Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 295(20): 6849-6860, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32209653

ABSTRACT

There are a number of riboswitches that utilize the same ligand-binding domain to regulate transcription or translation. S-box (SAM-I) riboswitches, including the riboswitch present in the Bacillus subtilis metI gene, which encodes cystathionine γ-synthase, regulate the expression of genes involved in methionine metabolism in response to SAM, primarily at the level of transcriptional attenuation. A rarer class of S-box riboswitches is predicted to regulate translation initiation. Here we identified and characterized a translational S-box riboswitch in the metI gene from Desulfurispirillum indicum The regulatory mechanisms of riboswitches are influenced by the kinetics of ligand interaction. The half-life of the translational D. indicum metI RNA-SAM complex is significantly shorter than that of the transcriptional B. subtilis metI RNA. This finding suggests that, unlike the transcriptional RNA, the translational metI riboswitch can make multiple reversible regulatory decisions. Comparison of both RNAs revealed that the second internal loop of helix P3 in the transcriptional RNA usually contains an A residue, whereas the translational RNA contains a C residue that is conserved in other S-box RNAs that are predicted to regulate translation. Mutational analysis indicated that the presence of an A or C residue correlates with RNA-SAM complex stability. Biochemical analyses indicate that the internal loop sequence critically determines the stability of the RNA-SAM complex by influencing the flexibility of residues involved in SAM binding and thereby affects the molecular mechanism of riboswitch function.


Subject(s)
Bacteria/metabolism , Gene Expression Regulation, Bacterial , Protein Biosynthesis , RNA, Bacterial/metabolism , Transcription, Genetic , Bacteria/genetics , Clostridium/genetics , Clostridium/metabolism , Ligands , RNA, Bacterial/genetics , Riboswitch
2.
Cell Chem Biol ; 26(12): 1725-1731.e6, 2019 12 19.
Article in English | MEDLINE | ID: mdl-31631009

ABSTRACT

Corn is a fluorogenic RNA aptamer that forms a high-affinity quasi-symmetric homodimer. The Corn dimer interface binds DFHO, resulting in highly photostable yellow fluorescence. Because of its photostability, Corn would be useful in RNA-based small-molecule biosensors, where quantitative accuracy would be affected by photobleaching. Here we describe a strategy for converting the constitutive Corn dimer into a small-molecule-regulated fluorescent biosensor that detects S-adenosylmethionine (SAM) in vitro and in living cells. We fused the Corn aptamer into a helical stem that was engineered by circularly permuting the SAM aptamer from the SAM-III riboswitch. In the absence of SAM, the Corn portion of this fusion RNA is unable to dimerize. However, upon binding SAM, the RNA dimerizes and binds DFHO. This RNA-based biosensor enables detection of SAM dynamics in living mammalian cells. Together, these data describe a class of RNA-based biosensor based on small-molecule-regulated dimerization of Corn.


Subject(s)
Aptamers, Nucleotide/metabolism , Biosensing Techniques/methods , RNA/metabolism , Aptamers, Nucleotide/chemistry , Dimerization , Fluorescent Dyes/chemistry , Fluorescent Dyes/metabolism , HEK293 Cells , Humans , Kinetics , Nucleic Acid Conformation , RNA/chemistry , Riboswitch , S-Adenosylmethionine/chemistry
3.
RNA Biol ; 12(1): 5-20, 2015.
Article in English | MEDLINE | ID: mdl-25751035

ABSTRACT

Protein-coding and non-coding RNA transcripts perform a wide variety of cellular functions in diverse organisms. Several of their functional roles are expressed and modulated via RNA structure. A given transcript, however, can have more than a single functional RNA structure throughout its life, a fact which has been previously overlooked. Transient RNA structures, for example, are only present during specific time intervals and cellular conditions. We here introduce four RNA families with transient RNA structures that play distinct and diverse functional roles. Moreover, we show that these transient RNA structures are structurally well-defined and evolutionarily conserved. Since Rfam annotates one structure for each family, there is either no annotation for these transient structures or no such family. Thus, our alignments either significantly update and extend the existing Rfam families or introduce a new RNA family to Rfam. For each of the four RNA families, we compile a multiple-sequence alignment based on experimentally verified transient and dominant (dominant in terms of either the thermodynamic stability and/or attention received so far) RNA secondary structures using a combination of automated search via covariance model and manual curation. The first alignment is the Trp operon leader which regulates the operon transcription in response to tryptophan abundance through alternative structures. The second alignment is the HDV ribozyme which we extend to the 5' flanking sequence. This flanking sequence is involved in the regulation of the transcript's self-cleavage activity. The third alignment is the 5' UTR of the maturation protein from Levivirus which contains a transient structure that temporarily postpones the formation of the final inhibitory structure to allow translation of maturation protein. The fourth and last alignment is the SAM riboswitch which regulates the downstream gene expression by assuming alternative structures upon binding of SAM. All transient and dominant structures are mapped to our new alignments introduced here.


Subject(s)
Gram-Negative Bacteria/virology , Levivirus/genetics , Nucleic Acid Conformation , RNA/chemistry , RNA/metabolism , 5' Untranslated Regions , Gram-Negative Bacteria/classification , Gram-Negative Bacteria/genetics , RNA, Catalytic/metabolism , RNA, Viral/chemistry , RNA, Viral/metabolism , Riboswitch , Sequence Alignment , Tryptophan/genetics
SELECTION OF CITATIONS
SEARCH DETAIL