Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
mSphere ; 9(7): e0002024, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38934599

ABSTRACT

Bacterial ribonuclease E (RNase E) is vital for posttranscriptional regulation by degrading and processing RNA. The RraA protein inhibits RNase E activity through protein-protein interactions, exerting a global regulatory effect on gene expression. However, the specific role of RraA remains unclear. In this study, we investigated rraA expression in Vibrio alginolyticus ZJ-T and identified three promoters responsible for its expression, resulting in transcripts with varying 5'-UTR lengths. During the stationary phase, rraA was significantly posttranscriptionally inhibited. Deletion of rraA had no impact on bacterial growth in rich medium Luria-Bertani broth with salt (LBS) but resulted in decreased biofilm formation and increased resistance to polymyxin B. Transcriptome analysis revealed 350 differentially expressed genes (DEGs) between the wild type and the rraA mutant, while proteome analysis identified 267 differentially expressed proteins (DEPs). Integrative analysis identified 55 genes common to both DEGs and DEPs, suggesting that RraA primarily affects gene expression at the posttranscriptional level. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis demonstrated that RraA facilitates the conversion of fatty acids, propionic acid, and branched-chain amino acids to acetyl-CoA while enhancing amino acid and peptide uptake. Notably, RraA positively regulates the expression of virulence-associated genes, including those involved in biofilm formation and the type VI secretion system. This study expands the understanding of the regulatory network of RraA through transcriptome analysis, emphasizing the importance of proteomic analysis in investigating posttranscriptional regulation.IMPORTANCERraA is an inhibitor protein of ribonuclease E that interacts with and suppresses its endonucleolytic activity, thereby playing a widespread regulatory role in the degradation and maturation of diverse mRNAs and noncoding small RNAs. However, the physiological functions and associated regulon of RraA in Vibrio alginolyticus have not been fully elucidated. Here, we report that RraA impacts virulence-associated physiological processes, namely, antibiotic resistance and biofilm formation, in V. alginolyticus. By conducting an integrative analysis of both the transcriptome and proteome, we revealed the involvement of RraA in carbon metabolism, amino acid catabolism, and transport, as well as in the type VI secretion system. Collectively, these findings elucidate the regulatory influence of RraA on multiple pathways associated with metabolism and pathogenesis in V. alginolyticus.


Subject(s)
Bacterial Proteins , Biofilms , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Proteome , Transcriptome , Vibrio alginolyticus , Vibrio alginolyticus/genetics , Vibrio alginolyticus/metabolism , Vibrio alginolyticus/pathogenicity , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Proteome/genetics , Biofilms/growth & development , Endoribonucleases/genetics , Endoribonucleases/metabolism , Anti-Bacterial Agents/pharmacology
2.
Protein Sci ; 33(2): e4864, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38073126

ABSTRACT

Escherichia coli is one of the most widely utilized hosts for production of recombinant membrane proteins (MPs). Bacterial MP production, however, is usually accompanied by severe toxicity and low-level volumetric accumulation. In previous work, we had discovered that co-expression of RraA, an inhibitor of the RNA-degrading activity of RNase E, can efficiently suppress the cytotoxicity associated with the MP overexpression process and, simultaneously, enhance significantly the cellular accumulation of membrane-incorporated recombinant MPs in bacteria. Based on this, we constructed the specialized MP-producing E. coli strain SuptoxR, which can achieve dramatically enhanced volumetric yields of well-folded recombinant MPs. Ιn the present work, we have investigated whether domain deletions in the E. coli RNase E, which exhibit reduced ribonucleolytic activity, can result in suppressed MP-induced toxicity and enhanced recombinant MP production, in a manner resembling the conditions of rraA overexpression in E. coli SuptoxR. We have found that some strains encoding specific RNase E truncation variants can achieve significantly enhanced levels of recombinant MP production. Among these, we have found a single RNase E variant strain, which can efficiently suppress MP-induced toxicity and achieve greatly enhanced levels of recombinant MP production for proteins of both prokaryotic and eukaryotic origin. Based on its properties, and in analogy to the original SuptoxR strain, we have termed this strain SuptoxRNE22. E. coli SuptoxRNE22 can perform better than commercially available bacterial strains, which are frequently utilized for recombinant MP production. We anticipate that SuptoxRNE22 will become a widely utilized host for recombinant MP production in bacteria.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Ribonucleases/genetics , Ribonucleases/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Membrane Proteins/metabolism , Endoribonucleases/genetics , Endoribonucleases/metabolism , Ribonuclease, Pancreatic/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
3.
ACS Synth Biol ; 11(8): 2599-2609, 2022 08 19.
Article in English | MEDLINE | ID: mdl-35922033

