Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
1.
Front Plant Sci ; 15: 1419392, 2024.
Article in English | MEDLINE | ID: mdl-38919816

ABSTRACT

The growth and quality of medicinal plants depend heavily on environmental variables. The quality of Rubia cordifolia, an important medicinal plant, is determined by the two main secondary metabolites of the root, purpurin and mollugin. However, their relationship with environmental factors has not been studied. In this study, the purpurin and mollugin contents of R. cordifolia roots from different sampling sites in China were measured using ultra-high-performance liquid chromatography, and the correlations between the two secondary metabolites and environmental variables were analyzed. The results showed that there were significant differences in the contents of purpurin and mollugin in the roots of R. cordifolia at different sampling points. The content of purpurin ranged from 0.00 to 3.03 mg g-1, while the content of mollugin ranged from 0.03 to 10.09 mg g-1. The quality of R. cordifolia in Shanxi, Shaanxi and Henan border areas and southeastern Liaoning was higher. Liaoning is expected to become a R. cordifolia planting area in Northeast China. Correlation and regression analysis revealed that the two secondary metabolites were affected by different environmental factors, the two secondary metabolites contents were positively correlated with longitude and latitude, and negatively correlated with soil nutrients. In addition, higher temperature and shorter sunshine duration facilitated the synthesis of purpurin. Annual precipitation might be the main factor limiting the quality of R. cordifolia because it had opposite effects on the synthesis of two major secondary metabolites. Therefore, this study is of great significance for the selection of R. cordifolia planting areas and the improvement of field planting quality.

2.
Nat Prod Res ; : 1-10, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38824663

ABSTRACT

Plants have gained great importance. Secondary metabolites contribute to the drug discovery and development by their bioactive properties. Rubia tinctorum L. essential oil (EO) was obtained and analysed. Antioxidant and antibacterial activities were evaluated. The plant's EOs were obtained through steam distillation, and the compounds were identified using gas chromatography-mass spectrometry (GC-MS) analysis. DPPH free radical scavenging and ferric-reducing antioxidant power (FRAP) were employed to assess antioxidant activity. Total antioxidant capacity (TAC) was also presented. The disc diffusion method was employed for testing antibacterial activity. Cyclohexanone was identified as the predominant component in the EO, constituting 88.74% of the total composition. The EO did not show significant antioxidant capacity, while it demonstrated antimicrobial effect against Bacillus cereus ATCC 6633 (>13 mm of inhibition; 500 mg/mL) and Shigella ATCC 12022 (≥12 mm of inhibition; 500 mg/mL). R. tinctorum L. is new source of cyclohexanone.

3.
Yakugaku Zasshi ; 144(5): 553-565, 2024.
Article in Japanese | MEDLINE | ID: mdl-38692932

ABSTRACT

A series of antitumor bicyclic hexapeptide RA-VII analogues modified at residue 2, 3, or 6 were prepared by the chemical transformation of the hydroxy, methoxy, or carboxy groups or the aromatic rings of natural peptides RA-II, III, V, VII, and X. Analogues with modified side chains or peptide backbones, which cannot be prepared by the chemical transformation of their natural peptides, and newly isolated peptides from Rubia cordifolia roots were synthesized by using protected cycloisodityrosines prepared by the degradation of bis(thioamide) obtained from RA-VII or the diphenyl ether formation of boronodipeptide under the modified Chan-Lam coupling reaction conditions. Studies of the conformational features of the analogues and the newly isolated peptides and their relationships with cytotoxic activities against the HCT-116, HL-60, KATO-III, KB, L1210, MCF-7, and P-388 cell lines revealed the following: the methoxy group at residue 3 is essential for the potent cytotoxic activity; the methyl group at Ala-2 and Ala-4 but not at D-Ala-1 is required to establish the bioactive conformation; the N-methyl group at Tyr-5 is necessary for the peptides to adopt the active conformation preferentially; and the orientation of Tyr-5 and/or Tyr-6 phenyl rings has a significant effect on the cytotoxic activity.


