Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Publication year range
1.
Front Plant Sci ; 14: 1283315, 2023.
Article in English | MEDLINE | ID: mdl-38155856

ABSTRACT

The ongoing global warming trajectory poses extensive challenges to plant ecosystems, with rubber plantations particularly vulnerable due to their influence on not only the longevity of the growth cycle and rubber yield, but also the complex interplay of carbon, water, and energy exchanges between the forest canopy and atmosphere. However, the response mechanism of phenology in rubber plantations to climate change remains unclear. This study concentrates on sub-optimal environment rubber plantations in Yunnan province, Southwest China. Utilizing the Google Earth Engine (GEE) cloud platform, multi-source remote sensing images were synthesized at 8-day intervals with a spatial resolution of 30-meters. The Normalized Difference Vegetation Index (NDVI) time series was reconstructed using the Savitzky-Golay (S-G) filter, coupled with the application of the seasonal amplitude method to extract three crucial phenological indicators, namely the start of the growing season (SOS), the end of the growing season (EOS), and the length of the growing season (LOS). Linear regression method, Pearson correlation coefficient, multiple stepwise regression analysis were used to extract of the phenology trend and find the relationship between SOS, EOS and climate factors. The findings demonstrated that 1) the phenology of rubber plantations has undergone dynamic changes over the past two decades. Specifically, the SOS advanced by 9.4 days per decade (R2 = 0.42, p< 0.01), whereas the EOS was delayed by 3.8 days per decade (R2 = 0.35, p< 0.01). Additionally, the LOS was extended by 13.2 days per decade (R2 = 0.55, p< 0.01); 2) rubber phenology demonstrated a notable sensitivity to temperature fluctuations during the dry season and precipitation patterns during the rainy season. The SOS advanced 2.0 days (r =-0.19, p< 0.01) and the EOS advanced 2.8 days (r =-0.35, p< 0.01) for every 1°C increase in the cool-dry season. Whereas a 100 mm increase in rainy season precipitation caused the SOS to be delayed by 2.0 days (r = 0.24, p< 0.01), a 100 mm increase in hot-dry season precipitation caused the EOS to be advanced by 7.0 days (r =-0.28, p< 0.01); 3) rubber phenology displayed a legacy effect of preseason climate variations. Changes in temperature during the fourth preseason month and precipitation during the fourth and eleventh preseason months are predominantly responsible for the variation in SOS. Meanwhile, temperature changes during the second, fourth, and ninth preseason months are primarily responsible for the variation in EOS. The study aims to enhance our understanding of how rubber plantations respond to climate change in sub-optimal environments and provide valuable insights for sustainable rubber production management in the face of changing environmental conditions.

2.
Sci Total Environ ; 874: 162505, 2023 May 20.
Article in English | MEDLINE | ID: mdl-36863580

ABSTRACT

Understanding the status and changes of plant diversity in rubber (Hevea brasiliensis) plantations is essential for sustainable plantation management in the context of rapid rubber expansion in the tropics, but remains very limited at the continental scale. In this study, we investigated plant diversity from 10-meter quadrats in 240 different rubber plantations in the six countries of the Great Mekong Subregion (GMS)-where nearly half of the world's rubber plantations are located-and analyzed the influence of original land cover types and stand age on plant diversity using Landsat and Sentinel-2 satellite imagery since the late 1980s. The results indicate that the average plant species richness of rubber plantations is 28.69 ± 7.35 (1061 species in total, of which 11.22 % are invasive), approximating half the species richness of tropical forests but roughly double that of the intensively managed croplands. Time-series satellite imagery analysis revealed that rubber plantations were primarily established in place of cropland (RPC, 37.72 %), old rubber plantations (RPORP, 27.63 %), and tropical forests (RPTF, 24.12 %). Plant species richness in RPTF (34.02 ± 7.62) was significantly (p < 0.001) higher than that in RPORP (26.41 ± 7.02) and RPC (26.34 ± 5.37). More importantly, species richness can be maintained for the duration of the 30-year economic cycle, and the number of invasive species decreases as the stand ages. Given diverse land conversions and changes in stand age, the total loss of species richness due to rapid rubber expansion in the GMS was 7.29 %, which is far below the traditional estimates that only consider tropical forest conversion. In general, maintaining higher species richness at the earliest stages of cultivation has significant implications for biodiversity conservation in rubber plantations.