ABSTRACT

Escherichia coli is one of the most widely utilized hosts for recombinant protein production, including that of membrane proteins (MPs). We have recently engineered a specialized E. coli strain for enhanced recombinant MP production, termed SuptoxR. By appropriately co-expressing the effector gene rraA, SuptoxR can suppress the high toxicity, which is frequently observed during the MP-overexpression process, and, at the same time, enhance significantly the cellular accumulation of membrane-incorporated and properly folded recombinant MP. The combination of these two beneficial effects results in dramatically enhanced volumetric yields for various prokaryotic and eukaryotic MPs. Here, we engineered second-generation SuptoxR strains with further improved properties, so that they can achieve even higher levels of recombinant MP production. We searched for naturally occurring RraA variants with similar or improved MP toxicity-suppressing and production-promoting effects to that of the native E. coli RraA of the original SuptoxR strain. We found that the RraA proteins from Proteus mirabilis and Providencia stuartii can be even more potent enhancers of MP productivity than the E. coli RraA. By exploiting these two newly identified RraAs, we constructed two second-generation SuptoxR strains, termed SuptoxR2.1 and SuptoxR2.2, whose MP-production capabilities often surpass those of the original SuptoxR significantly. SuptoxR2.1 and SuptoxR2.2 are expected to become widely useful expression hosts for recombinant MP production in bacteria.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
4.
ACS Synth Biol ; 8(7): 1631-1641, 2019 07 19.
Article in English | MEDLINE | ID: mdl-31243979

ABSTRACT

Membrane proteins (MPs) execute a wide variety of critical biological functions in all living organisms and constitute approximately half of current targets for drug discovery. As in the case of soluble proteins, the bacterium Escherichia coli has served as a very popular overexpression host for biochemical/structural studies of membrane proteins as well. Bacterial recombinant membrane protein production, however, is typically hampered by poor cellular accumulation and severe toxicity for the host, which leads to low levels of final biomass and minute volumetric yields. In previous work, we generated the engineered E. coli strains SuptoxD and SuptoxR, which upon coexpression of the effector genes djlA or rraA, respectively, can suppress the cytotoxicity caused by MP overexpression and produce enhanced MP yields. Here, we systematically looked for gene overexpression and culturing conditions that maximize the accumulation of membrane-integrated and well-folded recombinant MPs in these strains. We have found that, under optimal conditions, SuptoxD and SuptoxR achieve greatly enhanced recombinant production for a variety of MP, irrespective of their archaeal, eubacterial, or eukaryotic origin. Furthermore, we demonstrate that the use of these engineered strains enables the production of well-folded recombinant MPs of high quality and at high yields, which are suitable for functional and structural studies. We anticipate that SuptoxD and SuptoxR will become broadly utilized expression hosts for recombinant MP production in bacteria.


Subject(s)
Escherichia coli Proteins/genetics , Escherichia coli/genetics , Membrane Proteins/genetics , Recombinant Proteins/genetics , Biomass , Gene Expression/genetics
5.
J Mol Biol ; 429(12): 1800-1816, 2017 06 16.
Article in English | MEDLINE | ID: mdl-28501587

ABSTRACT

In previous work, we have generated the engineered Escherichia coli strains SuptoxD and SuptoxR, which upon co-expression of the effector genes djlA or rraA, respectively, are capable of suppressing the cytotoxicity caused by membrane protein (MP) overexpression and of producing dramatically enhanced yields for a variety of recombinant MPs of both prokaryotic and eukaryotic origin. Here, we investigated the functional requirements for DnaJ-like protein A (DjlA)- and regulator of ribonuclease activity A (RraA)-mediated enhancement of recombinant MP production in these strains and show that: (i) DjlA and RraA act independently, that is, the beneficial effects of each protein on recombinant MP production occur through a mechanism that does not involve the other, and in a non-additive manner; (ii) full-length and membrane-bound DjlA is required for exerting its beneficial effects on recombinant MP production in E. coli SuptoxD; (iii) the MP production-promoting properties of DjlA in SuptoxD involve the action of the molecular chaperone DnaK but do not rely on the activation of the regulation of capsular synthesis response, a well-established consequence of djlA overexpression; (iv) the observed RraA-mediated effects in E. coli SuptoxR involve the ribonucleolytic activity of RNase E, but not that of its paralogous ribonuclease RNase G; and (v) DjlA and RraA are unique among similar E. coli proteins in their ability to promote bacterial recombinant MP production. These observations provide important clues about the molecular requirements for suppressed toxicity and enhanced MP accumulation in SuptoxD/SuptoxR and will guide future studies aiming to decipher the exact mechanism of DjlA- and RraA-mediated enhancement of recombinant MP production in these strains.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , HSP40 Heat-Shock Proteins/metabolism , Membrane Proteins/metabolism , Recombinant Proteins/metabolism , Bacterial Proteins , Escherichia coli/genetics , Escherichia coli Proteins/genetics , HSP40 Heat-Shock Proteins/genetics , Membrane Proteins/genetics , Membrane Proteins/toxicity , Metabolic Engineering , Recombinant Proteins/genetics , Recombinant Proteins/toxicity
6.
ACS Synth Biol ; 6(2): 284-300, 2017 02 17.
Article in English | MEDLINE | ID: mdl-27797488