Subject(s)
Peptides, Cyclic , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents, Phytogenic/pharmacology , Cell Line, Tumor , Oligopeptides/chemistry , Oligopeptides/pharmacology , Oligopeptides/chemical synthesis , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Peptides, Cyclic/chemical synthesis , Plant Roots/chemistry , Protein Conformation , Rubia/chemistry , Structure-Activity Relationship
4.
Pest Manag Sci ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38747671

ABSTRACT

BACKGROUND: The discovery of antimicrobial ingredients from natural products could be an effective way to create novel fungicides. Rubia cordifolia L., a traditional Chinese herb, may have antimicrobial effects on plant pathogens according to our previous screening study. RESULTS: Rubia cordifolia L. extracts had moderate inhibitory effects on apple Valsa canker (Valsa mali) and tomato grey mould (Botrytis cinerea) at a concentration of 10 mg mL-1. With the use of bioguided isolation methods, eight compounds (1-8) were obtained, including the new compound 2,2,6-trimethyl-6-(4-methylphenyl)-tetrahydropyrano- 3-ol (7), and seven quinone derivatives. Two compounds, mollugin (1) and 1,3,6-trihydroxy-2-methylanthraquinone (6), were found to exhibit outstanding antifungal activities against V. mali and Phytophthora capsici Leon. The half maximal effective concentration (EC50) of compound 1 and compound 6 against V. mali were 79.08 and 81.78 µg mL-1, respectively, and the EC50 of compound 6 against P. capsici was 4.86 µg mL-1. Compound 1 also showed excellent activity against tobacco mosaic virus (TMV). The inactive, inductive, protective and curative activities against TMV were 84.29%, 83.38%, 86.81%, and 60.02%, respectively, at a concentration of 500 µg mL-1, which were all close to or greater than that of the positive control (100 µg mL-1 chitosan oligosaccharide, COS). CONCLUSION: Mollugin and 1,3,6-trihydroxy-2-methylanthraquinone are potentially valuable active compounds that lay a foundation for research on botanical fungicide products derived from R. cordifolia L. and provide lead structures for quinone derivative synthesis and structural modification. © 2024 Society of Chemical Industry.

5.
Fitoterapia ; 175: 105961, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38626855

ABSTRACT

Two unprecedented quinone compounds Rubiaxylm A (1) and Rubiaxylm B (2), along with fifteen known anthraquinones (3-17) were isolated and characterized from the roots of Rubia tibetica in Tibetan medicine. Their structures were identified through comprehensive analyses of 1D/2D NMR as well as HR-ESIMS data. Furthermore, all separated compounds were evaluated for their cytotoxic activity on A549, Caco-2, MDA-MB-231 and Skov-3 cell lines. In particular, compound 2 effectively inhibited MDA-MB-231 cells with an IC50 value of 8.15 ± 0.20 µM. Subsequently, the anti-tumor mechanism of 2 was investigated by flow cytometry, JC-1 staining, cell scratching and cell colony. These results indicated that compound 2 could inhibit the proliferation of MDA-MB-231 cells by arresting cells in the G1 phase.


Subject(s)
Antineoplastic Agents, Phytogenic , Medicine, Tibetan Traditional , Phytochemicals , Plant Roots , Rubia , Humans , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/isolation & purification , Molecular Structure , Cell Line, Tumor , Rubia/chemistry , Plant Roots/chemistry , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Anthraquinones/pharmacology , Anthraquinones/isolation & purification , Anthraquinones/chemistry , Tibet , Quinones/pharmacology , Quinones/isolation & purification , Quinones/chemistry
6.
Biomed Rep ; 20(5): 75, 2024 May.
Article in English | MEDLINE | ID: mdl-38544959

