTRACT

The content of available phosphorus in soil is generally low worldwide. Phosphorus, one of the necessary macroelements for plant growth and development, plays an important role in cell structure, material composition and energy metabolism, and signal transduction in plants. Phosphate transporter(PHT) genes are important for plant growth and development, root morphogenesis, secondary metabolism, hormone response, and phosphorus balance. Most of the active components in medicinal plants are secondary metabolites. Thus, it is essential to reveal the relationship between the regulation of phosphorus and the accumulation of active components in medicinal plants, especially the effect of phosphorus starvation on root morphogenesis of root medicinal materials and its coupling with hormone response. With advancement of molecular biology, scholars gradually emphasize the mechanism of PHT regulating the secondary metabolism of medicinal plants. This study summarized the strategies of plants to adapt to low phosphorus environment, such as changing root morphogenesis, inhibiting taproot growth, forming cluster root and changing physiological metabolism, PHT, its regulatory network, phenotypic biological characteristics and key genes in medicinal plants related to phosphorus starvation, and the response mechanism. The findings are expected to lay a basis for the cultivation of medicinal plants with high quality, excellent shape, and high price.


Subject(s)
Plants, Medicinal , Plants, Medicinal/genetics , Plants, Medicinal/metabolism , Plant Development , Phosphorus , Hormones/metabolism , Morphogenesis/genetics , Plant Roots
5.
Braz. j. biol ; 81(3): 684-691, July-Sept. 2021. graf
Article in English | LILACS | ID: biblio-1153408

ABSTRACT

Abstract Plants adjust their shoot growth to acclimate to changing environmental factors, such as to enhanced Ultraviolet-B (UV-B) radiation. However, people have ignored that plant roots can also respond to UV-B light. Here, we find the morphology curled wheat roots under UV-B radiation, that we call, "bending roots." The curly region is the transition zone of the root after observed at the cellular level. After exposed to enhanced UV-B radiation for 2 d (10.08 KJ/m2/d), cell size decreased and actin filaments gathered in wheat roots. We also find that H2O2 production increased and that content of the indole-3-acetic acid (IAA) increased remarkably. The pharmacological experiment revealed that actin filaments gathered and polymerized into bundles in the wheat root cells after irrigated H2O2 and IAA. These results indicated that actin filaments changed their distribution and formed the "bending root," which was related to H2O2 production and increase in IAA. Overall, actin filaments in wheat root cells could be a subcellular target of UV-B radiation, and its disruption determines root morphology.


Resumo As plantas ajustam o crescimento da parte aérea para se adaptarem a fatores ambientais variáveis, como o aumento da radiação ultravioleta B (UVB). No entanto, as pessoas ignoram que as raízes das plantas também podem responder à luz UVB. Neste estudo, verificamos a morfologia das raízes enroladas de trigo sob radiação UVB, o que chamamos de "raízes dobradas". A região encaracolada é a zona de transição da raiz no nível celular. Depois de exposição à radiação UVB aprimorada por 2 dias (10,08 KJ/m2/d), o tamanho das células diminuiu, e os filamentos de actina se reuniram. Também constatamos que a produção de H2O2 aumentou e que o conteúdo do ácido indol-3-acético (IAA) aumentou notavelmente. O experimento farmacológico revelou que os filamentos de actina se reuniram e polimerizaram em feixes nas células da raiz de trigo após irrigação com H2O2 e IAA. Esses resultados indicam que os filamentos de actina alteraram sua distribuição e formaram a "raiz dobrada", relacionada à produção de H2O2 e ao aumento do IAA. No geral, os filamentos de actina nas células da raiz de trigo podem ser um alvo subcelular da radiação UVB, e sua interrupção determina a morfologia da raiz.


Subject(s)
Triticum , Hydrogen Peroxide , Ultraviolet Rays , Actin Cytoskeleton , Plant Roots
6.
Sci Total Environ ; 766: 144381, 2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33418260

ABSTRACT

Nitrogen (N) is a key factor that limits plant growth in most terrestrial ecosystems, and biochar reportedly improves soil characteristics and grain yields. However, the effects of biochar on plant N uptake in wetland ecosystems and the underlying mechanisms of these effects remain unclear. Therefore, our study sought to characterise the effects of biochar addition on Phragmites australis N absorption rates at two different N deposition conditions [30 and 60 kg N hm-2 yr-1; i.e., "low" and "high" N treatments, respectively]. Our results demonstrated that biochar significantly promoted root biomass growth in P. australis in the high N treatment group. In contrast, the low N treatment group exhibited an increased proportion of fine roots and a decrease in the average P. australis root diameter. The N absorption rate of P. australis in the low N treatment group significantly increased with biochar addition and ammonium N became the preferred N source. The absorption rates of both ammonium and nitrate N were negatively correlated with the average P. australis root diameter. Therefore, our findings indicate that biochar may affect the N uptake strategy of P. australis by altering root morphogenesis, thereby providing new insights into potential restoration strategies for wetland vegetation.


Subject(s)
Ecosystem , Nitrogen , Charcoal , Plant Roots , Poaceae , Soil
7.
Front Plant Sci ; 12: 802737, 2021.
Article in English | MEDLINE | ID: mdl-35082816

ABSTRACT

In this study, the capacity to tune root morphogenesis by a plant growth-promoting rhizobacterium, Streptomyces lincolnensis L4, was investigated from various aspects including microbial physiology, root development, and root endophytic microbial community. Strain L4 was isolated from the root-associated soil of 7-year plantation of Artemisia annua. Aiming at revealing the promotion mechanism of Streptomyces on root growth and development, this study first evaluated the growth promotion characters of S. lincolnensis L4, followed by investigation in the effect of L4 inoculation on root morphology, endophytic microbiota of root system, and expression of genes involved in root development in Arabidopsis thaliana. Streptomyces lincolnensis L4 is able to hydrolyze organic and inorganic phosphorus, fix nitrogen, and produce IAA, ACC deaminase, and siderophore, which shaped specific structure of endophytic bacterial community with dominant Streptomyces in roots and promoted the development of roots. From the observation of root development characteristics, root length, root diameter, and the number of root hairs were increased by inoculation of strain L4, which were verified by the differential expression of root development-related genes in A. thaliana. Genomic traits of S. lincolnensis L4 which further revealed its capacity for plant growth promotion in which genes involved in phosphorus solubilization, ACC deamination, iron transportation, and IAA production were identified. This root growth-promoting strain has the potential to develop green method for regulating plant development. These findings provide us ecological knowledge of microenvironment around root system and a new approach for regulating root development.

8.
Biol Res ; 53(1): 54, 2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33228803

ABSTRACT

BACKGROUND: UV-B signaling in plants is mediated by UVR8, which interacts with transcriptional factors to induce root morphogenesis. However, research on the downstream molecules of UVR8 signaling in roots is still scarce. As a wide range of functional cytoskeletons, how actin filaments respond to UV-B-induced root morphogenesis has not been reported. The aim of this study was to investigate the effect of actin filaments on root morphogenesis under UV-B and hydrogen peroxide exposure in Arabidopsis. RESULTS: A Lifeact-Venus fusion protein was used to stain actin filaments in Arabidopsis. The results showed that UV-B inhibited hypocotyl and root elongation and caused an increase in H2O2 content only in the root but not in the hypocotyl. Additionally, the actin filaments in hypocotyls diffused under UV-B exposure but were gathered in a bundle under the control conditions in either Lifeact-Venus or uvr8 plants. Exogenous H2O2 inhibited root elongation in a dose-dependent manner. The actin filaments changed their distribution from filamentous to punctate in the root tips and mature regions at a lower concentration of H2O2 but aggregated into thick bundles with an abnormal orientation at H2O2 concentrations up to 2 mM. In the root elongation zone, the actin filament arrangement changed from lateral to longitudinal after exposure to H2O2. Actin filaments in the root tip and elongation zone were depolymerized into puncta under UV-B exposure, which showed the same tendency as the low-concentration treatments. The actin filaments were hardly filamentous in the maturation zone. The dynamics of actin filaments in the uvr8 group under UV-B exposure were close to those of the control group. CONCLUSIONS: The results indicate that UV-B inhibited Arabidopsis hypocotyl elongation by reorganizing actin filaments from bundles to a loose arrangement, which was not related to H2O2. UV-B disrupted the dynamics of actin filaments by changing the H2O2 level in Arabidopsis roots. All these results provide an experimental basis for investigating the interaction of UV-B signaling with the cytoskeleton.


Subject(s)
Actin Cytoskeleton/physiology , Arabidopsis/growth & development , Hydrogen Peroxide/pharmacology , Plant Roots/growth & development , Ultraviolet Rays , Arabidopsis/radiation effects , Arabidopsis Proteins , Chromosomal Proteins, Non-Histone
9.
Plant Mol Biol ; 103(1-2): 1-7, 2020 May.
Article in English | MEDLINE | ID: mdl-32088831

ABSTRACT

KEY MESSAGE: The auxin signaling and root morphogenesis are harmoniously controlled by two counteracted teams including (1) auxin/indole-3-acetic acid (AUX/IAA)-histone deacetylase (HDA) and (2) auxin response factor (ARF)-histone acetyltransferase (HAT). The involvement of histone acetylation in the regulation of transcription was firstly reported a few decades ago. In planta, auxin is the first hormone group that was discovered and it is also the most studied phytohormone. Current studies have elucidated the functions of histone acetylation in the modulation of auxin signaling as well as in the regulation of root morphogenesis under both normal and stress conditions. Based on the recent outcomes, this review is to provide a hierarchical view about the functions of histone acetylation in auxin signaling and root morphogenesis. In this report, we suggest that the auxin signaling must be controlled harmoniously by two counteracted teams including (1) auxin/indole-3-acetic acid (AUX/IAA)-histone deacetylase (HDA) and (2) auxin response factor (ARF)-histone acetyltransferase (HAT). Moreover, the balance in auxin signaling is very critical to contribute to normal root morphogenesis.