ABSTRACT

Membrane proteins perform critical cellular functions in all living organisms and constitute major targets for drug discovery. Escherichia coli has been the most popular overexpression host for membrane protein biochemical/structural studies. Bacterial production of recombinant membrane proteins, however, is typically hampered by poor cellular accumulation and severe toxicity for the host, which leads to low final biomass and minute volumetric yields. In this work, we aimed to rewire the E. coli protein-producing machinery to withstand the toxicity caused by membrane protein overexpression in order to generate engineered bacterial strains with the ability to achieve high-level membrane protein production. To achieve this, we searched for bacterial genes whose coexpression can suppress membrane protein-induced toxicity and identified two highly potent effectors: the membrane-bound DnaK cochaperone DjlA, and the inhibitor of the mRNA-degrading activity of the E. coli RNase E, RraA. E. coli strains coexpressing either djlA or rraA, termed SuptoxD and SuptoxR, respectively, accumulated markedly higher levels of final biomass and produced dramatically enhanced yields for a variety of prokaryotic and eukaryotic recombinant membrane proteins. In all tested cases, either SuptoxD, or SuptoxR, or both, outperformed the capabilities of commercial strains frequently utilized for recombinant membrane protein production purposes.


Subject(s)
Escherichia coli Proteins/genetics , Escherichia coli/genetics , Membrane Proteins/genetics , Recombinant Proteins/genetics , Biomass , Endoribonucleases/genetics , Gene Expression Regulation, Bacterial/genetics , Genes, Bacterial/genetics , HSP40 Heat-Shock Proteins/genetics , RNA Stability/genetics , RNA, Messenger/genetics
7.
J Microbiol ; 55(1): 37-43, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28035598

ABSTRACT

RraA is a protein inhibitor of RNase E, which degrades and processes numerous RNAs in Escherichia coli. Streptomyces coelicolor also contains homologs of RNase E and RraA, RNase ES and RraAS1/RraAS2, respectively. Here, we report that, unlike other RraA homologs, RraAS1 directly interacts with the catalytic domain of RNase ES to exert its inhibitory effect. We further show that rraAS1 gene deletion in S. coelicolor results in a higher growth rate and increased production of actinorhodin and undecylprodigiosin, compared with the wild-type strain, suggesting that RraAS1-mediated regulation of RNase ES activity contributes to modulating the cellular physiology of S. coelicolor.


Subject(s)
Bacterial Proteins/metabolism , Catalytic Domain , Endoribonucleases/antagonists & inhibitors , Endoribonucleases/metabolism , Gene Expression Regulation, Bacterial , Streptomyces coelicolor/genetics , Streptomyces coelicolor/physiology , Anthraquinones/metabolism , Bacterial Proteins/genetics , Endoribonucleases/chemistry , Gene Deletion , Prodigiosin/analogs & derivatives , Prodigiosin/metabolism , Streptomyces coelicolor/growth & development
8.
J Biol Chem ; 288(44): 31919-29, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24045937

ABSTRACT

Members of the DEAD-box family of RNA helicases contribute to virtually every aspect of RNA metabolism, in organisms from all domains of life. Many of these helicases are constituents of multicomponent assemblies, and their interactions with partner proteins within the complexes underpin their activities and biological function. In Escherichia coli the DEAD-box helicase RhlB is a component of the multienzyme RNA degradosome assembly, and its interaction with the core ribonuclease RNase E boosts the ATP-dependent activity of the helicase. Earlier studies have identified the regulator of ribonuclease activity A (RraA) as a potential interaction partner of both RNase E and RhlB. We present structural and biochemical evidence showing how RraA can bind to, and modulate the activity of RhlB and another E. coli DEAD-box enzyme, SrmB. Crystallographic structures are presented of RraA in complex with a portion of the natively unstructured C-terminal tail of RhlB at 2.8-Å resolution, and in complex with the C-terminal RecA-like domain of SrmB at 2.9 Å. The models suggest two distinct mechanisms by which RraA might modulate the activity of these and potentially other helicases.


Subject(s)
DEAD-box RNA Helicases/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli/chemistry , Models, Molecular , Crystallography, X-Ray , DEAD-box RNA Helicases/metabolism , Endoribonucleases/chemistry , Endoribonucleases/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Protein Binding , Protein Structure, Quaternary , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL