Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.586
Filter
1.
J Environ Sci (China) ; 148: 387-398, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095174

ABSTRACT

Land use and precipitation are two major factors affecting phosphorus (P) pollution of watershed runoff. However, molecular characterization of dissolved organic phosphorus (DOP) in runoff under the joint influences of land use and precipitation remains limited. This study used Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) to study the molecular characteristics of DOP in a typical P-polluted watershed with spatially variable land use and precipitation. The results showed that low precipitation and intense human activity, including phosphate mining and associated industries, resulted in the accumulation of aliphatic DOP compounds in the upper reaches, characterized by low aromaticity and low biological stability. Higher precipitation and widespread agriculture in the middle and lower reaches resulted in highly unsaturated DOP compounds with high biological stability constituting a higher proportion, compared to in the upper reaches. While, under similar precipitation, more aliphatic DOP compounds characterized by lower aromaticity and higher saturation were enriched in the lower reaches due to more influence from urban runoff relative to the middle reaches. Photochemical and/or microbial processes did result in changes in the characteristics of DOP compounds during runoff processes due to the prevalence of low molecular weight and low O/C bioavailable aliphatic DOP molecules in the upper reaches, which were increasingly transformed into refractory compounds from the upper to middle reaches. The results of this study can increase the understanding of the joint impacts of land use and precipitation on DOP compounds in watershed runoff.


Subject(s)
Environmental Monitoring , Phosphorus , Water Pollutants, Chemical , Phosphorus/analysis , Water Pollutants, Chemical/analysis , Rain/chemistry , Agriculture
2.
Sci Total Environ ; : 176634, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39357759

ABSTRACT

The volume of stormwater generated by streetscapes in cities is a primary driver of urban stream degradation. Large infiltration trenches can be integrated into streetscapes to potentially retain large volumes of runoff and increase growth rates of nearby trees. To test this, a field study was conducted where three structural soil infiltration trenches receiving runoff (12 m long, 0.6 m wide and 0.6 deep) were installed alongside a carpark in Melbourne, Australia, with sizing determined by space constraints in a typical streetscape. The three structural soil trenches had raised outflow drainage, which created internal water storage for runoff received from a carpark. To separate the effects on tree growth of i) the presence of structural soil from ii) passive irrigation into the structural soil, three structural soil trenches (6 m long, 0.6 m wide and 0.6 deep) not receiving runoff and without outflow drainage were also installed. Runoff capture, exfiltration, outflow and tree growth was monitored over 19 months. Only one system performed close to the design intent and retained 18 % of runoff, due to slow soil exfiltration rates (<0.1 mm h-1). Compacted soil generated pervious-area runoff that filled the structural soil trenches not receiving impervious-area runoff from the carpark. Tree growth near these structural soil trenches was poor (59 % relative growth) compared with trees receiving runoff from the carpark (112 % relative growth), due to a lack of drainage, emphasising the need for drainage of stormwater systems in heavy textured soils to promote tree growth. This study highlights that options for creating storage for stormwater in streetscapes have the potential to meet local runoff infiltration targets. However, meeting local runoff volume reduction targets will require alternative ways to reduce surface runoff.

3.
Environ Monit Assess ; 196(10): 979, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39320588

ABSTRACT

Precipitation partitioning in arid and semiarid environments is not well understood due to scanty precipitation, its temporal distribution, and the lack/absence of adequate measurements of the hydrometeorological components. Simulation methods have the potential to bridge the data gap, thereby providing a window to estimate the water balance components. The present investigation evaluates the water balance components of a typical watershed situated in the southeastern Mediterranean for the period 1979 through 2019 using daily meteorological data and a grid spacing of 250 m. Generated runoff results were commensurate with corresponding values obtained using the SWAT model. Computed groundwater recharge is also compatible with recharge values calculated using the chloride mass balance method. Results show that average runoff and groundwater recharge for the entire period was ⁓24 mm a-1 and 19 mm a-1, giving a precipitation ratio of 9.5% and 7.5%, respectively. Substantial interannual variability in the water balance components was observed during the study period which reflected the significant precipitation fluctuations typifying the Eastern Mediterranean. Results show that the period extending from 1998/1999 through 2018/2019 witnessed an 18% drop in annual precipitation, while surface runoff and groundwater recharge experienced a reduction of ⁓34% and ⁓67%, respectively. Although groundwater recharge is a complex function of numerous meteorological and geological factors, the NDVI can provide an excellent indicator of groundwater recharge in marginal Mediterranean environments. This is highly beneficial in areas where climate records are scanty or absent. The presented results emphasize the significant impacts of global warming and aridification on the future availability of water resources in the semiarid marginal climates in the Eastern Mediterranean and point out clearly that water resources in this area will become scarcer, leading to multiple security threats at national and regional levels.


