Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters











Publication year range
1.
Plant Mol Biol ; 114(1): 12, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38324222

ABSTRACT

In plants, asymmetric cell divisions result in distinct cell fates forming large and small daughter cells, adding to the cellular diversity in an organ. SCARECROW (SCR), a GRAS domain-containing transcription factor controls asymmetric periclinal cell divisions in flowering plants by governing radial patterning of ground tissue in roots and cell proliferation in leaves. Though SCR homologs are present across land plant lineages, the current understanding of their role in cellular patterning and leaf development is mostly limited to flowering plants. Our phylogenetic analysis identified three SCR homologs in moss Physcomitrium patens, amongst which PpSCR1 showed highest expression in gametophores and its promoter activity was prominent at the mid-vein and the flanking leaf blade cells pointing towards its role in leaf development. Notably, out of the three SCR homologs, only the ppscr1 knock-out lines developed slender leaves with four times narrower leaf blade and three times thicker mid-vein. Detailed histology studies revealed that slender leaf phenotype is either due to the loss of anticlinal cell divisions or failure of periclinal division suppression in the leaf blade. RNA-Seq analyses revealed that genes responsible for cell division and differentiation are expressed differentially in the mutant. PpSCR1 overexpression lines exhibited significantly wider leaf lamina, further reconfirming the role in leaf development. Together, our data suggests that PpSCR1 is involved in the leaf blade and mid-vein development of moss and that its role in the regulation of cell division and proliferation is ancient and conserved among flowering plants and mosses.


Subject(s)
Bryophyta , Bryopsida , Magnoliopsida , Phylogeny , Cell Division , Plant Leaves
2.
Plants (Basel) ; 12(14)2023 Jul 16.
Article in English | MEDLINE | ID: mdl-37514273

ABSTRACT

The mechanisms underlying the de novo regeneration of adventitious roots are still poorly understood, particularly in trees. We developed a system for studying adventitious rooting (AR) at physiological and molecular levels using leaves excised from chestnut microshoots of the same genotype but with two distinct ontogenetic origins that differ in rooting competence. Leaves were treated with auxin and N-1-naphthyl-phthalamic acid (NPA), an inhibitor of auxin polar transport (PAT). The physiological effects were investigated by recording rooting rates and the number and quality of the roots. Molecular responses were examined by localizing and monitoring the changes in the expression of CsSCL1, an auxin-inducible gene in juvenile and mature shoots during AR. The rooting response of leaves was ontogenetic-stage dependent and similar to that of the donor microshoots. Initiation of root primordia and root development were inhibited by application of NPA, although its effect depended on the timing of application. CsSCL1 was upregulated by auxin only in rooting-competent leaves during the novo root organogenesis, and the expression was reduced by NPA. The inhibitory effect on gene expression was detected during the reprograming of rooting competent cells towards root initials in response to auxin, indicating that PAT-mediated upregulation of CsSCL1 is required in the initial steps of AR in chestnut leaves. The localized expression of CsSCL1 in the quiescent center (QC) also suggests a role for this gene in the maintenance of meristematic competence and root radial patterning.

3.
Breed Sci ; 73(1): 70-75, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37168810

ABSTRACT

During the course of plant evolution, leguminous and a few plants species have established root nodule symbiosis (RNS), one of the nitrogen nutrient acquisition strategies based on mutual interaction between plants and nitrogen-fixing bacteria. In addition to its useful agronomic trait, RNS comprises a unique form of plant lateral organogenesis; dedifferentiation and activation of cortical cells in the root are induced upon bacterial infection during nodule development. In the past few years, the elucidations of the significance of NODULE INCEPTION transcription factor as a potentially key innovative factor of RNS, the details of its function, and the successive discoveries of its target genes have advanced our understanding underlying molecular mechanisms of nodule organogenesis. In addition, a recent elucidation of the role of legume SHORTROOT-SCARECROW module has provided the insights into the unique properties of legume cortical cells. Here, I summarize such latest findings on the neofunctionalized key players of nodule organogenesis, which may provide clue to understand an evolutionary basis of RNS.

