Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
Add more filters










Publication year range
1.
BMC Res Notes ; 17(1): 173, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902826

ABSTRACT

OBJECTIVE: The objective of this study was to examine the genetic diversity within and between farmed populations of Onychostoma macrolepis, and to establish a foundation for enhancing the genetic resources of breeding groups through the introduction of new individuals and crossbreeding. A total of 49 individuals were subjected to sequencing using Specific-Locus Amplified Fragment Sequencing (SLAF-seq), one of the restriction site-associated DNA sequencing technologies. The single nucleotide polymorphisms(SNPs)were identified to conduct the analyzation of phylogeny population structure, principal component and genetic diversity. RESULTS: A total of 853,067 SNPs were identified. The results of the phylogenetic analysis revealed that each sample was genetically clustered into three distinct groups: ZhenPing (ZP), LanGao parents (LG), and their progeny population (LG-F1). Each population was observed to be clustered together. Analysis of population genetic diversity revealed that the observed heterozygosity (Ho) ranged from 0.200 to 0.230, the expected heterozygosity (He) ranged from 0.280 to 0.282, and the polymorphic information content (PIC) ranged from 0.228 to 0.230. These results indicate that the genetic diversity of the population is low and the signs of long-term interbreeding are obvious, but there are differences between the populations, and the genetic diversity of the population can be improved by hybridization in different regions.


Subject(s)
Genetic Variation , Phylogeny , Polymorphism, Single Nucleotide , Animals , Polymorphism, Single Nucleotide/genetics , Sequence Analysis, DNA/methods , Genetics, Population/methods , Principal Component Analysis
2.
BMC Genomics ; 25(1): 582, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858624

ABSTRACT

BACKGROUND: Carcass traits are essential economic traits in the commercial pig industry. However, the genetic mechanism of carcass traits is still unclear. In this study, we performed a genome-wide association study (GWAS) based on the specific-locus amplified fragment sequencing (SLAF-seq) to study seven carcass traits on 223 four-way intercross pigs, including dressing percentage (DP), number of ribs (RIB), skin thinkness (ST), carcass straight length (CSL), carcass diagonal length (CDL), loin eye width (LEW), and loin eye thickness (LET). RESULTS: A total of 227,921 high-quality single nucleotide polymorphisms (SNPs) were detected to perform GWAS. A total of 30 SNPs were identified for seven carcass traits using the mixed linear model (MLM) (p < 1.0 × 10- 5), of which 9 SNPs were located in previously reported quantitative trait loci (QTL) regions. The phenotypic variation explained (PVE) by the significant SNPs was from 2.43 to 16.32%. Furthermore, 11 candidate genes (LYPLAL1, EPC1, MATN2, ZFAT, ZBTB10, ZNF704, INHBA, SMYD3, PAK1, SPTBN2, and ACTN3) were found for carcass traits in pigs. CONCLUSIONS: The GWAS results will improve our understanding of the genetic basis of carcass traits. We hypothesized that the candidate genes associated with these discovered SNPs would offer a biological basis for enhancing the carcass quality of pigs in swine breeding.


Subject(s)
Genome-Wide Association Study , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Animals , Swine/genetics , Crosses, Genetic , Meat
3.
Plant Physiol Biochem ; 211: 108647, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703497

ABSTRACT

Sweetpotato, Ipomoea batatas (L.) Lam., is an important worldwide crop used as feed, food, and fuel. However, its polyploidy, high heterozygosity and self-incompatibility makes it difficult to study its genetics and genomics. Longest vine length (LVL), yield per plant (YPP), dry matter content (DMC), starch content (SC), soluble sugar content (SSC), and carotenoid content (CC) are some of the major agronomic traits being used to evaluate sweetpotato. However limited research has actually examined how these traits are inherited. Therefore, after selecting 212 F1 from a Xin24 × Yushu10 crossing as the mapping population, this study applied specific-locus amplified fragment sequencing (SLAF-seq), at an average sequencing depth of 26.73 × (parents) and 52.25 × (progeny), to detect single nucleotide polymorphisms (SNPs). This approach generated an integrated genetic map of length 2441.56 cM and a mean distance of 0.51 cM between adjacent markers, encompassing 15 linkage groups (LGs). Based on the linkage map, 26 quantitative trait loci (QTLs), comprising six QTLs for LVL, six QTLs for YPP, ten QTLs for DMC, one QTL for SC, one QTL for SSC, and two QTLs for CC, were identified. Each of these QTLs explained 6.3-10% of the phenotypic variation. It is expected that the findings will be of benefit for marker-assisted breeding and gene cloning of sweetpotato.