Subject(s)
Climate Change , Environmental Monitoring , Geographic Information Systems , Hydrology , Remote Sensing Technology , Environmental Monitoring/methods , Fresh Water/chemistry , Groundwater/chemistry , Models, Theoretical , Mediterranean Region , Desert Climate , Water Resources
4.
J Environ Manage ; 370: 122617, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39326076

ABSTRACT

The vegetation-runoff relationship remains unclear in karstic regions. The karst landform in southwest China is a focal area where significant changes in vegetation have occurred in the past few decades, which may substantially impact water resources. To date, the effects of these changes on runoff remain uncertain. This study employed statistical analysis, numerical simulation, and scenario analysis to investigate the temporal and spatial patterns of runoff, climate, and vegetation in 20 typical catchments. The study also evaluated the response of runoff to vegetation and climate changes and the underlying factors. The findings revealed precipitation changes dominated changes in runoff in these catchments (mean contribution of 53.03%), whereas the contributions of vegetation and potential evapotranspiration changes were 23.16% and 23.82%, respectively. The study also revealed that the impacts of vegetation changes on runoff were significantly dependent on vegetation and climate factors (R2 = 0.60, P < 0.01). Furthermore, under the same climate change conditions, a higher distribution of natural vegetation (such as forest) in the catchment resulted in a larger decreasing trend in runoff. The results provide guidelines for the prediction of runoff variation in southwest China, and benefits to decision-making on ecological restoration and water resources development.

5.
Sci Total Environ ; 954: 176590, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39343395

ABSTRACT

Microplastics (MPs) deposited on urban roads are often flushed into water bodies via drainage systems without treatment, and MP concentrations in the initial road runoff may be particularly high. Yet, there is only a limited understanding of the characteristics, dynamics, and impacts of MPs in urban road runoff. In this study, stormwater and rainwater samples were collected from seven different locations in Hong Kong across 11 rainfall events between February 2021 and September 2022. Characteristics of MPs in the collected samples were analyzed in detail, along with the dynamics of MP concentration in rainfall events, possible influencing factors, and ecological risks. The results show that MP concentration in the initial road runoff is particularly high during a rainfall episode. Overall, the median MP abundance in the collected runoff samples (185 particles/L) was 4.6 times higher than that in rainwater (40 particles/L). The most common polymers identified were polyethylene, polypropylene, and polystyrene, with fragments being the dominant shape. Over 60 % of MP sizes were smaller than 300 µm in the runoff samples. Additionally, risk assessments based on the Polymer Risk Index (PRI) classified most road sites in pollution classes II to III (PRI = 13.3-138.0), indicating moderate to high ecological risks. It appears that MP abundance in the initial runoff was significantly influenced by seasonal changes. These findings highlight urban roads as a major source of MP pollution in stormwater runoff and emphasize the importance of addressing the initial runoff in pollution control.