4.
New Phytol ; 237(5): 1652-1666, 2023 03.
Article in English | MEDLINE | ID: mdl-36451535

ABSTRACT

The processes that contribute to plant organ morphogenesis are spatial-temporally organized. Within the meristem, mitosis produces new cells that subsequently engage in cell expansion and differentiation programs. The latter is frequently accompanied by endoreplication, being an alternative cell cycle that replicates the DNA without nuclear division, causing a stepwise increase in somatic ploidy. Here, we show that the Arabidopsis SCL28 transcription factor promotes organ growth by modulating cell expansion dynamics in both root and leaf cells. Gene expression studies indicated that SCL28 regulates members of the SIAMESE/SIAMESE-RELATED (SIM/SMR) family, encoding cyclin-dependent kinase inhibitors with a role in promoting mitotic cell cycle (MCC) exit and endoreplication, both in response to developmental and environmental cues. Consistent with this role, mutants in SCL28 displayed reduced endoreplication, both in roots and leaves. We also found evidence indicating that SCL28 co-expresses with and regulates genes related to the biogenesis, assembly, and remodeling of the cytoskeleton and cell wall. Our results suggest that SCL28 controls, not only cell proliferation as reported previously but also cell expansion and differentiation by promoting MCC exit and endoreplication and by modulating aspects of the biogenesis, assembly, and remodeling of the cytoskeleton and cell wall.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Cycle/genetics , Cell Cycle Proteins/metabolism , Cell Proliferation , Endoreduplication , Gene Expression Regulation, Plant , Mitosis
5.
New Phytol ; 237(5): 1542-1549, 2023 03.
Article in English | MEDLINE | ID: mdl-36457304

ABSTRACT

The roles of SHORT-ROOT (SHR) and SCARECROW (SCR) in ground tissue patterning and differentiation have been well established in the root of Arabidopsis thaliana. Recently, work in additional organs and species revealed the extensive functional diversification of these genes, including regulation of cortical divisions essential for nodule organogenesis in legume roots, bundle sheath specification in the Arabidopsis leaf, patterning of inner leaf cell layers in maize, and stomatal development in rice. The co-option of distinct functions and cell types is attributed to different mechanisms, including paralog retention, spatiotemporal changes in gene expression, and novel protein functions. Elaborating our knowledge of the SHR-SCR module further unravels the developmental regulation that controls diverse forms and functions within and between species.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Plant Roots/metabolism , Transcription Factors/metabolism
6.
Front Plant Sci ; 13: 1069996, 2022.
Article in English | MEDLINE | ID: mdl-36466291

ABSTRACT

SHORT-ROOT (SHR) is a mobile transcription factor that plays important roles in ground tissue patterning, stem cell niche specification and maintenance, and vascular development in Arabidopsis roots. Although mRNA and protein of SHR are also found in hypocotyls, inflorescence stems, and leaves, its role in the above-ground organs has been less explored. In most developmental cases, SHR, together with its partner SCARECROW (SCR), regulates the expression of downstream target genes in controlling formative and proliferative cell divisions. Accumulating evidence on the regulatory role of SHR in shoots suggests that SHR may also play key roles in the above-ground organs. Interestingly, recent work has provided new evidence that SHR is also required for cell elongation in the hypocotyl of the etiolated seedling. This suggests that the novel roles of SHR and SHR-mediated regulatory networks can be found in shoots. Furthermore, comparative research on SHR function in roots and shoots will broaden and deepen our understanding of plant growth and development.