Subject(s)
Hevea , Rubber , Forests , Biodiversity , Introduced Species
3.
Ecohealth ; 19(2): 259-272, 2022 06.
Article in English | MEDLINE | ID: mdl-35759112

ABSTRACT

In Côte d'Ivoire, rubber cultivation has more than doubled since 2010. These mass agricultural areas require a large workforce with little information on how this environment might impact risk of mosquito-borne diseases. The objective of this study was to assess the larval ecology of mosquitoes in rubber areas of Dabou, Côte d'Ivoire. From January to June 2017, an entomological survey was conducted of mature (MP) and immature (IP) rubber plantations, as well as in villages surrounded by rubber plantations (SV) and remote from rubber plantations (RV). The number and type of potential and positive breeding sites were recorded, and mosquito larval densities and diversity were estimated. Seven genera divided into 31 species including major vector such as Anopheles gambiae s.l. and Aedes aegypti were identified. A total of 1,660 waterbodies were identified with a larvae positivity rate of 63.1%. A majority of waterbodies were identified in SV (N = 875, 53.4% positivity rate), followed by MP (N = 422, 81.8% positivity rate), IP (N = 194, 72.2% positivity rate) and least in RV (N = 169, 57.4% positivity rate). The most important breeding sites for disease vectors were leaf axils in IP (N = 108, 77.1%), latex collection cups in MP (N = 332, 96.2%) and the containers abandoned in the SV (N = 242, 51.8%) as well as in the RV (N = 59, 60.8%). All these results allow us to affirm that the cultivation of rubber trees has an impact on the larval ecology by increasing the number of available sites and favoring a high larval density and diversity.


Subject(s)
Anopheles , Culicidae , Animals , Cote d'Ivoire , Larva , Mosquito Vectors , Plant Breeding , Rubber
4.
J Environ Manage ; 292: 112747, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-33965684

ABSTRACT

The global land area devoted to rubber plantations has now reached 13 million hectares, and the further expansion of these rubber plantations at the expense of tropical forests will have significant adverse effects on the ecological environment. Rubber-based agroforestry systems are considered a preferable approach for ameliorating the ecological environment. Many researchers have focused on the positive effects of rubber-based agroforestry systems on the ecological environment, while ignoring the risks involved in the establishment of rubber-based agroforestry systems. The present study investigated the effects of different-aged rubber-based agroforestry systems on the abundance and diversity of ground arthropods. It has been observed that the abundance and taxon richness of ground arthropods generally showed no difference when comparing young and mature rubber plantations. The rubber-based agroforestry systems significantly decreased the understory vegetation species, along with the abundance and taxon richness of ground arthropods compared to the same aged-rubber monoculture plantations. In addition, the change in the abundance and taxon richness of ground arthropods was greatly affected by the understory vegetation species and soil temperature. The abundance and taxon richness of ground arthropods decreased with the decrease in number of species of understory vegetation. The study results indicate that the establishment of rubber-based agroforestry systems have adversely affected the abundance and richness of ground arthropods to an extant greater than expected. Therefore, single, large rubber-based agroforestry systems are not recommended, and the intercropping of rubber and rubber-based agroforestry systems must be designed to promote the migration of ground arthropods between different systems.


Subject(s)
Arthropods , Animals , Biodiversity , Forests , Rubber , Soil
5.
J Environ Manage ; 285: 112147, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33607560

ABSTRACT

Land degradation is a global problem caused by improper agricultural practices. In tropical China, the rubber (Hevea brasiliensis) plantations are predominantly practiced on forest-cleared lands, considering their sustainable land management potential compared to annual cropping. However, all rubber plantations may not have similar land management capacity. Soil quality index (SQI) can reveal the overall soil status with a single score, which is an efficient tool to evaluate the soil quality of each category of rubber plantations. We investigated 23 soil physical and chemical parameters of three categories of rubber plantations and a primary rainforest, and derived SQI based on these parameters. Soil samples were collected from a rubber monoculture (RM), a rubber-Camellia sinensis agroforestry (RT), a rubber-Dracaena cochinchinensis agroforestry (RD), and a primary rainforest (RF). The results showed that the SQI value of the RM decreased by 15.50% compared to the RF, with a significant degree of soil nutrient loss (18.90%). This indicates that monocultural rubber cultivation is causing land degradation to some extent. However, the SQI was significantly enhanced by rubber-based agroforestry practices (25.30% by RT and 33.10% by RD) compared to the RM, suggesting that polyculture practices are suitable to recover the soil quality in degraded agricultural lands. Moreover, the chemical parameters contributed more to the SQI than did the physical parameters, indicating that nutrient management is important in soil quality recovery. Overall, our results suggest that agroforestry should be preferred over monoculture in the rubber plantations for sustainable land management in tropical China.


Subject(s)
Hevea , Soil , Agriculture , China , Rainforest
6.
PeerJ ; 5: e2975, 2017.
Article in English | MEDLINE | ID: mdl-28194318

ABSTRACT

Including food production in non-food systems, such as rubber plantations and biofuel or bioenergy crops, may contribute to household food security. We evaluated the potential for planting rice, mungbean, rice cultivar mixtures, and rice intercropped with mungbean in young rubber plantations in experiments in the Arakan Valley of Mindanao in the Philippines. Rice mixtures consisted of two- or three-row strips of cultivar Dinorado, a cultivar with higher value but lower yield, and high-yielding cultivar UPL Ri-5. Rice and mungbean intercropping treatments consisted of different combinations of two- or three-row strips of rice and mungbean. We used generalized linear mixed models to evaluate the yield of each crop alone and in the mixture or intercropping treatments. We also evaluated a land equivalent ratio for yield, along with weed biomass (where Ageratum conyzoides was particularly abundant), the severity of disease caused by Magnaporthe oryzae and Cochliobolus miyabeanus, and rice bug (Leptocorisa acuta) abundance. We analyzed the yield ranking of each cropping system across site-year combinations to determine mean relative performance and yield stability. When weighted by their relative economic value, UPL Ri-5 had the highest mean performance, but with decreasing performance in low-yielding environments. A rice and mungbean intercropping system had the second highest performance, tied with high-value Dinorado but without decreasing relative performance in low-yielding environments. Rice and mungbean intercropped with rubber have been adopted by farmers in the Arakan Valley.

7.
Cienc. tecnol. salud ; 2(1): 39-45, ene.-jun. 2015. tab, graf
Article in Spanish | LILACS | ID: biblio-834317

ABSTRACT

El mayor y mejor uso de las tierras en El Estor, Izabal, está determinado por los regímenes de precipitación, topografía y manejo de los suelos. La erosión es el principal proceso de degradación de los suelos en esta región del país, por lo que se evaluó el efecto de diferentes usos de la tierra sobre la erosión y sedimentación media. Se utilizó el método de las varillas de erosión para estimar las variables primarias de erosión y sedimentación media; y posteriormente, las variables derivadas erosión neta y movilidad del suelo, durante los meses de febrero a noviembre del año 2014. Los resultados de los valores de erosión media y movilidad del suelo en plantaciones de hule y tierra en barbecho presentaron relaciones directas r = 0.63 y r = 0.77 respectivamente. Los valores de sedimentación media y movilidad del suelo en bosque secundario y tierra en barbecho presentaron relaciones inversas r = -0.88 y r = -0.79 respectivamente, en ambos casos con 5% de significancia. Además, los resultados del análisis estadístico de la evaluación experimental del uso de la tierra sobre las variables de respuesta, indicaron efecto del uso de la tierra sobre la erosión media de los suelos en la época lluviosa, con 5% de significancia. En su orden, las plantaciones de hule, tierra en barbecho, agricultura anual y bosque secundario, causaron mayor erosión del suelo. Se concluyó que las plantaciones de hule causaron tasas de erosión del doble en relación a las reportadas en el bosque secundario.


The mayor and best land use in El Estor, Izabal is determined by rainfall patterns, topography and soil management. The erosion is the main process of soil degradation in this region, so the effect of different land uses on mean soil erosion and sedimentation were evaluated. The method of erosion rods was used to estimate the mean soil erosion and sedimentation, as primary variables, and then the resulting net soil erosion and soil mobility, as secondary variables, during the months of February to November 2014. The results of mean values of soil erosion and soil mobility in rubber plantations and fallow land had direct relations r = 0.63 and r = 0.77 respectively. The mean values of sedimentation and soil mobility in secondary forest and fallow land had inverse relationships r = -0.88 and r = -0.79 respectively, both with 5% significance. In addition, the statistical analysis of the experimental evaluation of the land use effect on the response variables, indicated effect of land use on mean soil erosion during the rainy season, with 5% significance. In its order, the rubber plantations, fallow land, agriculture and secondary forest causing increased soil erosion. It was concluded that rubber plantations caused double erosion rate compared to those reported in the secondary forest.


Subject(s)
Humans , Animals , Hevea
8.
Glob Chang Biol ; 18(10): 3087-3099, 2012 Oct.
Article in English | MEDLINE | ID: mdl-28741819

ABSTRACT

Policy makers across the tropics propose that carbon finance could provide incentives for forest frontier communities to transition away from swidden agriculture (slash-and-burn or shifting cultivation) to other systems that potentially reduce emissions and/or increase carbon sequestration. However, there is little certainty regarding the carbon outcomes of many key land-use transitions at the center of current policy debates. Our meta-analysis of over 250 studies reporting above- and below-ground carbon estimates for different land-use types indicates great uncertainty in the net total ecosystem carbon changes that can be expected from many transitions, including the replacement of various types of swidden agriculture with oil palm, rubber, or some other types of agroforestry systems. These transitions are underway throughout Southeast Asia, and are at the heart of REDD+ debates. Exceptions of unambiguous carbon outcomes are the abandonment of any type of agriculture to allow forest regeneration (a certain positive carbon outcome) and expansion of agriculture into mature forest (a certain negative carbon outcome). With respect to swiddening, our meta-analysis supports a reassessment of policies that encourage land-cover conversion away from these [especially long-fallow] systems to other more cash-crop-oriented systems producing ambiguous carbon stock changes - including oil palm and rubber. In some instances, lengthening fallow periods of an existing swidden system may produce substantial carbon benefits, as would conversion from intensely cultivated lands to high-biomass plantations and some other types of agroforestry. More field studies are needed to provide better data of above- and below-ground carbon stocks before informed recommendations or policy decisions can be made regarding which land-use regimes optimize or increase carbon sequestration. As some transitions may negatively impact other ecosystem services, food security, and local livelihoods, the entire carbon and noncarbon benefit stream should also be taken into account before prescribing transitions with ambiguous carbon benefits.

SELECTION OF CITATIONS
SEARCH DETAIL