6.
Sci Total Environ ; 954: 176211, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39277007

ABSTRACT

Vegetation restoration is an effective and important measure for controlling soil erosion in arid and -arid regions. Both its aboveground and underground parts play a crucial role in controlling surface runoff and soil detachment on slopes. But how much the parts of vegetation contribute to the runoff and sediment reducing benefits of rill erosion on slopes is unclear. We used grassland slopes at four successional stages for simulated scouring experiments to observe how successional vegetation community structures, root characteristics, and soil structures contribute to erosion and sand production. Initial flow production time increased, and total runoff decreased. Under the scour intensities, the 11-year slope had the lowest flood peak and volume and the greatest runoff reduction benefit. The 25-year slope had the lowest sand peak and volume and the greatest sediment reduction benefit. As scour intensity increased, runoff reduction effect of vegetation at the successional stages decreased; the sediment reduction benefit remained high. PLS-PM analysis showed that the indirect effects of the aboveground and underground parts of vegetation on sand production were -0.364 and -0.439, respectively. Aboveground parts mainly embodied the regulation of runoff, in which stem count, humus mass, and biomass were the main factors affecting runoff and sand production. Underground parts mainly reflected their soil structure improvement, in which root volume density, root surface area density, and root mass density are the main explanatory variables. The direct effects of runoff and soil structure on slope rill erosion were 0.330 and -0.616, respectively, suggesting the stability of soil structure is the primary factor affecting the sand production, not erosion energy. The results provide a reference for scientific assessment of the key role of natural vegetation restoration in regional soil erosion control and the development of biological measures for soil and water conservation on the slopes of the Loess Plateau.

7.
J Environ Manage ; 369: 122292, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39232328

ABSTRACT

Global warming is profoundly impacting snowmelt runoff processes in seasonal freeze-thaw zones, thereby altering the risk of rain-on-snow (ROS) floods. These changes not only affect the frequency of floods but also alter the allocation of water resources, which has implications for agriculture and other key economic sectors. While these risks present a significant threat to our lives and economies, the risk of ROS floods triggered by climate change has not received the attention it deserves. Therefore, we chose Changbai Mountain, a water tower in a high-latitude cold zone, as a typical study area. The semi-distributed hydrological model SWAT is coupled with CMIP6 meteorological data, and four shared socioeconomic pathways (SSP126, SSP245, SSP370, and SSP585) are selected after bias correction, thus quantifying the impacts of climate change on hydrological processes in the Changbai Mountain region as well as future evolution of the ROS flood risk. The results indicate that: (1) Under future climate change scenarios, snowmelt in most areas of the Changbai Mountains decreases. The annual average snowmelt under SSP126, SSP245, SSP370, and SSP585 is projected to be 148.65 mm, 135.63 mm, 123.44 mm, and 116.5 mm, respectively. The onset of snowmelt is projected to advance in the future. Specifically, in the Songhua River (SR) and Yalu River (YR) regions, the start of snowmelt is expected to advance by 1-11 days. Spatially, significant reductions in snowmelt were observed in both the central part of the watershed and the lower reaches of the river under SSP585 scenario. (2) In 2021-2060, the frequency of ROS floods decreases sequentially for different scenarios, with SSP 126 > SSP 245 > SSP 370 > SSP 585. The frequency increments of ROS floods in the source area for the four scenarios were 0.12 days/year, 0.1 d/yr, 0.13 days/year, and 0.15 days/year, respectively. The frequency of high-elevation ROS events increases in the YR in the low emission scenario. Conversely, in high emission scenarios, YR high-elevation ROS events will only increase in 2061-2100. This phenomenon is more pronounced in the Tumen River (TR), where floods become more frequent with increasing elevation.


Subject(s)
Altitude , Climate Change , Floods , Rain , Snow , Hydrology
8.
J Environ Manage ; 369: 122380, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39232331

ABSTRACT

Cold climates have an adverse effect on the nitrogen-removal capacity of bioretention cells, especially during freeze-thaw cycles (FTCs). To explore the effects of FTCs on the nitrogen removal performance of bioretention cells, this research compared the effects of FTCs on the pore structure and microbial community composition of the filler, and analyzed the nitrogen removal performance of the bioretention cell before (RT), during (FTC) and after (RRT) FTCs. The results demonstrated that RRT filler had a much greater number of pores with equivalent diameter <500 µm than RT filler, and that RRT had a higher pore volume and pore density than RT. Microbial community analysis revealed that the diversity and richness of the microbial community in FTC were lower than in RT, and the relative abundance of Lacunisphaera, Pseudomonas, and Dokdonella decreased significantly. There was no significant difference in microbial community richness between RRT and RT, however RRT diversity was lower. RRT has a higher relative abundance of nitrifying bacteria (Subgroup_10, Bryobacter, etc.) than RT, but a lower relative abundance of denitrifying bacteria (Pseudomonas, Dokdonella, Arenimonas, etc.). The nitrogen removal efficiency of FTC was inhibited, resulting in a decrease of 13.0 ± 4.86%, 19.7 ± 9.17%, and 26.6 ± 1.74% in the removal rates of ammonia nitrogen(NH4+-N), nitrate nitrogen(NO3--N), and total nitrogen(TN) when compared to RT, respectively. RRT improved nitrification and increased NH4+-N removal rate by 10.3 ± 2.69% compared to RT. However, because of denitrification inhibition, the nitrogen removal performance of RRT was not able to reach RT levels, and its NO3--N and TN removal rates decreased by 100 ± 4.70% and 58.3 ± 3.71%, respectively. This study has demonstrated that FTCs can permanently harm the bioretention cell's filler structure and microbial community, resulting in a significant decrease in the nitrogen removal performance of the bioretention cell designed according to warm climate conditions after experiencing FTCs.


Subject(s)
Nitrogen , Nitrogen/metabolism , Freezing , Microbiota , Bacteria/metabolism
9.
Sci Total Environ ; 954: 176338, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39299310

ABSTRACT

Non-point source (NPS) pollution directly threatens river water quality, constrains sustainable economic development, and poses hazards to human health. Comprehension of the impact factors on NPS pollution is essential for scientific river water quality management. Despite the landscape pattern being considered to have a significant impact on NPS pollution, the driving mechanism of landscape patterns on NPS pollution remains unclear. Therefore, this study coupled multi-models including the Soil and Water Assessment Tool (SWAT), Random Forest, and Partial Least Squares Structural Equation Modeling (PLS-SEM) to construct the connection between landscape patterns, NPS pollution, and surface runoff. The results suggested that increased runoff during the wet season enhances the link between landscape patterns and NPS pollution, and the explained NPS pollution variation by landscape pattern increased from 59.6 % (dry season) to 84.9 % (wet season). Furthermore, from the impact pathways, we find that the sink landscape pattern can significantly and indirectly influence NPS pollution by regulating surface runoff during the wet season (0.301*). Meanwhile, the sink and source landscape patterns significantly and directly impact NPS pollution during different seasons. Moreover, we further find that the percentage of paddy land use (Pad_PLAND) and grassland patch density (Gra_PD) metrics can significantly predict the dissolved total nitrogen (DTN) and nitrate nitrogen (NO3--N) variation. Thus, controlling the runoff migration process by guiding the rational evolution of watershed landscape patterns is an important development direction for watershed NPS pollution management.

10.
Sci Total Environ ; 953: 175731, 2024 Nov 25.
Article in English | MEDLINE | ID: mdl-39233076

ABSTRACT

Extreme precipitation can significantly influence the water quality of surface waters. However, the total amount of bacteria carried by rainfall runoff is poorly understood. Here, thirty rainfall scenarios were simulated by artificial rainfall simulators, with designed rainfall intensity ranging from 19.3 to 250 mm/h. The instantaneous concentration ranges of R2A, nutrient agar (NA) culturable bacteria, and viable bacteria in runoff depended on the types of underlying surfaces. The instantaneous bacterial concentrations in runoff generated by forest lands, grasslands and bare soil were: R2A culturable bacteria = 104.5-6.3, 104.5-6.1, 104.0-5.3 colony-forming units (CFU)/mL, NA culturable bacteria = 104.0-6.0, 103.9-5.8, 103.2-4.9 CFU/mL, and viable bacteria = 106.4-8.0, 107.0-8.9, 106.4-7.6 cells/mL. Based on the measured bacterial instantaneous concentration in runoff, cumulative dynamic models were established, and the maximum amount of culturable bacteria and viable bacteria entering water sources were estimated to be 109.38-11.31 CFU/m2 and 1011.84-13.25 cells/m2, respectively. The model fitting and the bacterial accumulation dynamics were influenced by the rainfall types (p < 0.01). Surface runoff from the underlying surface of forest lands and grasslands had a high microbial risk that persisted even during the "Drought-to-Deluge Transition". Bacterial accumulation models provide valuable insight for predicting microbial risks in catchments during precipitation and can serve as theoretical support for further ensuring the safety of drinking water under the challenge of climate change.


Subject(s)
Environmental Monitoring , Rain , Water Microbiology , Bacteria , Water Quality , Water Movements
11.
Sci Total Environ ; 954: 176458, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39332726

ABSTRACT

Climate warming has accelerated glacier melting, releasing legacy pollutants such as mercury (Hg) into aquatic ecosystems. While the relationship between Hg in glacier meltwater runoff, total suspended particles (TSP), and runoff discharges has been established, the underlying inter-relationships and governing factors remain poorly understood. To address this knowledge gap, we conducted a continuous fixed-point sampling at Laohugou No. 12 Glacier in the northern Tibetan Plateau from June to September 2019 spanning the entire glacier ablation season. Our study analyzed the variations of Hg partition in the meltwater runoff and conducted a comprehensive co-analysis of Hg with TSP and discharge to uncover the dominant factors of Hg input into meltwater runoff. The concentration of total Hg (THg) in the meltwater runoff ranged from 0.7 to 112.6 ng/L, with an average concentration of 26.6 ± 25.1 ng/L. Particulate Hg (PHg) was found to be the predominant partition, while dissolved Hg (DHg) exhibited a notable increase in June and September. THg concentration significantly correlated with TSP concentration (r = 0.94, P < 0.01), exceeding the correlation with discharge (r = 0.76, P < 0.01) during the entire ablation period. However, further examination during varying hydrological periods revealed differing associations among Hg speciation concentrations, TSP concentration, and discharge. During the rising limb of the hydrograph, THg (r = 0.86, P < 0.01) and PHg concentrations (r = 0.87, P < 0.01) exhibited a significant correlation with TSP concentration, primarily driven by TSP, implying that Hg availability determines the Hg input into meltwater runoff. Conversely, during the recession limb of the hydrograph, THg concentration was primarily influenced by discharge (r = 0.85, P < 0.01). PHg (r = 0.84, P < 0.01) and TSP (r = 0.97, P < 0.01) concentrations were strongly influenced by discharge, indicating that hydraulic action is the dominant factor affecting Hg input. Our study elucidated the impact of glacier hydrological processes on Hg transport, revealing the dominant factors of Hg input during different hydrological periods. This contributes to a deeper understanding of Hg input into meltwater runoff and improves predictions of Hg export through glacier melt in high mountain regions.

12.
Environ Pollut ; 361: 124853, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39218197

ABSTRACT

The effectiveness of bioretention cells for heavy metals (HMs) and microplastics (MPs) removal from stormwater runoff has been demonstrated. Knowledge of the mechanisms that dictate the interactions between MPs and HMs would be helpful in pollution control. In this study, the performances of different water-soil-plant bioretention cells for HMs removal through the interception of polyethylene MPs (PE-MPs) were investigated. The results showed that PE-MPs bound to HMs and preferentially tended to bind to Pb (32%-44%) in the complex HMs (Cu, Zn, Cd, and Pb). This could be the reason that the concentration of Pb significantly increased in the effluent under low-intensity simulated rainfall events over a long duration. The accumulation of 1.49 g/kg PE-MPs caused a significant soil pH value decrease and a notable soil zeta potential increase in the bioretention cell, while the low sand/silt ratio media buffered this process. The retention of PE-MPs increased 138.5% in the 0-10 cm soil surface layer when the sand/silt ratio reduced from 2:1 to 1:1 and planted with Canna indica. Meanwhile, PE-MPs amplified the instability of Zn removal in bioretention cells under low-intensity rainfall events in long-duration, high silt percentage substrate and vegetation coverage. The study would contribute to developing a long-term management program for PE-MPs and HMs trapped in bioretention cells to reduce the risk of pollution transport.

13.
Sci Rep ; 14(1): 21446, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39271901

ABSTRACT

Accurate flood forecasting is crucial for flood prevention and mitigation, safeguarding the lives and properties of residents, as well as the rational use of water resources. The study proposes a model of long and short-term memory (LSTM) combined with the vector direction (VD) of the flood process. The Jingle and Lushi basins were selected as the research objects, and the model was trained and validated using 50 and 49 measured flood rainfall-runoff data in a 7:3 division ratio, respectively. The results indicate that the VD-LSTM model has more advantages than the LSTM model, with increased NSE, and reduced RMSE and bias to varying degrees. The flow simulation results of VD-LSTM better match the observed flow hydrographs, improving the underestimation of peak flows and the lag issue of the model. Under the same task and dataset, with the same hyperparameter settings, VD-LSTM can more quickly reduce the loss function value and achieve a better fit compared to LSTM. The proposed VD-LSTM model couples the vectorization process of flood runoff with the LSTM neural network, which contributes to the model better exploring the change characteristics of rising and receding water in flood runoff processes, reducing the training gradient error of input-output data for the LSTM model, and more effectively simulating flood process.

14.
J Hazard Mater ; 479: 135697, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-39216238

ABSTRACT

The use of "crumb rubber" coming from recycling materials in outdoor floors like playgrounds has been a frequent practice during the last years. However, these surfaces are object of abrasion and weathering being a potential source of micro and nanoplastics (MNPLs) to the atmosphere and a potential source of human exposure to them. Our main goal has been to expose different crumb rubber materials to summer weathering effects. The released inhalable fractions were sampled for two months with passive samplers and the composition of MNPLs and plastic additives (organic and inorganic) were evaluated. The ecotoxicological effects of leached materials emulating runoff events was evaluated in freshwater micro crustacean Daphnia magna and the green algae Chlorella vulgaris. The analysis of MNPLs showed the presence of polyethylene, polypropylene, polybutadiene, polysiloxanes and polybutylene at concentrations up to 30,426 ng/m3. In the same fraction, we also identified up to 56 plastic additives, including antioxidants, pigments, copolymers, flame retardants, fungicides, lubricants, plasticizers, UV filters and metal ions. Finally, runoff ecotoxicological effects on D. magna and C. vulgaris showed that leached compounds, either from virgin or aged material, would be toxicants for exposed organisms although at concentrations much higher than those expected to be released to the media.


Subject(s)
Daphnia , Microplastics , Plastics , Rubber , Daphnia/drug effects , Animals , Microplastics/toxicity , Microplastics/analysis , Plastics/toxicity , Plastics/chemistry , Plastics/analysis , Chlorella vulgaris/drug effects , Air Pollutants/analysis , Air Pollutants/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Environmental Monitoring
15.
Mar Pollut Bull ; 207: 116889, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39216257

ABSTRACT

Saltwater problems in the Nandu River have gradually intensified in recent years. The effect of runoff variability (RV) on saltwater intrusion has not yet been fully revealed. Long-term trends in runoff and sea level (SL) were analyzed using the Mann-Kendall test and Theil-Sen estimation, and salinity exceedance rates (Ps) were calculated based on MIKE 11 and daily runoff distributions. As RV increased, Ps decreased the most at 16.0 km (6.7 %) and increased the most at 23.2 km (5.3 %). SL increased by 0.4 m and Ps increased the most at 20.5 km (11.7 %). Constant Ps is projected to move downstream by the 2060s and 210 s, with maximum increases in Ps of 6.2 % and 10.1 %, respectively. The ratio of changes in Ps due to changes in RV and SL is about 0.85. Constant Ps sections can be used to assess the risk of saline intrusion in some of the world's estuaries.


Subject(s)
Environmental Monitoring , Rivers , Salinity , Rivers/chemistry , China , Environmental Monitoring/methods , Water Movements , Estuaries , Seawater/chemistry
16.
Environ Res ; 262(Pt 1): 119831, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39208977

ABSTRACT

Regarded as a superior urban stormwater management solution, rain gardens can effectively store rainfall runoff and purify water quality. However, the efficiency of traditional rain gardens (TRG) in regulating runoff and removing nitrogen and phosphorus varies under different hydrological conditions. In this study, the TRG was retrofitted to construct a two-stage tandem rain garden (TTRG). Based on the experimental monitoring of rain gardens under natural rainfall from 2011 to 2013, results indicated a significantly higher runoff reduction capacity for the TTRG compared to the traditional garden (p < 0.05), with average runoff and peak flow reduction rates increasing by 42.8% and 36.2%, respectively. Rainfall characteristics significantly impacted the runoff reduction of the TRG (p < 0.05), but not the TTRG (p > 0.05), demonstrating the enhanced control and stability of the TTRG in managing rainfall runoff. The concentration removal efficiency of nitrate nitrogen (NO3--N) was significantly improved (p < 0.05), whereas the total phosphorus (TP), ammonium nitrogen (NH3-N) and total nitrogen (TN) were not significantly changed (p > 0.05). The first-order kinetic model was used to fit the removal effect of different pollutants before and after retrofitting the rain garden, and the removal of NO3--N by the TTRG was better than that of the TRG. The TTRG showed significantly higher load removal efficiencies for TP, NO3--N, and NH3-N compared to TRG (p < 0.05), with average load removal rates increasing by 49.92%, 75.02%, and 14.81%, respectively. The TTRG can regulate urban rainfall runoff more efficiently and stably. By changing the water flow path in the rain garden, the TTRG has a better runoff reduction ability and pollutant purification effect.

17.
Sci Total Environ ; 950: 175179, 2024 Nov 10.
Article in English | MEDLINE | ID: mdl-39097007

ABSTRACT

Extreme weather events driven by climate change threaten the resilience of urban structures and urban dwellers. Nature-based Solutions (NbS) are an effective tool to reduce urban vulnerability to climate risks and, at the same time, develop more liveable urban areas. Despite the acknowledged positive impacts of individual observed NbS, numerous questions persist unanswered. While existing research supports NbS' positive influence on urban climate adaptation, the extent of their impact remains insufficiently studied. Understanding the magnitude of NbS impact is crucial for justifying their preference over non-NbS alternatives and, consequently, for securing public investment. Via a meta-analysis, this paper aims to contribute to research and practice by providing a more systematic assessment of NbS effects, offering urban planners and decision-makers a robust justification for their incorporation in climate change adaptation, urban resilience, and enhanced liveability. The results of the meta-analytic model indicate that the effect of NbS is indeed positive. When assessing the impact on temperature and flood protection, there is a general positive effect across the studied NbS. However, when evaluating an average effect, the task appears to be more complex due to methodological issues and limitations. The need to increase the formalisation of how the impact of NbS is measured and reported also emerges as a result. Replicable protocols would positively impact the formalisation of the literature on the topic and positively affect the evidence-based support for the implementation of NbS by urban decision-makers.

18.
Sci Total Environ ; 950: 175231, 2024 Nov 10.
Article in English | MEDLINE | ID: mdl-39098417

ABSTRACT

Accurate prediction of instantaneous high lake water levels and flood flows (flood stages) from micro-catchments to big river basins are critical for flood forecasting. Lake Carl Blackwell, a small-watershed reservoir in the south-central USA, served as a primary case study due to its rich historical dataset. Bearing knowledge that both current and previous rainfall contributes to the reservoirs' water body, a series of hourly rainfall features were created to maximize predicting power, which include total rainfall amounts in the current hour, the past 2 h, 3 h, …, 600 h in addition to previous-day lake levels. Notedly, the rainfall features are the accumulated rainfall amounts from present to previous hours rather than the rainfall amount in any specific hour. Random Forest Regression (RFR) was used to score the features' importance and predict the flood stages along with Neural Network - Multi-layer Perceptron Regression (NN-MLP), Support Vector Regression (SVR), Extreme Gradient Boosting (XGBoost), and the ordinary multi-variant linear regression (MLR) together with dimension reduced linear models of Principal Component Regression (PCR) and Partial Least Square Regression (PLSR). The prediction accuracy for the lake flood stages can be as high as 0.95 in R2, 0.11 ft. in mean absolute error (MAE), and 0.21 ft. in root mean square error (RMSE) for the testing dataset by the RFR (NN-MLP performed equally well), with small accuracy decreases by the other two non-linear algorithms of XGBoost and SVR. The linear regressions with dimension reductions had the lowest accuracy. Furthermore, our approach demonstrated high accuracy and broad applicability for surface runoff and streamflow predictions across three different-sized watersheds from micro-catchment to big river basins in the region, with increases of predicting power from earlier rainfall for larger watersheds and vice versa.

19.
Heliyon ; 10(15): e35052, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39165968

ABSTRACT

The study utilized the Modified Universal Soil Loss Equation (MUSLE) to predict sediment loss and evaluate the model's performance in the Agewmariam experimental watershed in order to support the planning, management, and appropriate use of the soil and water resources in the watershed. The natural resources conservation service (NRCS) curve number method was used to model runoff energy factor. By overlaying maps of runoff energy, soil erodibility, slope length and steepness, cover management, and support practice factors with assigned values, the cumulative effect of these parameters for the suspended sediment yield was calculated using the ArcGIS raster calculator. The runoff energy factor was the most sensitive parameter, followed by slope length and steepness factor. To improve the model's fit to the local conditions, the initial abstraction to storage ratio (λ) of the runoff energy factor was reduced to 0.023, and the MUSLE model coefficient and exponent were adjusted to 1 and 0.59, respectively. During calibration, the mean observed and estimated suspended sediment yields were 0.2 and 0.23 ton/ha, respectively, while during validation, they were 0.7 and 0.53 ton/ha, respectively. The model evaluation showed that the MUSLE model, without calibration, was not appropriate for estimating runoff and sediment yield. However, with appropriate calibration, the model showed good performance with a coefficient of determination (R2), coefficient of efficiency (E), and index of agreement (d) of 0.85, 0.85, and 0.96 respectively, during calibration and 0.84, 0.65, and 0.83 respectively, during validation. Based on these findings, this study suggests that the calibrated MUSLE model can be used to prioritize soil and water conservation interventions within the watershed or can be extrapolated to neighboring similar watersheds. Further refinement of model input parameters using more data from the watershed is recommended to increase the prediction accuracy of the model.

20.
J Environ Manage ; 367: 121989, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39096731

ABSTRACT

Tyre wear has been identified as a major road-related pollutant source, with road runoff transporting tyre wear particles (TWP) to adjacent soil, watercourses, or further through stormwater systems. The aim of this study was to investigate the occurrence and transport of TWP along a stormwater system. Water and sediment have been sampled at selected points (road runoff, gully pots, wells, outlet to a ditch, and stream) through a stormwater system situated along a highway in Sweden during November and December 2022, and March 2023. As there is limited data on the size distribution of TWP in different environmental media, especially in the size fraction <20 µm, the samples were fractioned into a fine (1.6-20 µm) and a coarse (1.6-500 µm) size fraction. The samples were analysed using a combination of marker compounds (benzene, α-methylstyrene, ethylstyrene, and butadiene trimer) for styrene-butadiene rubbers with PYR-GC/MS from which TWP concentration was calculated. Suspended solids were analysed in the water samples, and organic content was analysed in the sediment samples. TWP was found at nearly all locations, with concentrations up to 17 mg/L in the water samples and up to 40 mg/g in the sediment samples. In the sediment samples, TWP in the size fraction 1.6-20 µm represented a significant proportion (20-60%). Correlations were found between TWP concentration and suspended solids in the water samples (r = 0.87) and organic content in the sediment samples (r = 0.72). The results presented in this study demonstrate that TWP can be transported to the surrounding environment through road runoff, with limited retention in the studied stormwater system.


Subject(s)
Environmental Monitoring , Water Pollutants, Chemical/analysis , Sweden , Geologic Sediments/chemistry , Geologic Sediments/analysis , Rain
SELECTION OF CITATIONS
SEARCH DETAIL