7.
Int J Mol Sci ; 23(12)2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35743225

ABSTRACT

BIG, a regulator of polar auxin transport, is necessary to regulate the growth and development of Arabidopsis. Although mutations in the BIG gene cause severe root developmental defects, the exact mechanism remains unclear. Here, we report that disruption of the BIG gene resulted in decreased quiescent center (QC) activity and columella cell numbers, which was accompanied by the downregulation of WUSCHEL-RELATED HOMEOBOX5 (WOX5) gene expression. BIG affected auxin distribution by regulating the expression of PIN-FORMED proteins (PINs), but the root morphological defects of big mutants could not be rescued solely by increasing auxin transport. Although the loss of BIG gene function resulted in decreased expression of the PLT1 and PLT2 genes, genetic interaction assays indicate that this is not the main reason for the root morphological defects of big mutants. Furthermore, genetic interaction assays suggest that BIG affects the stem cell niche (SCN) activity through the SCRSCARECROW (SCR)/SHORT ROOT (SHR) pathway and BIG disruption reduces the expression of SCR and SHR genes. In conclusion, our findings reveal that the BIG gene maintains root meristem activity and SCN integrity mainly through the SCR/SHR pathway.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Calmodulin-Binding Proteins/metabolism , Cell Division , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Meristem , Plant Roots/metabolism , Stem Cell Niche/genetics , Ubiquitin-Protein Ligases/metabolism
8.
Development ; 149(7)2022 04 01.
Article in English | MEDLINE | ID: mdl-35293577

ABSTRACT

The flexible deployment of developmental regulators is an increasingly appreciated aspect of plant development and evolution. The GRAS transcription factor SCARECROW (SCR) regulates the development of the endodermis in Arabidopsis and maize roots, but during leaf development it regulates the development of distinct cell types; bundle-sheath in Arabidopsis and mesophyll in maize. In rice, SCR is implicated in stomatal patterning, but it is unknown whether this function is additional to a role in inner leaf patterning. Here, we demonstrate that two duplicated SCR genes function redundantly in rice. Contrary to previous reports, we show that these genes are necessary for stomatal development, with stomata virtually absent from leaves that are initiated after germination of mutants. The stomatal regulator OsMUTE is downregulated in Osscr1;Osscr2 mutants, indicating that OsSCR acts early in stomatal development. Notably, Osscr1;Osscr2 mutants do not exhibit the inner leaf patterning perturbations seen in Zmscr1;Zmscr1h mutants, and Zmscr1;Zmscr1h mutants do not exhibit major perturbations in stomatal patterning. Taken together, these results indicate that SCR was deployed in different developmental contexts after the divergence of rice and maize around 50 million years ago.


Subject(s)
Arabidopsis Proteins , Oryza , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Oryza/genetics , Oryza/metabolism , Plant Leaves/metabolism , Zea mays/genetics , Zea mays/metabolism
9.
Dev Cell ; 57(4): 543-560.e9, 2022 02 28.
Article in English | MEDLINE | ID: mdl-35134336

ABSTRACT

In all multicellular organisms, transcriptional networks orchestrate organ development. The Arabidopsis root, with its simple structure and indeterminate growth, is an ideal model for investigating the spatiotemporal transcriptional signatures underlying developmental trajectories. To map gene expression dynamics across root cell types and developmental time, we built a comprehensive, organ-scale atlas at single-cell resolution. In addition to estimating developmental progressions in pseudotime, we employed the mathematical concept of optimal transport to infer developmental trajectories and identify their underlying regulators. To demonstrate the utility of the atlas to interpret new datasets, we profiled mutants for two key transcriptional regulators at single-cell resolution, shortroot and scarecrow. We report transcriptomic and in vivo evidence for tissue trans-differentiation underlying a mixed cell identity phenotype in scarecrow. Our results support the atlas as a rich community resource for unraveling the transcriptional programs that specify and maintain cell identity to regulate spatiotemporal organ development.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Gene Expression Regulation, Plant/genetics , Gene Regulatory Networks/genetics , Plant Roots/genetics , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant/physiology , Gene Regulatory Networks/physiology , Mutation/genetics , Plant Roots/metabolism , Single-Cell Analysis/methods , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome/physiology
10.
Plant J ; 107(4): 1102-1118, 2021 08.
Article in English | MEDLINE | ID: mdl-34143914

ABSTRACT

Tomato (Solanum lycopersicum L.) type VI glandular trichomes that occur on the surface of leaves, stems, young fruits and flowers produce and store a blend of volatile monoterpenes and sesquiterpenes. These compounds play important roles in the interaction with pathogens and herbivorous insects. Although the function of terpene synthases in the biosynthesis of volatile terpenes in tomato has been comprehensively investigated, the deciphering of their transcriptional regulation is only just emerging. We selected transcription factors that are over-expressed in trichomes based on existing transcriptome data and silenced them individually by virus-induced gene silencing. Of these, SlSCL3, a scarecrow-like (SCL) subfamily transcription factor, led to a significant decrease in volatile terpene content and expression of the corresponding terpene synthase genes when its transcription level was downregulated. Overexpression of SlSCL3 dramatically increased both the volatile terpene content and glandular trichome size, whereas its homozygous mutants showed reduced terpene biosynthesis. However, its heterozygous mutants also showed a significantly elevated volatile terpene content and enlarged glandular trichomes, similar to the overexpression plants. SlSCL3 modulates the expression of terpene biosynthetic pathway genes by transcriptional activation, but neither direct protein-DNA binding nor interaction with known regulators was observed. Moreover, transcript levels of the endogenous copy of SlSCL3 were decreased in the overexpression plants but increased in the heterozygous and homozygous mutants, suggesting feedback repression of its own promoter. Taken together, our results provide new insights into the role of SlSCL3 in the complex regulation of volatile terpene biosynthesis and glandular trichome development in tomato.


Subject(s)
Plant Proteins/genetics , Solanum lycopersicum/physiology , Terpenes/metabolism , Transcription Factors/genetics , Trichomes , Gene Silencing , Heterozygote , Mutation , Plant Proteins/metabolism , Plants, Genetically Modified , Promoter Regions, Genetic , Transcription Factors/metabolism , Trichomes/anatomy & histology , Trichomes/physiology , Volatile Organic Compounds/metabolism
11.
J Exp Bot ; 72(19): 6727-6738, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34173817

ABSTRACT

The presence of two meristematic cell populations in the root and shoot apex allows plants to grow indefinitely. Due to its simple and predictable tissue organization, the Arabidopsis root apical meristem remains an ideal model to study mechanisms such as stem cell specification, asymmetric cell division, and differentiation in plants. The root stem cell niche consists of a quiescent organizing centre surrounded by mitotically active stem cells, which originate all root tissues. The transcription factors PLETHORA, SCARECROW, and WOX5 form signalling hubs that integrate multiple inputs from an increasing number of proteins implicated in the regulation of stem cell niche function. Recently, locally produced auxin was added to the list of important mobile factors in the stem cell niche. In addition, protein-protein interaction data elegantly demonstrate how parallel pathways can meet in a common objective. Here we discuss how multiple networks converge to specify and maintain the root stem cell niche.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Meristem/metabolism , Plant Roots/metabolism , Stem Cell Niche
12.
Plant J ; 107(4): 1029-1039, 2021 08.
Article in English | MEDLINE | ID: mdl-34056773

ABSTRACT

Root growth relies on both cell division and cell elongation, which occur in the meristem and elongation zones, respectively. SCARECROW (SCR) and SHORT-ROOT (SHR) are GRAS family genes essential for root growth and radial patterning in the Arabidopsis root. Previous studies showed that SCR and SHR promote root growth by suppressing cytokinin response in the meristem, but there is evidence that SCR expressed beyond the meristem is also required for root growth. Here we report a previously unknown role for SCR in promoting cell elongation. Consistent with this, we found that the scr mutant accumulated a higher level of reactive oxygen species (ROS) in the elongation zone, which is probably due to decreased expression of peroxidase gene 3, which consumes hydrogen peroxide in a reaction leading to Casparian strip formation. When the oxidative stress response was blocked in the scr mutant by mutation in ABSCISIC ACID 2 (ABA2) or when the redox status was ameliorated by the upbeat 1 (upb1) mutant, the root became significantly longer, with longer cells and a larger and more mitotically active meristem. Remarkably, however, the stem cell and radial patterning defects in the double mutants still persisted. Since ROS and peroxidases are essential for endodermal differentiation, these results suggest that SCR plays a role in coordinating cell elongation, endodermal differentiation, redox homeostasis and oxidative stress response in the root. We also provide evidence that this role of SCR is independent of SHR, even though they function similarly in other aspects of root growth and development.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/physiology , Plant Roots/growth & development , Transcription Factors/genetics , Abscisic Acid/metabolism , Alcohol Oxidoreductases/genetics , Arabidopsis/cytology , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Cell Differentiation/genetics , Gene Expression Regulation, Plant , Homeostasis , Mutation , Oxidation-Reduction , Oxidative Stress/physiology , Peroxidase/genetics , Plant Cells , Plant Roots/cytology , Plant Roots/genetics , Plants, Genetically Modified , Reactive Oxygen Species/metabolism , Transcription Factors/metabolism
13.
Plant Direct ; 4(9): e00264, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32999956

ABSTRACT

C4 photosynthesis in grasses relies on a specialized leaf anatomy. In maize, this "Kranz" leaf anatomy is patterned in part by the duplicated SCARECROW (SCR) genes ZmSCR1 and ZmSCR1h. Here we show that in addition to patterning defects, chlorophyll content and levels of transcripts encoding Golden2-like regulators of chloroplast development are significantly lower in Zmscr1; Zmscr1h mutants than in wild-type. These perturbations are not associated with changes in chloroplast number, size, or ultrastructure. However, the maximum rates of carboxylation by ribulose bisphosphate carboxylase/oxygenase (RuBisCO, V cmax) and phosphoenolpyruvate carboxylase (PEPC, V pmax) are both reduced, leading to perturbed plant growth. The CO2 compensation point and 13C‰ of Zmscr1;Zmscr1h plants are both normal, indicating that a canonical C4 cycle is operating, albeit at reduced overall capacity. Taken together, our results reveal that the maize SCR genes, either directly or indirectly, play a role in photosynthetic development. SIGNIFICANCE STATEMENT: SCARECROW (SCR) is one of the best studied plant developmental regulators, however, its role in downstream plant physiology is less well-understood. Here, we have demonstrated that SCR is required to establish and/or maintain photosynthetic capacity in maize leaves.

14.
EMBO J ; 39(20): e105047, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32926464

ABSTRACT

Proper regulation of homeotic gene expression is critical for stem cell fate in both plants and animals. In Arabidopsis thaliana, the WUSCHEL (WUS)-RELATED HOMEOBOX 5 (WOX5) gene is specifically expressed in a group of root stem cell organizer cells called the quiescent center (QC) and plays a central role in QC specification. Here, we report that the SEUSS (SEU) protein, homologous to the animal LIM-domain binding (LDB) proteins, assembles a functional transcriptional complex that regulates WOX5 expression and QC specification. SEU is physically recruited to the WOX5 promoter by the master transcription factor SCARECROW. Subsequently, SEU physically recruits the SET domain methyltransferase SDG4 to the WOX5 promoter, thus activating WOX5 expression. Thus, analogous to its animal counterparts, SEU acts as a multi-adaptor protein that integrates the actions of genetic and epigenetic regulators into a concerted transcriptional program to control root stem cell organizer specification.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Homeodomain Proteins/metabolism , Plant Roots/metabolism , Stem Cells/metabolism , Arabidopsis/embryology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cell Differentiation/genetics , Epigenesis, Genetic , Gene Expression Regulation, Plant/genetics , Histones/metabolism , Homeodomain Proteins/genetics , Methyltransferases/genetics , Methyltransferases/metabolism , Mutation , Promoter Regions, Genetic , Protein Domains , Signal Transduction , Stem Cell Niche/genetics , Stem Cell Niche/physiology
15.
Genes (Basel) ; 11(6)2020 06 02.
Article in English | MEDLINE | ID: mdl-32498388

ABSTRACT

INDETERMINATE DOMAIN (IDD) family proteins are plant-specific transcription factors. Some Arabidopsis IDD (AtIDD) proteins regulate the expression of SCARECROW (SCR) by interacting with GRAS family transcription factors SHORT-ROOT (SHR) and SCR, which are involved in root tissue formation. Some AtIDD proteins regulate genes involved in the synthesis (GA3ox1) or signaling (SCL3) of gibberellic acid (GA) by interacting with DELLA proteins, a subfamily of the GRAS family. We analyzed the DNA binding properties and protein-protein interactions of select AtIDD proteins. We also investigated the transcriptional activity of the combination of AtIDD and GRAS proteins (AtIDD proteins combined with SHR and SCR or with REPRESSOR of ga1-3 (RGA)) on the promoters of SCR,SCL3, and GA3ox1 by conducting a transient assay using Arabidopsis culture cells. Our results showed that the SCR promoter could be activated by the IDD and RGA complexes and that the SCL3 and GA3ox1 promoters could be activated by the IDD, SHR, and SCR complexes, indicating the possibility that these complexes regulate and consequently coordinate the expression of genes involved in GA synthesis (GA3ox1), GA signaling (SCL3), and root formation (SCR).


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Co-Repressor Proteins/genetics , Mixed Function Oxygenases/genetics , Arabidopsis/growth & development , DNA-Binding Proteins/genetics , Gibberellins/metabolism , Multigene Family/genetics , Promoter Regions, Genetic/genetics , Repressor Proteins/genetics , Transcription Factors/genetics
16.
Dev Biol ; 461(2): 145-159, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32061586

ABSTRACT

scarecrow (scro) gene encodes a Drosophila homolog of mammalian Nkx2.1 that belongs to an evolutionally conserved NK2 family. Nkx2.1 has been well known for its role in the development of hypothalamus, lung, thyroid gland, and brain. However, little is known about biological roles of scro. To understand scro functions, we generated two types of knock-in mutant alleles, substituting part of either exon-2 or exon-3 for EGFP (or Gal4) by employing the CRISPR/Cas9 genome editing tool. Using these mutations, we characterized spatio-temporal expression patterns of the scro gene and its mutant phenotypes. Homozygous knock-in mutants are lethal during embryonic and early larval development. In developing embryos, scro is exclusively expressed in the pharyngeal primordia and numerous neural clusters in the central nervous system (CNS). In postembryonic stages, the most prominent scro expression is detected in the larval and adult optic lobes, suggesting that scro plays a role for the development and/or function of this tissue type. Notch signaling is the earliest factor known to act for the development of the optic lobe. scro mutants lacked mitotic cells and Delta expression in the optic anlagen, and showed altered expression of several proneural and neurogenic genes including Delta and Notch. Furthermore, scro mutants showed grossly deformed neuroepithelial (NE) cells in the developing optic lobe and severely malformed adult optic lobes, the phenotypes of which are shown in Notch or Delta mutants, suggesting scro acting epistatic to the Notch signaling. From these data together, we propose that scro plays an essential role for the development of the optic lobe, possibly acting as a regional specification factor.


Subject(s)
Drosophila Proteins/physiology , Drosophila melanogaster/genetics , Homeodomain Proteins/physiology , Optic Lobe, Nonmammalian/embryology , Alleles , Animals , Brain/growth & development , CRISPR-Cas Systems , Drosophila Proteins/genetics , Drosophila melanogaster/embryology , Drosophila melanogaster/growth & development , Embryo, Nonmammalian , Exons/genetics , Gene Editing , Gene Expression Regulation, Developmental , Gene Knock-In Techniques , Genes, Reporter , Homeodomain Proteins/genetics , Intracellular Signaling Peptides and Proteins/physiology , Larva , Membrane Proteins/physiology , Mutation , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Optic Lobe, Nonmammalian/growth & development , Receptors, Notch/physiology
17.
Mol Neurobiol ; 57(4): 2115-2130, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31950355

ABSTRACT

In Drosophila, transcriptional feedback loops contribute to intracellular timekeeping mechanisms responsible for daily rhythms. Pigment-dispersing factor (PDF) is the major neuropeptide produced by latero-ventral neurons (LNvs) that function as a central pacemaker for circadian locomotor activity rhythms. PDF synchronizes other clock neurons thereby playing an essential role in the maintenance and coordination of circadian locomotor rhythms. However, the underlying molecular mechanism of the LNvs-specific Pdf expression is not well understood. Here, using Pdf promoter-bashing experiment, we identified a cis-acting Pdf regulatory element (PRE) that is sufficient for driving Pdf expression in the LNvs. We have also identified a homeobox transcription factor, scarecrow (SCRO), as a direct binding factor to PRE. Furthermore, transgenic expression of scro in the clock neurons abolished Pdf expression and circadian locomotor activity rhythms, and such repressive function requires DNA-binding homeodomain, but none of the other conserved domains. scro is predominantly expressed in the optic lobe and various clusters of cells in other areas of the central nervous system. A homozygous scro-null mutant generated by CRIPSR is lethal during embryonic and early larval development, suggesting that scro plays a vital role during early development.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Homeodomain Proteins/metabolism , Neuropeptides/metabolism , Regulatory Sequences, Nucleic Acid/genetics , Animals , Base Sequence , Cell Death , Circadian Rhythm , Drosophila melanogaster/cytology , Embryonic Development , Green Fluorescent Proteins/metabolism , Motor Activity , Neurons/metabolism , Protein Binding
18.
Development ; 146(14)2019 07 19.
Article in English | MEDLINE | ID: mdl-31235633

ABSTRACT

The highly efficient C4 photosynthetic pathway is facilitated by 'Kranz' leaf anatomy. In Kranz leaves, closely spaced veins are encircled by concentric layers of photosynthetic bundle sheath (inner) and mesophyll (outer) cells. Here, we demonstrate that, in the C4 monocot maize, Kranz patterning is regulated by redundant function of SCARECROW 1 (ZmSCR1) and a previously uncharacterized homeologue: ZmSCR1h. ZmSCR1 and ZmSCR1h transcripts accumulate in ground meristem cells of developing leaf primordia and in Zmscr1;Zmscr1h mutant leaves, most veins are separated by one rather than two mesophyll cells; many veins have sclerenchyma above and/or below instead of mesophyll cells; and supernumerary bundle sheath cells develop. The mutant defects are unified by compromised mesophyll cell development. In addition to Kranz defects, Zmscr1;Zmscr1h mutants fail to form an organized endodermal layer in the root. Collectively, these data indicate that ZmSCR1 and ZmSCR1h redundantly regulate cell-type patterning in both the leaves and roots of maize. Leaf and root pathways are distinguished, however, by the cell layer in which they operate - mesophyll at a two-cell distance from leaf veins versus endodermis immediately adjacent to root vasculature.


Subject(s)
DNA-Binding Proteins/genetics , Gene Dosage/physiology , Plant Leaves/embryology , Plant Roots/embryology , Zea mays/embryology , Zea mays/genetics , Arabidopsis Proteins/genetics , Gene Duplication/physiology , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Leucine Zippers/genetics , Multigene Family/genetics , Phylogeny , Plant Leaves/cytology , Plant Leaves/genetics , Plant Roots/cytology , Plant Roots/genetics , Plants, Genetically Modified , Sequence Homology , Zea mays/cytology , Zea mays/growth & development
19.
Planta ; 250(2): 667-674, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31104129

ABSTRACT

MAIN CONCLUSION: Mercury accumulation in Arabidopsis shoots is accelerated by endodermis specific expression of fusion proteins of a bacterial mercury transporter MerC and a plant SNARE SYP121 under control of SCARECROW promoter. We previously demonstrated that the CaMV 35S RNA promoter (p35S)-driven ubiquitous expression of a bacterial mercury transporter MerC, fused with SYP121, an Arabidopsis SNARE protein increases mercury accumulation of Arabidopsis. To establish an improved fine-tuned mercury transport system in plants for phytoremediation, the present study generated and characterized transgenic Arabidopsis plants expressing MerC-SYP121 specifically in the root endodermis, which is a crucial cell type for root element uptake. We generated four independent transgenic Arabidopsis lines expressing a transgene encoding mCherry-MerC-SYP121 under the control of the endodermis-specific SCARECROW promoter (hereafter pSCR lines). Quantitative real-time PCR analysis showed that expression levels of the transgene in roots of the pSCR lines were 3-23% of the p35S driven-overexpressing line. Confocal microscopy analysis showed that mCherry-MerC-SYP121 was dominantly expressed in the endodermis of the meristematic zone as well as in the mature zone of the pSCR roots. Mercury accumulation in shoots of the pSCR lines exposed to inorganic mercury was overall higher than the wild-type and comparable to the p35S over-expressing line. These results suggest that endodermis-specific expression of the MerC-SYP121 fusion proteins in plant roots sufficiently enhances mercury uptake and accumulation into shoots, which would be an ideal phenotype for phytoremediation of mercury-contaminated environments.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Cation Transport Proteins/metabolism , Mercury/metabolism , Qa-SNARE Proteins/metabolism , Arabidopsis/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biodegradation, Environmental , Biological Transport , Cation Transport Proteins/genetics , Meristem/genetics , Meristem/metabolism , Organ Specificity , Phenotype , Plant Roots/genetics , Plant Roots/metabolism , Plant Shoots/genetics , Plant Shoots/metabolism , Plants, Genetically Modified , Promoter Regions, Genetic/genetics , Qa-SNARE Proteins/genetics , Recombinant Fusion Proteins
20.
Front Plant Sci ; 10: 475, 2019.
Article in English | MEDLINE | ID: mdl-31057581

ABSTRACT

MicroRNAs (miRNAs) control expression of endogenous target genes through transcript cleavage or translational inhibition. Legume plants can form a specialized organ, the nodule, through interaction with nitrogen fixing soil bacteria. To understand the regulatory roles of miRNAs in the nodulation process, we functionally validated gma-miR171o and gma-miR171q and their target genes in soybean. These two miRNA sequences are identical in sequence but their miRNA genes are divergent and show unique, tissue-specific expression patterns. The expression levels of the two miRNAs are negatively correlated with that of their target genes. Ectopic expression of these miRNAs in transgenic hairy roots resulted in a significant reduction in nodule formation. Both gma-miR171o and gma-miR171q target members of the GRAS transcription factor superfamily, namely GmSCL-6 and GmNSP2. Transient interaction of miRNAs and their target genes in tobacco cells further confirmed their cleavage activity. The results suggest that gma-miR171o and gma-miR171q regulate GmSCL-6 and GmNSP2, which in turn, influence expression of the Nodule inception (NIN), Early Nodulin 40 (ENOD40), and Ethylene Response Factor Required for Nodulation (ERN) genes during the Bradyrhizobium japonicum-soybean nodulation process. Collectively, our data suggest a role for two miRNAs, gma-miR171o and gma-miR171q, in regulating the spatial and temporal aspects of soybean nodulation.

SELECTION OF CITATIONS
SEARCH DETAIL