ABSTRACT

The present study investigated the inhibitory and neuroprotective effects of Rubia yunnanensis alcohol extract (RY-A) on oxidative stress induced by oxygen-glucose deprivation/reoxygenation (OGD/R) in HT22 cells. In vitro cultured HT22 cells were randomly divided into control, OGD/R, OGD/R + 100 µmol/l edaravone and OGD/R + 10, 20 and 40 µg/ml RY-A groups. Oxygen-sugar deprivation was performed with 10 mmol/l sodium dithionite combined with sugar-free DMEM medium for 2 h, followed by re-glycolization and reoxygenation for 2 h to establish an in vitro OGD/R model. Cell morphology was observed under a phase contrast microscope. Cell survival rate was detected by thiazolyl blue and lactate dehydrogenase and oxidative stress-related indexes were detected by commercial kits. The effects and metabolic alterations of RY-A treatment after OGD/R were evaluated using ultra-high performance liquid chromatography and mass spectrometry. Protein levels were further examined by western blotting. The results showed that cells in the OGD/R group were swollen and lacked protrusions, had significantly reduced viability and had significantly elevated oxidative stress-related indexes of reactive oxygen species, nitric oxide levels and malondialdehyde content and significantly reduced activities of the antioxidant enzymes superoxide dismutase and glutathione peroxidase, compared with controls. Compared with the OGD/R group, the RY-A group had significantly improved cell morphology and significantly increased cell viability and in terms of oxidative stress, exhibited significantly reduced reactive oxygen species, nitric oxide levels and malondialdehyde content, as well as significantly increased superoxide dismutase and glutathione peroxidase activities. Metabolomic analysis identified changes in 20 metabolites, including L-tryptophan, ornithine, eicosapentaenoic acid-d5, isosafrole and xanthine. Metabolomics analysis showed that the pathways affected included those related to phenylalanine, tyrosine and tryptophan biosynthesis, the prolactin signaling pathway and amphetamine addiction. These results suggested that RY-A had significant preventive effects on an in vitro model of cerebral ischemia-reperfusion injury simulated by OGD/R and the mechanism may be related to increased tryptophan content, activation of indoleamine 2,3-dioxygenase enzymes and inhibition of oxidative stress.

7.
Front Immunol ; 15: 1299484, 2024.
Article in English | MEDLINE | ID: mdl-38380329

ABSTRACT

Introduction: Peanut allergy is an immunoglobulin E (IgE) mediated food allergy. Rubia cordifolia L. (R. cordifolia), a Chinese herbal medicine, protects against peanut-induced anaphylaxis by suppressing IgE production in vivo. This study aims to identify IgE-inhibitory compounds from the water extract of R. cordifolia and investigate the underlying mechanisms using in vitro and in vivo models. Methods: Compounds were isolated from R. cordifolia water extract and their bioactivity on IgE production was assessed using a human myeloma U266 cell line. The purified active compound, xanthopurpurin (XPP), was identified by LC-MS and NMR. Peanut-allergic C3H/HeJ mice were orally administered with or without XPP at 200µg or 400µg per mouse per day for 4 weeks. Serum peanut-specific IgE levels, symptom scores, body temperatures, and plasma histamine levels were measured at challenge. Cytokines in splenocyte cultures were determined by ELISA, and IgE + B cells were analyzed by flow cytometry. Acute and sub-chronic toxicity were evaluated. IL-4 promoter DNA methylation, RNA-Seq, and qPCR analysis were performed to determine the regulatory mechanisms of XPP. Results: XPP significantly and dose-dependently suppressed the IgE production in U266 cells. XPP significantly reduced peanut-specific IgE (>80%, p <0.01), and plasma histamine levels and protected the mice against peanut-allergic reactions in both early and late treatment experiments (p < 0.05, n=9). XPP showed a strong protective effect even 5 weeks after discontinuing the treatment. XPP significantly reduced the IL-4 level without affecting IgG or IgA and IFN-γ production. Flow cytometry data showed that XPP reduced peripheral and bone marrow IgE + B cells compared to the untreated group. XPP increased IL-4 promoter methylation. RNA-Seq and RT-PCR experiments revealed that XPP regulated the gene expression of CCND1, DUSP4, SDC1, ETS1, PTPRC, and IL6R, which are related to plasma cell IgE production. All safety testing results were in the normal range. Conclusions: XPP successfully protected peanut-allergic mice against peanut anaphylaxis by suppressing IgE production. XPP suppresses murine IgE-producing B cell numbers and inhibits IgE production and associated genes in human plasma cells. XPP may be a potential therapy for IgE-mediated food allergy.