Subject(s)
Histones/metabolism , Indoleacetic Acids/metabolism , Plant Growth Regulators/metabolism , Acetylation , Histone Acetyltransferases/metabolism , Histone Deacetylases/metabolism , Homeostasis , Morphogenesis , Plant Roots/growth & development , Plant Roots/metabolism
10.
Biol. Res ; 53: 54-54, 2020. ilus, graf
Article in English | LILACS | ID: biblio-1505780

ABSTRACT

BACKGROUND: UV-B signaling in plants is mediated by UVR8, which interacts with transcriptional factors to induce root morphogenesis. However, research on the downstream molecules of UVR8 signaling in roots is still scarce. As a wide range of functional cytoskeletons, how actin filaments respond to UV-B-induced root morphogenesis has not been reported. The aim of this study was to investigate the effect of actin filaments on root morphogenesis under UV-B and hydrogen peroxide exposure in Arabidopsis. RESULTS: A Lifeact-Venus fusion protein was used to stain actin filaments in Arabidopsis. The results showed that UV-B inhibited hypocotyl and root elongation and caused an increase in H2O2 content only in the root but not in the hypocotyl. Additionally, the actin filaments in hypocotyls diffused under UV-B exposure but were gathered in a bundle under the control conditions in either Lifeact-Venus or uvr8 plants. Exogenous H2O2 inhibited root elongation in a dose-dependent manner. The actin filaments changed their distribution from filamentous to punctate in the root tips and mature regions at a lower concentration of H2O2 but aggregated into thick bundles with an abnormal orientation at H2O2 concentrations up to 2 mM. In the root elongation zone, the actin filament arrangement changed from lateral to longitudinal after exposure to H2O2. Actin filaments in the root tip and elongation zone were depolymerized into puncta under UV-B exposure, which showed the same tendency as the low-concentration treatments. The actin filaments were hardly filamentous in the maturation zone. The dynamics of actin filaments in the uvr8 group under UV-B exposure were close to those of the control group. CONCLUSIONS: The results indicate that UV-B inhibited Arabidopsis hypocotyl elongation by reorganizing actin filaments from bundles to a loose arrangement, which was not related to H2O2. UV-B disrupted the dynamics of actin filaments by changing the H2O2 level in Arabidopsis roots. All these results provide an experimental basis for investigating the interaction of UV-B signaling with the cytoskeleton.


Subject(s)
Ultraviolet Rays , Actin Cytoskeleton/physiology , Arabidopsis/growth & development , Plant Roots/growth & development , Hydrogen Peroxide/pharmacology , Chromosomal Proteins, Non-Histone , Arabidopsis/radiation effects , Arabidopsis Proteins
11.
Front Plant Sci ; 10: 1387, 2019.
Article in English | MEDLINE | ID: mdl-31787993

ABSTRACT

Background and Aims: Although AVG (aminoethoxyvinylglycine) is intensely used to decipher signaling in ethylene/indol-3-acetic acid (IAA) interactions on root morphogenesis, AVG is not a specific inhibitor of aminocyclopropane-1-carboxylate synthase (ACS) and tryptophan aminotransferase (TAA) and tryptophan aminotransferase related (TAR) activities since it is able to inhibit several aminotransferases involved in N metabolism. Indeed, 1 mM glutamate (Glu) supply to the roots in plants treated with 10 µM AVG partially restores the root growth. Here, we highlight the changes induced by AVG and AVG + Glu treatments on the N metabolism impairment and root morphogenetic program. Methods: Root nitrate uptake induced by AVG and AVG + Glu treatments was measured by a differential labeling with 15NO3 - and 15Nglutamate. In parallel a profiling of amino acids (AA) was performed to decipher the impairment of AA metabolism. Key Results: 10 µM AVG treatment increases K15NO3 uptake and 15N translocation during root growth inhibition whereas 10 µM AVG + 1 mM 15Nglutamate treatment inhibits K15NO3 uptake and increases 15Nglutamate uptake during partial root growth restoration. This is explained by a nitrogen (N) limitation condition induced by AVG treatment and a N excess condition induced by AVG + Glu treatment. AA levels were mainly impaired by AVG treatment in roots, where levels of Ser, Thr, α-Ala, ß-Ala, Val, Asn and His were significantly increased. His was the only amino acid for which no restoration was observed in roots and shoots after glutamate treatment suggesting important control of His homeostasis on aminotransferase network. Results were discussed in light of recent findings on the interconnection between His homeostasis and the general amino acid control system (GAAC) in eukaryotes. Conclusions: These results demonstrate that AVG concentration above 5 µM is a powerful pharmacological tool for unraveling the involvement of GAAC system or new N sensory system in morphological and metabolic changes of the roots in leguminous and non-leguminous plants.