Subject(s)
Chromosome Mapping , Ipomoea batatas , Quantitative Trait Loci , Ipomoea batatas/genetics , Ipomoea batatas/metabolism , Quantitative Trait Loci/genetics , Polymorphism, Single Nucleotide/genetics , Genetic Linkage , Phenotype
4.
Sci Rep ; 14(1): 9606, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38670987

ABSTRACT

Coix lacryma-jobi L. is one of the most economically and medicinally important corns. This study constructed a high-density genetic linkage map of C. lacryma-jobi based on a cross between the parents 'Qianyi No. 2' × 'Wenyi No. 2' and their F2 progeny through high-throughput sequencing and the construction of a specific-locus amplified fragment (SLAF) library. After pre-processing, 325.49 GB of raw data containing 1628 M reads were obtained. A total of 22,944 high-quality SLAFs were identified, among which 3952 SLAFs and 3646 polymorphic markers met the requirements for the construction of a genetic linkage map. The integrated map contained 3605 high-quality SLAFs, which were grouped into ten genetic linkage groups. The total length of the map was 1620.39 cM, with an average distance of 0.45 cM and an average of 360.5 markers per linkage group. This report presents the first high-density genetic map of C. lacryma-jobi. This map was constructed using an F2 population and SLAF-seq approach, which allows the development of a large number of polymorphic markers in a short period. These results provide a platform for precise gene/quantitative trait locus (QTL) mapping, map-based gene separation, and molecular breeding in C. lacryma-jobi. They also help identify a target gene for tracking, splitting quantitative traits, and estimating the phenotypic effects of each QTL for QTL mapping. They are of great significance for improving the efficiency of discovering and utilizing excellent gene resources of C. lacryma-jobi.


Subject(s)
Chromosome Mapping , Genetic Linkage , Chromosome Mapping/methods , Genetic Markers , Quantitative Trait Loci , High-Throughput Nucleotide Sequencing/methods
5.
PeerJ ; 11: e16415, 2023.
Article in English | MEDLINE | ID: mdl-37953790

ABSTRACT

Background: Glycine soja Sieb. & Zucc. is the wild ancestor from which the important crop plant soybean was bred. G. soja provides important germplasm resources for the breeding and improvement of cultivated soybean crops, however the species is threatened by habitat loss and fragmentation, and is experiencing population declines across its natural range. Understanding the patterns of genetic diversity in G. soja populations can help to inform conservation practices. Methods: In this study, we analyzed the genetic diversity and differentiation of G. soja at different sites and investigated the gene flow within the species. We obtained 147 G. soja accessions collected from 16 locations across the natural range of the species from China, Korea and Japan. Samples were analyzed using SLAF-seq (Specific-Locus Amplified Fragment Sequencing). Results: We obtained a total of 56,489 highly consistent SNPs. Our results suggested that G. soja harbors relatively high diversity and that populations of this species are highly differentiated. The populations harboring high genetic diversity, especially KR, should be considered first when devising conservation plans for the protection of G. soja, and in situ protection should be adopted in KR. G. soja populations from the Yangtze River, the Korean peninsula and northeastern China have a close relationship, although these areas are geographically disconnected. Other populations from north China clustered together. Analysis of gene flow suggested that historical migrations of G. soja may have occurred from the south northwards across the East-Asia land-bridge, but not across north China. All G. soja populations could be divided into one of two lineages, and these two lineages should be treated separately when formulating protection policies.


Subject(s)
Fabaceae , Glycine max , Glycine max/genetics , Genetic Variation/genetics , Plant Breeding , Fabaceae/genetics , Glycine/genetics
6.
BMC Genomics ; 24(1): 596, 2023 Oct 07.
Article in English | MEDLINE | ID: mdl-37805454

ABSTRACT

BACKGROUND: Soybean is one of the most important oil crops in the world, and its protein and fat are the primary sources of edible oil and vegetable protein. The effective components in soybean protein and fat have positive effects on improving human immunity, anti-tumor, and regulating blood lipids and metabolism. Therefore, increasing the contents of protein and fat in soybeans is essential for improving the quality of soybeans. RESULTS: This study selected 292 soybean lines from different regions as experimental materials, based on SLAF-seq sequencing technology, and performed genome-wide association study (GWAS) on the phenotype data from 2019-2021 Planted at the experimental base of Jilin Agricultural University, such as the contents of protein and fat of soybeans. Through the GLM model and MLM model, four SNP sites (Gm09_39012959, Gm12_35492373, Gm16_9297124, and Gm20_24678362) that were significantly related to soybean fat content were associated for three consecutive years, and two SNP sites (Gm09_39012959 and Gm20_24678362) that were significantly related to soybean protein content were associated. By the annotation and enrichment of genes within the 100 Kb region of SNP loci flanking, two genes (Glyma.09G158100 and Glyma.09G158200) related to soybean protein synthesis and one gene (Glyma.12G180200) related to lipid metabolism were selected. By the preliminary verification of expression levels of genes with qPCR, it is found that during the periods of R6 and R7 of the accumulation of soybean protein and fat, Glyma.09G158100 and Glyma.09G158200 are positive regulatory genes that promote protein synthesis and accumulation, while Glyma.12G180200 is the negative regulatory gene that inhibits fat accumulation. CONCLUSIONS: These results lay the basis for further verifying the gene function and studying the molecular mechanisms regulating the accumulation of protein and fat in soybean seeds.


Subject(s)
Genome-Wide Association Study , Soybean Proteins , Humans , Soybean Proteins/genetics , Soybean Proteins/metabolism , Quantitative Trait Loci , Glycine max/physiology , Genes, Plant , Seeds/metabolism , Polymorphism, Single Nucleotide
7.
Front Plant Sci ; 14: 1126254, 2023.
Article in English | MEDLINE | ID: mdl-37521918

ABSTRACT

Nitrogen is essential for crop production. It is a critical macronutrient for plant growth and development. However, excessive application of nitrogen fertilizer is not only a waste of resources but also pollutes the environment. An effective approach to solving this problem is to breed rice varieties with high nitrogen use efficiency (NUE). In this study, we performed a genome-wide association study (GWAS) on 419 rice landraces using 208,993 single nucleotide polymorphisms (SNPs). With the mixed linear model (MLM) in the Tassel software, we identified 834 SNPs associated with root surface area (RSA), root length (RL), root branch number (RBN), root number (RN), plant dry weight (PDW), plant height (PH), root volume (RL), plant fresh weight (PFW), root fractal dimension (RFD), number of root nodes (NRN), and average root diameter (ARD), with a significant level of p < 2.39×10-7. In addition, we found 49 SNPs that were correlated with RL, RBN, RN, PDW, PH, PFW, RFD, and NRN using genome-wide efficient mixed-model association (GEMMA), with a significant level of p < 1×10-6. Additionally, the final results for eight traits associated with 193 significant SNPs by using multi-locus random-SNP-effect mixed linear model (mrMLM) model and 272 significant SNPs associated with 11 traits by using IIIVmrMLM. Within the linkage intervals of significantly associated SNP, we identified eight known related genes to NUE in rice, namely, OsAMT2;3, OsGS1, OsNR2, OsNPF7.4, OsPTR9, OsNRT1.1B, OsNRT2.3, and OsNRT2.2. According to the linkage disequilibrium (LD) decay value of this population, there were 75 candidate genes within the 150-kb regions upstream and downstream of the most significantly associated SNP (Chr5_29804690, Chr5_29956584, and Chr10_17540654). These candidate genes included 22 transposon genes, 25 expressed genes, and 28 putative functional genes. The expression levels of these candidate genes were measured by real-time quantitative PCR (RT-qPCR), and the expression levels of LOC_Os05g51700 and LOC_Os05g51710 in C347 were significantly lower than that in C117; the expression levels of LOC_Os05g51740, LOC_Os05g51780, LOC_Os05g51960, LOC_Os05g51970, and LOC_Os10g33210 were significantly higher in C347 than C117. Among them, LOC_Os10g33210 encodes a peptide transporter, and LOC_Os05g51690 encodes a CCT domain protein and responds to NUE in rice. This study identified new loci related to NUE in rice, providing new genetic resources for the molecular breeding of rice landraces with high NUE.

8.
Front Plant Sci ; 14: 1166008, 2023.
Article in English | MEDLINE | ID: mdl-37255568

ABSTRACT

Fruit cracking decreases the total production and the commercial value of watermelon. The molecular mechanisms of fruit cracking are unknown. In this study, 164 recombinant inbred lines (RILs) of watermelon, derived from the crossing of the WQ1 (cracking-sensitive) and WQ2 (cracking-tolerant) lines, were sequenced using specific length amplified fragment sequencing (SLAF-seq). A high-density genetic linkage map was constructed with 3,335 markers spanning 1,322.74 cM, at an average 0.40 cM across whole-genome flanking markers. The cracking tolerance capacity (CTC), depth of fruit cracking (DFC), rind thickness (RT), and rind hardness (RH) were measured for quantitative trait locus (QTL) analysis. Of the four traits analyzed, one major QTL with high phenotypic variation (41.04%-61.37%) was detected at 76.613-76.919 cM on chromosome 2, which contained 104 annotated genes. Differential gene expression analysis with RNA sequencing (RNA-seq) data between the two parents identified 4,508 differentially expressed genes (DEGs). Comparison of the genes between the QTL region and the DEGs obtained eight coexisting genes. Quantitative real-time PCR (qRT-PCR) analysis revealed that these genes were significant differentially expressed between the two parents. These results provide new insights into the identification of QTLs or genes and marker-assisted breeding in watermelon.

9.
Plant Cell Rep ; 42(6): 1039-1057, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37076701

ABSTRACT

KEY MESSAGE: Common loci and candidate genes for controlling salt-alkali tolerance and yield-related traits were identified in Brassica napus combining QTL mapping with transcriptome under salt and alkaline stresses. The yield of rapeseed (Brassica napus L.) is determined by multiple yield-related traits, which are susceptible to environmental factors. Many yield-related quantitative trait loci (QTLs) have been reported in Brassica napus; however, no studies have been conducted to investigate both salt-alkali tolerance and yield-related traits simultaneously. Here, specific-locus amplified fragment sequencing (SLAF-seq) technologies were utilized to map the QTLs for salt-alkali tolerance and yield-related traits. A total of 65 QTLs were identified, including 30 QTLs for salt-alkali tolerance traits and 35 QTLs for yield-related traits, accounting for 7.61-27.84% of the total phenotypic variations. Among these QTLs, 18 unique QTLs controlling two to four traits were identified by meta-analysis. Six novel and unique QTLs were detected for salt-alkali tolerance traits. By comparing these unique QTLs for salt-alkali tolerance traits with those previously reported QTLs for yield-related traits, seven co-localized chromosomal regions were identified on A09 and A10. Combining QTL mapping with transcriptome of two parents under salt and alkaline stresses, thirteen genes were identified as the candidates controlling both salt-alkali tolerance and yield. These findings provide useful information for future breeding of high-yield cultivars resistant to alkaline and salt stresses.


Subject(s)
Brassica napus , Brassica napus/genetics , Plant Breeding , Chromosome Mapping , Quantitative Trait Loci/genetics , Phenotype , Sodium Chloride
11.
Front Genet ; 14: 1001352, 2023.
Article in English | MEDLINE | ID: mdl-36814900

ABSTRACT

Meat quality traits (MQTs) have gained more attention from breeders due to their increasing economic value in the commercial pig industry. In this genome-wide association study (GWAS), 223 four-way intercross pigs were genotyped using the specific-locus amplified fragment sequencing (SLAF-seq) and phenotyped for PH at 45 min post mortem (PH45), meat color score (MC), marbling score (MA), water loss rate (WL), drip loss (DL) in the longissimus muscle, and cooking loss (CL) in the psoas major muscle. A total of 227, 921 filtered single nucleotide polymorphisms (SNPs) evenly distributed across the entire genome were detected to perform GWAS. A total of 64 SNPs were identified for six meat quality traits using the mixed linear model (MLM), of which 24 SNPs were located in previously reported QTL regions. The phenotypic variation explained (PVE) by the significant SNPs was from 2.43% to 16.32%. The genomic heritability estimates based on SNP for six meat-quality traits were low to moderate (0.07-0.47) being the lowest for CL and the highest for DL. A total of 30 genes located within 10 kb upstream or downstream of these significant SNPs were found. Furthermore, several candidate genes for MQTs were detected, including pH45 (GRM8), MC (ANKRD6), MA (MACROD2 and ABCG1), WL (TMEM50A), CL (PIP4K2A) and DL (CDYL2, CHL1, ABCA4, ZAG and SLC1A2). This study provided substantial new evidence for several candidate genes to participate in different pork quality traits. The identification of these SNPs and candidate genes provided a basis for molecular marker-assisted breeding and improvement of pork quality traits.

12.
Mol Phylogenet Evol ; 182: 107736, 2023 05.
Article in English | MEDLINE | ID: mdl-36805473

ABSTRACT

Hybridization is recognized as a major force in species evolution and biodiversity formation, generally leading to the origin and differentiation of new species. Multiple hybridization events cannot easily be reconstructed, yet they offer the potential to study a number of evolutionary processes. Here, we used nuclear expressed sequence tag-simple sequence repeat and large-scale single nucleotide polymorphism variation data, combined with niche analysis, to investigate the putative independent hybridization events in Notopterygium, a group of perennial herb plants endemic to China. Population genomic analysis indicated that the four studied species are genetically well-delimited and that N. forrestii and N. oviforme have originated by hybridization. According to Approximate Bayesian Computation, the best-fit model involved the formation of N. forrestii from the crossing of N. franchetii and N. incisum, with N. forrestii further backcrossing to N. franchetii to form N. oviforme. The niche analyses indicated that niche divergence [likely triggered by the regional climate changes, particularly the intensification of East Asian winter monsoon, and tectonic movements (affecting both Qinghai-Tibetan Plateau and Qinling Mountains)] may have promoted and maintained the reproductive isolation among hybrid species. N. forrestii shows ecological specialization with respect to their parental species, whereas N. oviforme has completely shifted its niche. These results suggested that the climate and environmental factors together triggered the two-step hybridization of the East Asia herb plants. Our study also emphasizes the power of genome-wide SNPs for investigating suspected cases of hybridization, particularly unravelling old hybridization events.


Subject(s)
Apiaceae , Hybridization, Genetic , Apiaceae/genetics , Bayes Theorem , Ecosystem , Metagenomics , Phylogeny
13.
PeerJ ; 11: e14698, 2023.
Article in English | MEDLINE | ID: mdl-36684677

ABSTRACT

Medicago polymorpha L. (bur clover), an invasive plant species of the genus Medicago, has been traditionally used in China as an edible vegetable crop because of its high nutritive value. However, few molecular markers for M. polymorpha have been identified. Using the recently published high-quality reference genome of M. polymorpha, we performed a specific-locus amplified fragment sequencing (SLAF-seq) analysis of 10 M. polymorpha accessions to identify molecular markers and explore genetic diversity. A total of 52,237 high-quality single nucleotide polymorphisms (SNPs) were developed. These SNPs were mostly distributed on pseudochromosome 3, least distributed on pseudochromosome 7, and relatively evenly distributed on five other pseudochromosomes of M. polymorpha. Phenotypic analysis showed that there was a great difference in phenotypic traits among different M. polymorpha accessions. Moreover, clustering all M. polymorpha accessions based on their phenotypic traits revealed three groups. Both phylogenetic analysis and principal component analysis (PCA) of all M. polymorpha accessions based on SNP markers consistently indicated that all M. polymorpha accessions could be divided into three distinct groups (I, II, and III). Subsequent genetic diversity analysis for the 10 M. polymorpha accessions validated the effectiveness of the M. polymorpha germplasm molecular markers in China. Additionally, SSR mining analysis was also performed to identify polymorphic SSR motifs, which could provide valuable candidate markers for the further breeding of M. polymorpha. Since M. polymorpha genetics have not been actively studied, the molecular markers generated from our research will be useful for further research on M. polymorpha resource utilization and marker-assisted breeding.


Subject(s)
Genetic Variation , Medicago , Genetic Variation/genetics , Medicago/genetics , Phylogeny , Plant Breeding , Polymorphism, Single Nucleotide/genetics
14.
Plant Dis ; 107(1): 125-130, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35698253

ABSTRACT

Triticum boeoticum (2n = 2x = 14, AbAb) is an important relative of wheat. This species tolerates many different types of environmental stresses, including drought, salt, and pathogenic infection, and is lower in dietary fiber and higher in antioxidants, protein (15 to 18%), lipids, and trace elements than common wheat. However, the gene transfer rate from this species to common wheat is low, and few species-specific molecular markers are available. In this study, the wheat-T. boeoticum substitution line Z1889, derived from a cross between the common wheat cultivar Crocus and T. boeoticum line G52, was identified using multicolor fluorescence in situ hybridization, multicolor genomic in situ hybridization, and a 55K single-nucleotide polymorphism array. Z1889 was revealed to be a 4Ab (4B) substitution line with a high degree of resistance to stripe rust pathogen strains prevalent in China. In addition, 22 4Ab chromosome-specific molecular markers and 11 T. boeoticum genome-specific molecular markers were developed from 1,145 4Ab chromosome-specific fragments by comparing the sequences generated by specific-length amplified fragment sequencing, with an efficiency of up to 55.0%. Furthermore, the specificity of these markers was verified in four species containing the Ab genome. These markers not only can be used for the detection of the 4Ab chromosome but also provide a basis for molecular marker-assisted, selection-based breeding in wheat.


Subject(s)
Basidiomycota , Triticum , Triticum/genetics , In Situ Hybridization, Fluorescence , Disease Resistance/genetics , Plant Breeding , Basidiomycota/genetics , Genetic Markers
15.
J Appl Genet ; 64(1): 23-36, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36261770

ABSTRACT

Black spot disease (PBS) caused by Alternaria alternata is an economic disease of pear (Pyrus pyrifolia Nakai). Developing cultivars with durable PBS resistance traits is an important research objective for improving pear germplasm. The Deshengxiang is a popular pear variety in China and resistant to PBS. This study aimed to detect quantitative trait loci (QTL) associated with PBS resistance trait in pear and determine closely linked molecular markers by specific locus amplified fragment sequencing (SLAF-seq). F1 population resulting from a cross between "Deshengxiang" (female) and "Guiguan," a susceptible (male) variety, was developed and evaluated in 2016 and 2017. SLAF technology was used to discover SNPs in the F1 individuals and subsequently a high-density genetic linkage map for PBS resistance was constructed which contained 17,604 SNP markers. Based on the linkage map, the markers were distributed into 17 linkage groups, spanning 1548.48 cM, with a mean marker distance of 0.09 cM, representing the densest genetic map of the genus Pyrus. QTL analysis of PBS resistance identified a locus strongly related to PBS resistance at 77.68 ~ 112.99 cM on linkage group 15, which was further narrowed down to 93.79 ~ 112.99 cM. Two markers, Marker94293 and Marker94206, located at 97.47 and 102.93 cM, were closely associated with PBS resistance, with a Δ (SNP index) value of 0.46. Co-localization of QTL interval, bioinformatics analysis, and functional annotation revealed PBS putative candidate genes. Overall, the high-density pear linkage map is a suitable reference for mapping PBS resistance trait, QTL, and genes identified in this study contribute information that could be useful for PBS improvement in pear.


Subject(s)
Alternariosis , Disease Resistance , Genetic Linkage , Pyrus , Quantitative Trait Loci , Female , Male , Disease Resistance/genetics , Polymorphism, Single Nucleotide , Pyrus/genetics , Alternaria , Alternariosis/genetics , Plant Immunity/genetics
16.
Front Plant Sci ; 13: 1032449, 2022.
Article in English | MEDLINE | ID: mdl-36544869

ABSTRACT

Paeonia lactiflora Pall. (P. lactiflora) is a famous ornamental plant with showy and colorful flowers that has been domesticated in China for 4,000 years. However, the genetic basis of phenotypic variation and genealogical relationships in P. lactiflora population is poorly understood due to limited genetic information, which brings about bottlenecks in the application of effective and efficient breeding strategies. Understanding the genetic basis of color-related traits is essential for improving flower color by marker-assisted selection (MAS). In this study, a high throughput sequencing of 99 diploid P. lactiflora accessions via specific-locus amplified fragment sequencing (SLAF-seq) technology was performed. In total, 4,383,645 SLAF tags were developed from 99 P. lactiflora accessions with an average sequencing depth of 20.81 for each SLAF tag. A total of 2,954,574 single nucleotide polymorphisms (SNPs) were identified from all SLAF tags. The population structure and phylogenetic analysis showed that P. lactiflora population used in this study could be divided into six divergent groups. Through association study using Mixed linear model (MLM), we further identified 40 SNPs that were significantly positively associated with petal color. Moreover, a derived cleaved amplified polymorphism (dCAPS) marker that was designed based on the SLAF tag 270512F co-segregated with flower colors in P. lactiflora population. Taken together, our results provide valuable insights into the application of MAS in P. lactiflora breeding programs.

17.
BMC Plant Biol ; 22(1): 564, 2022 Dec 03.
Article in English | MEDLINE | ID: mdl-36463134

ABSTRACT

BACKGROUND: Powdery mildew caused by Blumeria graminis f. sp. tritici (Bgt) is prevalent in the main wheat-producing regions of China, resulting in severe yield losses in recent years. Mining and utilization of resistant genes from wild relatives of wheat is the most environmentally sound measure to control disease. Aegilops geniculata Roth (2n = 2x = 28, UgUgMgMg) is an essential and valuable disease-resistance gene donor for wheat improvement as a close relative species. RESULTS: In this study, to validate powdery mildew resistance locus on chromosome 7Mg, two genetic populations were constructed and through crossing wheat - Ae. geniculata 7Mg disomic addition line NA0973-5-4-1-2-9-1 and 7Mg (7 A) alien disomic substitution line W16998 with susceptible Yuanfeng175 (YF175, authorized varieties from Shaanxi province in 2005), respectively. Cytological examination, in situ hybridization (ISH), and functional molecular markers analysis revealed that the plants carrying chromosome 7Mg showed high resistance to powdery mildew in both F1 and F2 generation at the seedling stage. Besides, 84 specific markers were developed to identify the plants carrying chromosome 7Mg resistance based on the specific-locus amplified fragment sequencing (SLAF-seq) technique. Among them, four markers were selected randomly to check the reliability in F2 segregating populations derived from YF175/NA0973-5-4-1-2-9-1 and YF175/W16998. In summary, the above analysis confirmed that a dominant high powdery mildew resistance gene was located on chromosome 7Mg of Ae. geniculata. CONCLUSION: The results provide a basis for mapping the powdery mildew resistance gene mapping on chromosome 7Mg and specific markers for their utilization in the future.


Subject(s)
Aegilops , Triticum/genetics , Reproducibility of Results , Erysiphe , Biomarkers , Chromosomes
18.
Int J Mol Sci ; 23(24)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36555533

ABSTRACT

Salt stress severely affects crop growth and development and reduces the yield of Brassica napus. Exploring natural genetic variations for high salt tolerance in B. napus seedlings is an effective approach to improve productivity under salt stress. Using 10,658 high-quality single nucleotide polymorphic (SNP) markers developed by specific-locus amplified fragment sequencing (SLAF-seq) technology, genome-wide association studies (GWAS) were performed to investigate the genetic basis of salt tolerance and yield-related traits of B. napus. The results revealed that 77 and 497 SNPs were significantly associated with salt tolerance and yield-related traits, of which 40 and 58 SNPs were located in previously reported QTLs/SNPs, respectively. We identified nineteen candidate genes orthologous with Arabidopsis genes known to be associated with salt tolerance and seven potential candidates controlling both salt tolerance and yield. Our study provides a novel genetic resource for the breeding of high-yield cultivars resistant to salt stress.


Subject(s)
Arabidopsis , Brassica napus , Genome-Wide Association Study , Brassica napus/genetics , Germination/genetics , Salt Tolerance/genetics , Seeds/genetics , Plant Breeding , Arabidopsis/genetics
19.
Genes (Basel) ; 13(11)2022 10 31.
Article in English | MEDLINE | ID: mdl-36360227

ABSTRACT

Growth traits are crucial economic traits in the commercial pig industry and have a substantial impact on pig production. However, the genetic mechanism of growth traits is not very clear. In this study, we performed a genome-wide association study (GWAS) based on the specific-locus amplified fragment sequencing (SLAF-seq) to analyze ten growth traits on 223 four-way intercross pigs. A total of 227,921 highly consistent single nucleotide polymorphisms (SNPs) uniformly dispersed throughout the entire genome were used to conduct GWAS. A total of 53 SNPs were identified for ten growth traits using the mixed linear model (MLM), of which 18 SNPs were located in previously reported quantitative trait loci (QTL) regions. Two novel QTLs on SSC4 and SSC7 were related to average daily gain from 30 to 60 kg (ADG30-60) and body length (BL), respectively. Furthermore, 13 candidate genes (ATP5O, GHRHR, TRIM55, EIF2AK1, PLEKHA1, BRAP, COL11A2, HMGA1, NHLRC1, SGSM1, NFATC2, MAML1, and PSD3) were found to be associated with growth traits in pigs. The GWAS findings will enhance our comprehension of the genetic architecture of growth traits. We suggested that these detected SNPs and corresponding candidate genes might provide a biological foundation for improving the growth and production performance of pigs in swine breeding.


Subject(s)
Genome-Wide Association Study , Quantitative Trait Loci , Swine/genetics , Animals , Quantitative Trait Loci/genetics , Phenotype , Polymorphism, Single Nucleotide/genetics
20.
Int J Mol Sci ; 23(19)2022 Sep 24.
Article in English | MEDLINE | ID: mdl-36232577

ABSTRACT

Soybeans are essential crops that supply protein and oil. The composition and contents of soybean fatty acids are relevant to human health and have a significant relationship with soybean oil processing and applications. Identifying quantitative trait locus (QTL) genes related to palmitic acid could facilitate the development of a range of nutritive soybean cultivars using molecular marker-assisted selection. In this study, we used a cultivar with higher palmitic acid content, 'Dongnong42', and a lower palmitic acid content cultivar, 'Hobbit', to establish F2:6 recombinant inbred lines. A high-density genetic map containing 9980 SLAF markers was constructed and distributed across 20 soybean chromosomes. The genetic map contained a total genetic distance of 2602.58 cM and an average genetic distance of 0.39 cM between adjacent markers. Two QTLs related to palmitic acid content were mapped using inclusive composite interval mapping, explaining 4.2-10.1% of the phenotypic variance in three different years and environments, including the QTL included in seed palmitic 7-3, which was validated by developing SSR markers. Based on the SNP/Indel and significant differential expression analyses of Dongnong42 and Hobbit, two genes, Glyma.15g119700 and Glyma.15g119800, were selected as candidate genes. The high-density genetic map, QTLs, and molecular markers will be helpful for the map-based cloning of palmitic acid content genes. These could be used to accelerate breeding for high nutritive value cultivars via molecular marker-assisted breeding.


Subject(s)
Glycine max , Soybean Oil , Fatty Acids , Genotype , Humans , Palmitic Acid , Phenotype , Plant Breeding , Polymorphism, Single Nucleotide , Soybean Oil/genetics , Glycine max/genetics
SELECTION OF CITATIONS
SEARCH DETAIL