Subject(s)
Anaphylaxis , Food Hypersensitivity , Peanut Hypersensitivity , Mice , Humans , Animals , Peanut Hypersensitivity/therapy , Anaphylaxis/prevention & control , Histamine , Interleukin-4 , Bone Marrow , Mice, Inbred C3H , Immunoglobulin E , Water
8.
Biomed Rep ; 20(2): 19, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38170026

ABSTRACT

Atherosclerosis is a multifactorial vascular disease caused by endothelial dysfunction. Because of adverse reactions to drugs used to treat atherosclerosis. For example, statins, which significantly reduce the burden of atherosclerotic disease, have been associated with muscle toxicity. There is a need to identify novel drugs for the prevention and treatment of atherosclerosis Rubia yunnanensis is a herbs commonly used in Asian countries for its protective effects against cardiovascular diseases. However, the mechanism of action of R. yunnanensis extract in carotid artery atherosclerosis has not been found. The carotid artery is usually used as a site for clinical evaluation of atherosclerosis. The present study aimed to determine the mechanism of action of R. yunnanensis extract in the inhibition of carotid atherosclerosis in apolipoprotein E gene knockout (ApoE-/-) mice. The mechanism of atherosclerosis inhibition was elucidated by detecting the blood lipid level, carotid artery pathology, and the protein expression of PI3K and AKT. The present study demonstrated that ethanol extract of R. yunnanensis reduced lipid levels, intima damage and carotid lipid accumulation and increased p-PI3K/PI3K and p-AKT/AKT protein levels in ApoE-/- mice fed high-fat diet for 12 weeks. It was hypothesized that the effects of R. yunnanensis extract may be achieved by regulation of the phosphatidylinositol-3-kinase/protein kinase B signaling pathway. Ethanol extract of R. yunnanensis decreased carotid atherosclerosis in ApoE-/- mice fed a high-fat diet via the phosphatidylinositol-3-kinase/protein kinase B signaling pathway. Therefore, R. yunnanensis may be a promising option for treating atherosclerosis in the future.

9.
Nat Prod Res ; 38(5): 711-718, 2024.
Article in English | MEDLINE | ID: mdl-36971058

ABSTRACT

A new naphthoquinone derivative (1) together with twenty-three known compounds (2-24), were isolated from the aerial parts of Rubia cordifolia L. Their structures were elucidated on the basis of NMR and HR-ESIMS data. Compounds 1-13 were assessed for their inhibitory effects on NO production in LPS-stimulated RAW 264.7 macrophage cells. Compounds 2-6 exhibited significant inhibitory activities with IC50 values of 21.37, 13.81, 24.56, 20.32, and 30.08 µmol·L-1, respectively.


Subject(s)
Naphthoquinones , Rubia , Animals , Mice , Rubia/chemistry , Magnetic Resonance Spectroscopy , RAW 264.7 Cells , Naphthoquinones/pharmacology , Plant Components, Aerial , Plant Extracts/pharmacology , Plant Extracts/chemistry
10.
Pharmaceuticals (Basel) ; 16(11)2023 Nov 09.
Article in English | MEDLINE | ID: mdl-38004451

ABSTRACT

BACKGROUND: Diabetic neuropathy is a debilitating manifestation of long-term diabetes mellitus. The present study explored the effects of the roots of Rubia cordifolia L. (R. cordifolia L.) in the Wistar rat model for diabetic neuropathy and possible neuroprotective, antidiabetic, and analgesic mechanisms underlying this effect. MATERIALS AND METHODS: Rats were divided into five experimental groups. An amount of 0.25% carboxy methyl cellulose (CMC) in saline and streptozotocin (STZ) (60 mg/kg) was given to group 1 and group 2, respectively. Group 3 was treated with STZ and glibenclamide simultaneously while groups 4 and 5 were simultaneously treated with STZ and hydroalcoholic extract of the root of R. cordifolia, respectively. Hot plate and cold allodynias were used to evaluate the pain threshold. The antioxidant effects of R. cordifolia were assessed by measuring Thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD). At the end of the study, sciatic nerve and brain tissues were collected for histopathological study. Bcl-2 proteins, cleaved caspase-3, and Bax were assessed through the Western blot method. RESULTS: R. cordifolia significantly attenuated paw withdrawal and tail flick latency in diabetic neuropathic rats. R. cordifolia significantly (p < 0.01) improved the levels of oxidative stress. It was found to decrease blood glucose levels and to increase animal weight in R. cordifolia-treated groups. Treatment with R. cordifolia suppressed the cleaved caspase-3 and reduced the Bax:Bcl2 ratio in sciatic nerve and brain tissue compared to the diabetic group. Histopathological analysis also revealed a marked improvement in architecture and loss of axons in brain and sciatic nerve tissues at a higher dose of R. cordifolia (400 mg/kg). CONCLUSION: R. cordifolia attenuated diabetic neuropathy through its antidiabetic and analgesic properties by ameliorating apoptosis and oxidative stress.

11.
Plant Physiol Biochem ; 203: 108024, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37699290

ABSTRACT

Rubia cordifolia L. is a significant medicinal plant. To investigate the changes of marker metabolites of R. cordifolia, the purpurin, mollugin, carbon, nitrogen contents, and the expression of genes involved in anthraquinones synthesis were examined. The findings indicated that the two secondary metabolites were only detected in stems and roots. Root purpurin content was 5-26 times higher than in stems, and root mollugin content was 92 times higher than in stems in June. These findings suggest that the potential of the roots as a medicinal part. The roots were found to have highest purpurin content in October (2.406 mg g-1), whereas the mollugin content was highest in August (6.193 mg g-1). However, the purpurin content in August was only 0.029 mg g-1 lower than that in October, making August a suitable harvest period for R. cordifolia. The expression 1-deoxy-D-xylulose 5-phosphate synthase (dxs) and 1-deoxy-D-xylulose-5-phosphate reductorisomerase (dxr) genes in roots showed an upward trend. However, the expression level of dxr gene was significantly higher than dxs with the range of 60-518 times higher, indicating the important role of dxr gene. Through correlation and redundancy analyses, it was found that mollugin showed positive correlation with carbon contents and carbon-nitrogen ratio of aerial parts. Additionally, purpurin showed a positive correlation with the expression of both genes. As a result, mollugin is likely to be synthesized in the aerial parts and then stored in the roots, whereas purpurin might be synthesized in the stems and roots. These findings could provide cultivation guidelines for R. cordifolia.

12.
Heliyon ; 9(6): e17078, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37484327

ABSTRACT

The aim of this study is to explore the active components and potential molecular mechanism of action of Rubia cordifolia L. against nasopharyngeal carcinoma (NPC). We used network pharmacology, molecular docking, and bioinformatics analysis to identify the active components and their role against NPC. The experimental verification was detected by MTT, AnnexinV-FITC/PI double fluorescence staining and Western blotting method. Network pharmacology identified that mollugin is one of the most effective components inRubia cordifolia L. Important NPC targets included HSP90AA1, CDK1, EGFR, PIK3CA, MAPK14, and CDK2. Molecular docking revealed considerable binding activity of mollugin with either of the 6 important NPC targets. Bioinformatics analysis showed that these 6 important targets were mutated in NPC, and the expression of HSP90AA1, PIK3CA, and CDK2 in cancer tissues was significantly different from that in normal tissues. MTT detection and AnnexinV-FITC/PI double fluorescence staining showed that mollugin inhibited the proliferation and induced apoptosis of NPC cells. Western blotting indicated that the molecular mechanism of mollugin against NPC was related to the regulation of the expression of Survivin and XIAP. This study predicted and partially verified the pharmacological and molecular mechanism of action of Rubia cordifolia L. against NPC. Mollugin was identified as a potential active ingredient against NPC. These results prove the reliability of network pharmacology approaches and provide a basis for further research and application of Rubia cordifolia L. against NPC.

13.
Physiol Mol Biol Plants ; 29(6): 843-853, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37520807

ABSTRACT

Rubia podantha Diels is endemic to southwestern China and belongs to the family Rubiaceae. It is used in traditional Chinese medicines. To enrich the genetic data and resolve Rubiaceae's phylogeny, we assembled a complete chloroplast (cp) genome of R. podantha using Illumina HiSeq reads. The whole length of the cp genome was 154,866 bp. Annotation using PGA software found 113 genes, including 79 protein coding genes, 30 tRNA genes, and four rRNA genes. The large single-copy region was 84,717 bp, the inverted repeat B (IRa) region was 26,516 bp, the small single copy was 17,117 bp, and the inverted repeats B (IRb) region was 26,516 bp. Moreover, 64 SSRs were identified. Phylogenomic analysis using cp genomes of 109 Rubiaceae species found that R. podantha is closely related to R. cordifola. Rubiaceae was separated into three subfamilies: Ixoroideae, Cinchonoideae, and Rubiodeae. The genus Saprosma was not imbedded within the Spermacoceae alliance as reported in previous studies. Instead, it was imbedded within the Psychotrieae alliance. Divergence time estimation indicated that R. podantha split from its relative R. cordifolia around 1.25 million years ago. The assembled chloroplast genome in this study provided useful molecular information about the evolution of R. podantha and was a basis for phylogenetic analyses of Rubiaceae. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01302-y.

14.
J Asian Nat Prod Res ; 25(11): 1110-1116, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37010931

ABSTRACT

Chemical investigation of roots of the plant, Rubia cordifolia Linn, led to the isolation of an undescribed anthraquinone, cordifoquinone R, determined as 1,2-dihydroxy-6-methoxyanthracene-9,10-dione (6) based on the 1D and 2D NMR analyses and HRESIMS. Ten other known compounds viz.1,4-dihydroxy-2-methoxyanthracene-9,10-dione (1), rubiadin (2), xanthopurpurin (3), 1-methoxy-3-hydroxy-2-carbomethoxy-9,10-anthraquinone (4), alizarin (5), ß-sitosterol glucoside (7), scopoletin (8), oleanolic acid, (9), pomolic acid (10), queretaroic acid (11) were also isolated. Out of these compounds, 4, 10, and 11 are first reported from this plant species. Compounds 2, 3, 6, 7, and 10 showed activity in the range of 16-32 µg/ml against S. aureus ATCC 29213.


Subject(s)
Anti-Infective Agents , Rubia , Triterpenes , Rubia/chemistry , Triterpenes/pharmacology , Staphylococcus aureus , Anti-Infective Agents/pharmacology , Anthraquinones/pharmacology , Anthraquinones/chemistry
15.
Environ Sci Pollut Res Int ; 30(15): 42563-42574, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35175521

ABSTRACT

Rubia cordifolia represents the pivotal plant resource belonging to traditional Chinese medicine and Indian Ayurveda. The present study aims to synthesize biocompatible copper oxide nanoparticles (CuONPs) using R. cordifolia bark extracts, characterize the incumbent chemical transitions, and explore their biomedical and environmental applications. The absorbance peak between 250 and 300 nm clearly demonstrates the formation of CuONPs in the UV-visible spectrum. Fourier transform infrared spectroscopy results showed the presence of functional groups essential for copper ion reduction. Field emission scanning electron microscopy (FE-SEM) and dynamic light scattering analysis revealed that the CuONPs are spherical-shaped with a mean particle size of 50.72 nm. Additionally, the zeta potential demonstrates its robustness at 11.2 mV. X-ray diffraction pattern showed mixed phases (Cu, Cu2O, and CuO) of cubic monoclinic crystalline nature. CuONPs exhibited noticeable antibacterial activity against Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus and Bacillus cereus) pathogenic bacteria. Bacterial cell damages were affirmed through FE-SEM imaging when treated with CuONPs. Further, CuONPs demonstrated considerable antioxidant activities by quenching free radicals such as DPPH (60.75%), ABTs (70.88%), nitric oxide (65.48%) and reducing power (71.44%) in a dose-dependent way. CuONPs showed significant larvicidal activity against Aedes aegypti (65 ± 8.66%), Anopheles stephensi (80 ± 13.69%), and Culex quinquefasciatus (72 ± 13.04%) mosquito larvae. The photocatalytic activity of the CuONPs demonstrates the methylene blue (81.84%) and crystal violet (64.0%) dye degradation potentials, indicating the environmental bioremediation efficacy. Hence the present study is the first report in accounting for the versatile applications of the phyto-CuONPs. Moreover, the green synthesis of CuONPS has future applications in designing the drug for life-threatening diseases and various environmental issues.


Subject(s)
Anopheles , Metal Nanoparticles , Rubia , Animals , Antioxidants , Copper/chemistry , Plant Bark , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/chemistry , Oxides , Plant Extracts/chemistry , Spectroscopy, Fourier Transform Infrared
16.
Poult Sci ; 102(2): 102416, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36566656

ABSTRACT

It is generally accepted herbal polysaccharide and is a bioactive compound of herbal medicines with immunomodulatory activities. It has a wide range of pharmacological effects. It can be used as a green substitute for antibiotics or as a feed additive in quail breeding. Therefore, the herbal polysaccharide has a broader and safer application prospect. The immunosuppressive disease of quail is one of the most important infectious diseases. It seriously affects the growth, development, and production performance of quail, causing huge economic losses to quail industry. However, there is no report on the effective alleviation of spleen injury in immunosuppressed animals by herbal polysaccharide. Therefore, we established a pathological model of immunosuppressive Chinese yellow quail for the first time, with the Terminalia chebula Retz polysaccharide (TCP) as the control, and histological observation, TUNEL staining were used to study the effects of Rubia cordifolia L. processed Terminalia chebula Retz polysaccharide (RTCP) on splenic tissue structure and apoptosis of immunosuppressed Chinese yellow quail. The experimental results showed that spleen organ index of the cyclophosphamide (CTX) group was significantly lower than these of blank control group, the TCP group and the RTCP group (P < 0.05). And the number of splenic nodules in the CTX group was significantly lower than that in the blank control group (P < 0.01). Compared with the CTX group, the spleen volume of the TCP group and the RTCP group increased, and the number and area of spleen nodules increased. Among them, the spleen nodules in the RTCP group were significantly more higher than that in the CTX group (P < 0.01). Meanwhile, TUNEL staining showed that the TUNEL positive cells in the CTX group were the most significantly higher than those in the blank control group (P < 0.01). TCP group and RTCP group were significantly higher than the blank control group (P < 0.01), but significantly lower than CTX group (P < 0.05). All these results suggested that RTCP could effectively improve CTX-induced spleen damage in immunosuppressed Chinese yellow quails by promoting the recovery of spleen organ index, repairing the spleen tissue structure, and diminishing the apoptosis. Moreover, RTCP is more effective than TCP. The results prove that the efficacy of RTCP in protecting spleen from CTX induced injury was enhanced after processing with Rubia cordifolia L. Therefore, our findings will provide more possibilities to promote the clinical application and development of processed traditional Chinese medicine in the further.


Subject(s)
Rubia , Terminalia , Animals , Spleen , Terminalia/chemistry , Chickens , Plant Breeding , Plant Extracts/pharmacology , Apoptosis , Polysaccharides/pharmacology
17.
Macromol Biosci ; 23(1): e2200235, 2023 01.
Article in English | MEDLINE | ID: mdl-36239160

ABSTRACT

Accelerating the coagulation process and preventing wound infection are major challenges in the wound care process. Therefore, new multifunctional wound dressings with procoagulant, antibacterial, and antioxidant properties have enormous potential for clinical application. In this work, biodegradable hydrogels containing herbal extracts are prepared for wound dressings. First, the active ingredients are extracted from Amaranthus spinosus (A. spinosus) and Rubia cordifolia (R. cordifolia) and added to the hydrogels prepared from microcrystalline cellulose (MCC), carrageenan, and sodium alginate. Then the composite hydrogels are air-dried to obtain the wound dressings. The wound dressings prepared in this work have good biocompatibility and moisture retention. The mechanical properties of the wound dressings are further improved with the addition of MCC. Besides, the wound dressings have excellent procoagulant, antibacterial, and antioxidant properties due to the presence of R. cordifolia extract. Overall, the most effective group of wound dressings with different ingredient formulations reduces clotting time by 75% and largely inhibits bacterial growth. The wound dressings perform well in the animal wound models to promote wound healing. These results indicate that the hydrogel wound dressings prepared in this work have great potential for medical applications.


Subject(s)
Alginates , Hydrogels , Animals , Carrageenan/pharmacology , Hydrogels/pharmacology , Hydrogels/chemistry , Alginates/pharmacology , Alginates/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Wound Healing , Blood Coagulation , Bandages , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Cellulose/pharmacology
18.
Front Pharmacol ; 13: 965390, 2022.
Article in English | MEDLINE | ID: mdl-36160419

ABSTRACT

Rubia cordifolia (family: Rubiaceae) L (R. cordifolia) is a perennial botanical drug climbing vine. As the main part of the traditional Chinese medicine, the rhizome has a long history. A great number of literary studies have reported that it can be used for the improvement of blood circulation, hemostasis, activation of collaterals, etc. When it comes to the wide application of R. cordifolia in traditional medicine, we systematically review its traditional uses, phytochemistry and pharmacological effects. Literatures were systematically searched using several scientific databases, including China National Knowledge Infrastructure (CNKI), Baidu Scholar, PubMed, Web of Science, and other professional websites. Kew Botanical Garden and the iPlant were used for obtaining the scientific names and plant images of R. cordifolia. In addition, other information was also gathered from books including traditional Chinese herbal medicine, the Chinese Pharmacopoeia, and Chinese Materia Medica. So far, many prescriptions containing R. cordifolia have been widely used in the clinical treatment of abnormal uterine bleeding, primary dysmenorrhea and other gynecological diseases, allergic purpura, renal hemorrhage and other diseases. The phytochemistry studies have reported that more than 100 compounds are found in R. cordifolia, such as bicyclic peptides, terpenes, polysaccharides, trace elements, flavonoids, and quinones. Among them, quinones and peptides are the types of components with the highest contents in R. cordifolia. The modern pharmacological studies have revealed that R. cordifolia and its derived components have anti-tumor, anti-oxidative, anti-platelet aggregation, and anti-inflammatory effects. However, most studies are preclinical. The pharmacological mechanism of R. cordifolia has not been thoroughly studied. In addition, there are few pharmacokinetic and toxicity studies of R. cordifolia, therefore the clinical safety data for R. cordifolia is lacking. To sum up, this review for the first time summarizes a systemic and integrated traditional uses, chemical compositions, pharmacological actions and clinical applications of R. cordifolia, which provides the novel and full-scale insight for the drug development, medicinal value, and application of R. cordifolia in the future.

19.
Heliyon ; 8(8): e10314, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36082330

ABSTRACT

The aerial part of â€‹Rubia cordifolia â€‹L. has been used as an herbal medicine for a long time with various pharmacological activities, including anti-inflammatory, anticancer, and antibacterial activities. The most notable usage of these was that this herbal medicine had good therapeutic effects on diarrhea caused by various factors. However, the mechanism for the ethanolic extract of â€‹R. cordifolia â€‹L. (RCEE) to treat Ulcerative colitis (UC) effectively is still unclear. In this study, DSS successfully induced UC mice and then intervene using different polar parts of RCEE. The results indicated that RCEE-treatment inhibited colonic combination NLRP3 inflammasome formation and IL-6/JAK2/STAT3 activation in vivo, significantly ameliorating the clinical symptoms, including alleviating colonic mucosal damage and infiltration of macrophages, suppressing the release of inflammatory cytokines, and reducing mortality. Taken together, this study suggests that dual inhibition of NLRP3 inflammasome and IL-6/JAK2/STAT3 pathways activation using RCEE may be a promising therapeutic strategy for preventing the progression of UC.

20.
Mitochondrial DNA B Resour ; 7(8): 1466-1467, 2022.
Article in English | MEDLINE | ID: mdl-35965643

ABSTRACT

Rubia yunnanensis Diels 1912 (Rubiaceae) is a plant used in traditional Chinese medicine. We here assembled a complete chloroplast (cp) genome for R. yunnanensis using Illumina HiSeq reads. The genome is 155,108 bp in length. The genome contains 113 genes, including 79 protein coding genes, 30 tRNA genes, and four rRNA genes. The large single-copy (LSC) region is 84,848 bp, inverted repeat A (IRa) region is 26,573 bp, small single-copy (SSC) region is 17,114 bp, and inverted repeat B (IRb) region is 26,573 bp. A phylogenomic analysis found that R. yunnanensis is close to R. cordifolia. The assembled cp genome in this study provided a basis for the conservation and phylogenetic studies of R. yunnanensis.

SELECTION OF CITATIONS
SEARCH DETAIL