12.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1467474

ABSTRACT

Abstract Plants adjust their shoot growth to acclimate to changing environmental factors, such as to enhanced Ultraviolet-B (UV-B) radiation. However, people have ignored that plant roots can also respond to UV-B light. Here, we find the morphology curled wheat roots under UV-B radiation, that we call, bending roots. The curly region is the transition zone of the root after observed at the cellular level. After exposed to enhanced UV-B radiation for 2 d (10.08 KJ/m2/d), cell size decreased and actin filaments gathered in wheat roots. We also find that H2O2 production increased and that content of the indole-3-acetic acid (IAA) increased remarkably. The pharmacological experiment revealed that actin filaments gathered and polymerized into bundles in the wheat root cells after irrigated H2O2 and IAA. These results indicated that actin filaments changed their distribution and formed the bending root, which was related to H2O2 production and increase in IAA. Overall, actin filaments in wheat root cells could be a subcellular target of UV-B radiation, and its disruption determines root morphology.


Resumo As plantas ajustam o crescimento da parte aérea para se adaptarem a fatores ambientais variáveis, como o aumento da radiação ultravioleta B (UVB). No entanto, as pessoas ignoram que as raízes das plantas também podem responder à luz UVB. Neste estudo, verificamos a morfologia das raízes enroladas de trigo sob radiação UVB, o que chamamos de raízes dobradas. A região encaracolada é a zona de transição da raiz no nível celular. Depois de exposição à radiação UVB aprimorada por 2 dias (10,08 KJ/m2/d), o tamanho das células diminuiu, e os filamentos de actina se reuniram. Também constatamos que a produção de H2O2 aumentou e que o conteúdo do ácido indol-3-acético (IAA) aumentou notavelmente. O experimento farmacológico revelou que os filamentos de actina se reuniram e polimerizaram em feixes nas células da raiz de trigo após irrigação com H2O2 e IAA. Esses resultados indicam que os filamentos de actina alteraram sua distribuição e formaram a raiz dobrada, relacionada à produção de H2O2 e ao aumento do IAA. No geral, os filamentos de actina nas células da raiz de trigo podem ser um alvo subcelular da radiação UVB, e sua interrupção determina a morfologia da raiz.

13.
J Exp Bot ; 65(22): 6373-84, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25205583

ABSTRACT

Arabidopsis homolog of trithorax1 (ATX1/SDG27), a known regulator of flower development, encodes a H3K4histone methyltransferase that maintains a number of genes in an active state. In this study, the role of ATX1 in root development was evaluated. The loss-of-function mutant atx1-1 was impaired in primary root growth. The data suggest that ATX1 controls root growth by regulating cell cycle duration, cell production, and the transition from cell proliferation in the root apical meristem (RAM) to cell elongation. In atx1-1, the quiescent centre (QC) cells were irregular in shape and more expanded than those of the wild type. This feature, together with the atypical distribution of T-divisions, the presence of oblique divisions, and the abnormal cell patterning in the RAM, suggests a lack of coordination between cell division and cell growth in the mutant. The expression domain of QC-specific markers was expanded both in the primary RAM and in the developing lateral root primordia of atx1-1 plants. These abnormalities were independent of auxin-response gradients. ATX1 was also found to be required for lateral root initiation, morphogenesis, and emergence. The time from lateral root initiation to emergence was significantly extended in the atx1-1 mutant. Overall, these data suggest that ATX1 is involved in the timing of root development, stem cell niche maintenance, and cell patterning during primary and lateral root development. Thus, ATX1 emerges as an important player in root system architecture.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Arabidopsis/metabolism , Body Patterning , Plant Roots/cytology , Plant Roots/growth & development , Transcription Factors/metabolism , Arabidopsis/drug effects , Arabidopsis Proteins/genetics , Body Patterning/drug effects , Cell Proliferation/drug effects , Gene Expression Regulation, Plant/drug effects , Histone-Lysine N-Methyltransferase , Indoleacetic Acids/pharmacology , Meristem/drug effects , Meristem/metabolism , Mutation , Plant Roots/drug effects , Stem Cell Niche/drug effects , Time Factors , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL