Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
J Allergy Clin Immunol ; 152(6): 1597-1606, 2023 12.
Article in English | MEDLINE | ID: mdl-37595757

ABSTRACT

BACKGROUND: Inborn errors of immunity are mostly monogenic. However, disease phenotype and outcome may be modified by the coexistence of a second gene defect. OBJECTIVE: We sought to identify the genetic basis of the disease in a patient who experienced bleeding episodes, pancytopenia, hepatosplenomegaly, and recurrent pneumonia that resulted in death. METHODS: Genetic analysis was done using next-generation sequencing. Protein expression and phosphorylation were determined by immunoblotting. T-cell proliferation and F-actin levels were studied by flow cytometry. RESULTS: The patient harbored 2 homozygous deletions in STX11 (c.369_370del, c.374_376del; p.V124fs60∗) previously associated with familial hemophagocytic lymphohistiocytosis and a novel homozygous missense variant in SLP76 (c.767C>T; p.T256I) that resulted in an approximately 85% decrease in SLP76 levels and absent T-cell proliferation. The patient's heterozygous family members showed an approximately 50% decrease in SLP76 levels but normal immune function. SLP76-deficient J14 Jurkat cells did not express SLP76 and had decreased extracellular signal-regulated kinase signaling, basal F-actin levels, and polymerization following T-cell receptor stimulation. Reconstitution of J14 cells with T256I mutant SLP76 resulted in low protein expression and abnormal extracellular signal-regulated kinase phosphorylation and F-actin polymerization after T-cell receptor activation compared with normal expression and J14 function when wild-type SLP76 was introduced. CONCLUSIONS: The hypomorphic mutation in SLP76 tones down the hyperinflammation due to STX11 deletion, resulting in a combined immunodeficiency that overshadows the hemophagocytic lymphohistiocytosis phenotype. To our knowledge, this study represents the first report of the opposing effects of 2 gene defects on the disease in a patient with an inborn error of immunity.


Subject(s)
Actins , Lymphohistiocytosis, Hemophagocytic , Humans , Extracellular Signal-Regulated MAP Kinases , Lymphohistiocytosis, Hemophagocytic/genetics , Mutation , Qa-SNARE Proteins/genetics , Receptors, Antigen, T-Cell/genetics , Signal Transduction
2.
J Allergy Clin Immunol ; 152(3): 807-813.e7, 2023 09.
Article in English | MEDLINE | ID: mdl-37211057

ABSTRACT

BACKGROUND: Inborn errors affecting components of the T-cell receptor signaling cascade cause combined immunodeficiency with various degrees of severity. Recently, homozygous variants in LCP2 were reported to cause pediatric onset of severe combined immunodeficiency with neutrophil, platelet, and T- and B-cell defects. OBJECTIVE: We sought to unravel the genetic cause of combined immunodeficiency and early-onset immune dysregulation in a 26-year-old man who presented with specific antibody deficiency, autoimmunity, and inflammatory bowel disease since early childhood. METHODS: The patient was subjected to whole-exome sequencing of genomic DNA and examination of blood neutrophils, platelets, and T and B cells. Expression levels of the Src homology domain 2-containing leukocyte protein of 76 kDa (SLP76) and tonic and ligand-induced PI3K signaling were evaluated by flow-cytometric detection of phosphorylated ribosomal protein S6 in B and T cells. RESULTS: Compound heterozygous missense variants were identified in LCP2, affecting the proline-rich repeat domain of SLP76 (p.P190R and p.R204W). The patient's total B- and T-cell numbers were within the normal range, as was platelet function. However, neutrophil function, numbers of unswitched and class-switched memory B cells, and serum IgA were decreased. Moreover, intracellular SLP76 protein levels were reduced in the patient's B cells, CD4+ and CD8+ T cells, and natural killer cells. Tonic and ligand-induced levels of phosphorylated ribosomal protein S6 and ligand-induced phosphorylated PLCγ1 were decreased in the patient's B cells and CD4+ and CD8+ T cells. CONCLUSIONS: Biallelic variants in LCP2 impair neutrophil function and T-cell and B-cell antigen-receptor signaling and can cause combined immunodeficiency with early-onset immune dysregulation, even in the absence of platelet defects.


Subject(s)
Phosphatidylinositol 3-Kinases , Severe Combined Immunodeficiency , Male , Child , Humans , Child, Preschool , Adult , Phosphatidylinositol 3-Kinases/genetics , CD8-Positive T-Lymphocytes , Ligands , Ribosomal Protein S6/genetics , Signal Transduction/genetics , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/diagnosis , Mutation
3.
Front Immunol ; 14: 1139123, 2023.
Article in English | MEDLINE | ID: mdl-37006259

ABSTRACT

The propagation and diversification of signals downstream of the T cell receptor (TCR) involve several adaptor proteins that control the assembly of multimolecular signaling complexes (signalosomes). The global characterization of changes in protein-protein interactions (PPI) following genetic perturbations is critical to understand the resulting phenotypes. Here, by combining genome editing techniques in T cells and interactomics studies based on affinity purification coupled to mass spectrometry (AP-MS) analysis, we determined and quantified the molecular reorganization of the SLP76 interactome resulting from the ablation of each of the three GRB2-family adaptors. Our data showed that the absence of GADS or GRB2 induces a major remodeling of the PPI network associated with SLP76 following TCR engagement. Unexpectedly, this PPI network rewiring minimally affects proximal molecular events of the TCR signaling pathway. Nevertheless, during prolonged TCR stimulation, GRB2- and GADS-deficient cells displayed a reduced level of activation and cytokine secretion capacity. Using the canonical SLP76 signalosome, this analysis highlights the plasticity of PPI networks and their reorganization following specific genetic perturbations.


Subject(s)
Signal Transduction , T-Lymphocytes , T-Lymphocytes/metabolism , Signal Transduction/genetics , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Protein Interaction Maps
4.
J Clin Immunol ; 43(3): 625-635, 2023 04.
Article in English | MEDLINE | ID: mdl-36474126

ABSTRACT

Increased susceptibility to develop severe forms of Epstein-Barr virus (EBV) infection in early age is a significant hallmark of an underlying primary immunodeficiency (PID). Here, we present immunologic and genetic evaluations of a 3-year-old child who was born to first-cousins parents and presented with recurrent infections, failure to thrive, and severe EBV-related infection and proliferation. A diagnosis of diffuse large B cell lymphoma was made and the immunological workup was suggestive of T cell immunodeficiency. Unfortunately, the patient succumbed to EBV-related lymphoma. Whole-exome sequencing revealed a novel homozygous mutation, c.991del.C; p. Q331Sfs*6 in the SLP76 gene. The SLP76 protein, a TCR signaling molecule, was recently linked to a human disease of the immune system. In order to examine the effect of this new SLP76 mutation on T cell signaling, a SLP76-deficient Jurkat-derived T cell line was transduced either with wild-type (WT), or with the specific SLP76 mutant, or with a mock vector. Downstream TCR signaling events, including ERK1/2 phosphorylation, CD69 expression, and Ca2 + mobilization, were reduced in cells harboring the reported mutation, linking this novel mutation to the expected immunological outcome. SLP76 deficiency should be added to the growing list of monogenetic diseases that predispose affected individuals to acquire severe and uncontrolled EBV infections and to develop substantial complications. This case further links mutations in the SLP76 gene to a significant human immunodeficiency and extends its clinical phenotype.


Subject(s)
Epstein-Barr Virus Infections , Immunologic Deficiency Syndromes , Lymphoma , Primary Immunodeficiency Diseases , Child, Preschool , Humans , Herpesvirus 4, Human , Immunologic Deficiency Syndromes/diagnosis , Lymphoma/complications , Mutation , Primary Immunodeficiency Diseases/complications , Receptors, Antigen, T-Cell/genetics
5.
Cell Biosci ; 12(1): 179, 2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36329484

ABSTRACT

BACKGROUND: Retinoic acid(RA), an embryonic morphogen, regulates cell differentiation. Endocytosis regulates receptor signaling that governs such RA-directed cellular processes. Vacuolin-1 is a small molecule that disrupts endocytosis, motivating interest in its effect on RA-induced differentiation/arrest. In HL-60 myeloblastic-leukemia cells, RA causes differentiation evidenced by a progression of cell-surface and functional markers, CD38, CD11b, and finally reactive oxygen species(ROS) production and G1/0 cell cycle arrest in mature cells. RESULTS: We found that Vacuolin-1 enhanced RA-induced CD11b, ROS and G1/0 arrest, albeit not CD38. Enhanced CD11b expression was associated with enhanced activation of Focal Adhesion Kinase(FAK). Adding vacuolin-1 enhanced RA-induced tyrosine phosphorylation of FAK, Src Family Kinases(SFKs), and the adaptor protein, SLP-76, expression of which is known to drive RA-induced differentiation. Depleting CD11b cripples late stages of progressive myeloid differentiation, namely G1/0 arrest and inducible ROS production, but not expression of CD38. Loss of NUMB, a protein that supports early endosome maturation, affected RA-induced ROS and G1/0 arrest, but not CD38 expression. CONCLUSION: Hence there appears to be a novel CD11b/FAK/LYN/SLP-76 axis subject to endosome regulation which contributes to later stages of RA-induced differentiation. The effects of vacuolin-1 thus suggest a model where RA-induced differentiation consists of progressive stages driven by expression of sequentially-induced receptors.

6.
J Autoimmun ; 131: 102857, 2022 07.
Article in English | MEDLINE | ID: mdl-35780036

ABSTRACT

Dysregulated T-cell activation is a hallmark of several autoimmune diseases such as rheumatoid arthritis (RA) and multiple sclerosis (MS). The lymphocyte cytosolic protein 2 (LCP2), also known as SLP-76, is essential for the development and activation of T cells. Despite the critical role of LCP2 in T-cell activation and the need for developing drugs that modify T-cell activation, no LCP2 inhibitors have been developed. This can be explained by the "undruggable" nature of LCP2, lacking a structure permissive to standard small molecule inhibitor modalities. Here, we explored an alternative drug modality, developing antisense oligonucleotides (ASOs) targeting LCP2 mRNAs, and evaluated its activity in modulating T-cell activation. We identified a set of 3' UTR targeting LCP2 ASOs, which knocked down LCP2 in a human T-cell line and primary human T cells and found that these suppressed T-cell receptor mediated activation. We also found that the ASOs suppressed FcεR1-mediated mast cell activation, in line with the role of LCP2 in mast cells. Taken together, our data provide examples of how immunomodulatory ASOs that interfere with undruggable targets can be developed and propose that such drug modalities can be used to treat autoimmune diseases.


Subject(s)
Autoimmune Diseases , Oligonucleotides, Antisense , Cell Line , Humans , Lymphocyte Activation , Oligonucleotides, Antisense/chemistry , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/pharmacology , T-Lymphocytes
7.
Clin Transl Med ; 11(12): e625, 2021 12.
Article in English | MEDLINE | ID: mdl-34919342

ABSTRACT

Regulatory T cells (Tregs) play an important role in controlling autoimmunity and limiting tissue damage and inflammation. IL2-inducible T cell kinase (Itk) is part of the Tec family of tyrosine kinases and is a critical component of T cell receptor mediated signaling. Here, we showed that either genetic ablation of Itk signaling or inhibition of Itk signaling pathways resulted in increased frequency of "noncanonical" CD4+ CD25- FOXP3+ Tregs (ncTregs), as well as of "canonical" CD4+ CD25+ FOXP3+ Tregs (canTregs). Using in vivo models, we showed that ncTregs can avert the formation of acute graft-versus-host disease (GVHD), in part by reducing conventional T cell proliferation, proinflammatory cytokine production, and tissue damage. This reduction in GVHD occurred without disruption of graft-versus-leukaemia (GVL) effects. RNA sequencing revealed that a number of effector, cell adhesion, and migration molecules were upregulated in Itk-/- ncTregs. Furthermore, disrupting the SLP76: ITK interaction using a specific peptide inhibitor led to enhanced Treg development in both mouse and primary human cells. This peptide inhibitor also significantly reduced inflammatory cytokine production in primary GVHD patient samples and mouse T cells without causing cell death or apoptosis. We provide evidence that specifically targeting Itk signaling could be a therapeutic strategy to treat autoimmune disorders.


Subject(s)
Interleukin-2/pharmacology , T-Lymphocytes, Regulatory/drug effects , Animals , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay/methods , Enzyme-Linked Immunosorbent Assay/statistics & numerical data , Erythrocytes/metabolism , Interleukin-2/metabolism , Mice , Mice, Inbred C57BL/genetics , Mice, Inbred C57BL/metabolism , Signal Transduction/drug effects , T-Lymphocytes, Regulatory/physiology
8.
Front Immunol ; 12: 701704, 2021.
Article in English | MEDLINE | ID: mdl-34456914

ABSTRACT

Adaptor molecules lack enzymatic and transcriptional activities. Instead, they exert their function by linking multiple proteins into intricate complexes, allowing for transmitting and fine-tuning of signals. Many adaptor molecules play a crucial role in T-cell signaling, following engagement of the T-cell receptor (TCR). In this review, we focus on Linker of Activation of T cells (LAT) and SH2 domain-containing leukocyte protein of 76 KDa (SLP-76). Monogenic defects in these adaptor proteins, with known roles in T-cell signaling, have been described as the cause of human inborn errors of immunity (IEI). We describe the current knowledge based on defects in cell lines, murine models and human patients. Germline mutations in Adhesion and degranulation adaptor protein (ADAP), have not resulted in a T-cell defect.


Subject(s)
Adaptor Proteins, Signal Transducing/immunology , Phosphoproteins/immunology , Signal Transduction/immunology , T-Lymphocytes/immunology , Animals , Humans , Lymphocyte Activation/immunology , Receptors, Antigen, T-Cell/immunology , src Homology Domains/immunology
9.
J Cell Sci ; 134(16)2021 08 15.
Article in English | MEDLINE | ID: mdl-34279667

ABSTRACT

Integrin engagement within the immune synapse enhances T cell activation, but our understanding of this process is incomplete. In response to T cell receptor (TCR) ligation, SLP-76 (LCP2), ADAP (FYB1) and SKAP55 (SKAP1) are recruited into microclusters and activate integrins via the effectors talin-1 and kindlin-3 (FERMT3). We postulated that integrins influence the centripetal transport and signaling of SLP-76 microclusters via these linkages. We show that contractile myosin filaments surround and are co-transported with SLP-76 microclusters, and that TCR ligand density governs the centripetal movement of both structures. Centripetal transport requires formin activity, actomyosin contraction, microtubule integrity and dynein motor function. Although immobilized VLA-4 (α4ß1 integrin) and LFA-1 (αLß2 integrin) ligands arrest the centripetal movement of SLP-76 microclusters and myosin filaments, VLA-4 acts distally, while LFA-1 acts in the lamellum. Integrin ß2, kindlin-3 and zyxin are required for complete centripetal transport, while integrin ß1 and talin-1 are not. CD69 upregulation is similarly dependent on integrin ß2, kindlin-3 and zyxin, but not talin-1. These findings highlight the integration of cytoskeletal systems within the immune synapse and reveal extracellular ligand-independent roles for LFA-1 and kindlin-3. This article has an associated First Person interview with the first author of the paper.


Subject(s)
Dyneins , Lymphocyte Function-Associated Antigen-1 , Cell Adhesion , Dyneins/genetics , Humans , Lymphocyte Function-Associated Antigen-1/metabolism , Membrane Proteins/metabolism , Myosins , Receptors, Antigen, T-Cell/metabolism
10.
SLAS Discov ; 26(1): 88-99, 2021 01.
Article in English | MEDLINE | ID: mdl-32844715

ABSTRACT

Hematopoietic progenitor kinase 1 (HPK1), also referred to as mitogen-activated protein kinase kinase kinase kinase 1 (MAP4K1), is a serine/threonine kinase that negatively regulates T-cell signaling by phosphorylating Ser376 of Src homology 2 (SH2) domain-containing leukocyte protein of 76 kDa (SLP-76), a critical mediator of T-cell receptor activation. HPK1 loss of function mouse models demonstrated enhanced immune cell activation and beneficial antitumor activity. To enable discovery and functional characterization of high-affinity small-molecule HPK1 inhibitors, we have established high-throughput biochemical, cell-based, and novel pharmacodynamic (PD) assays. Kinase activity-based time-resolved fluorescence energy transfer (TR-FRET) assays were established as the primary biochemical approach to screen for potent inhibitors and assess selectivity against members of MAP4K and other closely related kinases. A proximal target engagement (TE) assay quantifying pSLP-76 levels as a readout and a distal assay measuring IL-2 secretion as a functional response were established using human peripheral blood mononuclear cells (PBMCs) from two healthy donors. Significant correlations between biochemical and cellular assays as well as excellent correlation between the two donors for the cellular assays were observed. pSLP-76 levels were further used as a PD marker in the preclinical murine model. This effort required the development of a novel ultrasensitive single-molecule array (SiMoA) assay to monitor pSLP-76 changes in mouse spleen.


Subject(s)
Drug Discovery/methods , High-Throughput Screening Assays/methods , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/chemistry , Animals , Cell Line , Humans , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Mice , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism
11.
Cell Rep ; 31(12): 107815, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32579940

ABSTRACT

Durable humoral immunity against epidemic infectious disease requires the survival of long-lived plasma cells (LLPCs). LLPC longevity is dependent on metabolic programs distinct from short-lived plasma cells (SLPCs); however, the mechanistic basis for this difference is unclear. We have previously shown that CD28, the prototypic T cell costimulatory receptor, is expressed on both LLPCs and SLPCs but is essential only for LLPC survival. Here we show that CD28 transduces pro-survival signaling specifically in LLPCs through differential SLP76 expression. CD28 signaling in LLPCs increased glucose uptake, mitochondrial mass/respiration, and reactive oxygen species (ROS) production. Unexpectedly, CD28-mediated regulation of mitochondrial respiration, NF-κB activation, and survival was ROS dependent. IRF4, a target of NF-κB, was upregulated by CD28 activation in LLPCs and decreased IRF4 levels correlated with decreased glucose uptake, mitochondrial mass, ROS, and CD28-mediated survival. Altogether, these data demonstrate that CD28 signaling induces a ROS-dependent metabolic program required for LLPC survival.


Subject(s)
CD28 Antigens/metabolism , Plasma Cells/cytology , Plasma Cells/metabolism , Animals , Bone Marrow Cells/cytology , Cell Respiration , Cell Survival , Female , Glucose/metabolism , Humans , Interferon Regulatory Factors/metabolism , Mice, Inbred BALB C , Mice, Inbred C57BL , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction , Spleen/cytology
12.
Int J Mol Sci ; 20(19)2019 Sep 23.
Article in English | MEDLINE | ID: mdl-31548507

ABSTRACT

The enzyme phospholipase C gamma 1 (PLCγ1) has been identified as a potential drug target of interest for various pathological conditions such as immune disorders, systemic lupus erythematosus, and cancers. Targeting its SH3 domain has been recognized as an efficient pharmacological approach for drug discovery against PLCγ1. Therefore, for the first time, a combination of various biophysical methods has been employed to shed light on the atomistic interactions between PLCγ1 and its known binding partners. Indeed, molecular modeling of PLCγ1 with SLP76 peptide and with previously reported inhibitors (ritonavir, anethole, daunorubicin, diflunisal, and rosiglitazone) facilitated the identification of the common critical residues (Gln805, Arg806, Asp808, Glu809, Asp825, Gly827, and Trp828) as well as the quantification of their interaction through binding energies calculations. These features are in agreement with previous experimental data. Such an in depth biophysical analysis of each complex provides an opportunity to identify new inhibitors through pharmacophore mapping, molecular docking and MD simulations. From such a systematic procedure, a total of seven compounds emerged as promising inhibitors, all characterized by a strong binding with PLCγ1 and a comparable or higher binding affinity to ritonavir (∆Gbind < -25 kcal/mol), one of the most potent inhibitor reported till now.


Subject(s)
Enzyme Inhibitors/chemistry , Molecular Docking Simulation , Peptides/chemistry , Phospholipase C gamma/antagonists & inhibitors , Phospholipase C gamma/chemistry , Enzyme Inhibitors/metabolism , Humans , Peptides/metabolism , Phospholipase C gamma/metabolism , Protein Binding , Protein Domains
13.
Front Immunol ; 10: 1704, 2019.
Article in English | MEDLINE | ID: mdl-31402911

ABSTRACT

Antigen receptor signaling pathways are organized by adaptor proteins. Three adaptors, LAT, Gads, and SLP-76, form a heterotrimeric complex that mediates signaling by the T cell antigen receptor (TCR) and by the mast cell high affinity receptor for IgE (FcεRI). In both pathways, antigen recognition triggers tyrosine phosphorylation of LAT and SLP-76. The recruitment of SLP-76 to phospho-LAT is bridged by Gads, a Grb2 family adaptor composed of two SH3 domains flanking a central SH2 domain and an unstructured linker region. The LAT-Gads-SLP-76 complex is further incorporated into larger microclusters that mediate antigen receptor signaling. Gads is positively regulated by dimerization, which promotes its cooperative binding to LAT. Negative regulation occurs via phosphorylation or caspase-mediated cleavage of the linker region of Gads. FcεRI-mediated mast cell activation is profoundly impaired in LAT- Gads- or SLP-76-deficient mice. Unexpectedly, the thymic developmental phenotype of Gads-deficient mice is much milder than the phenotype of LAT- or SLP-76-deficient mice. This distinction suggests that Gads is not absolutely required for TCR signaling, but may modulate its sensitivity, or regulate a particular branch of the TCR signaling pathway; indeed, the phenotypic similarity of Gads- and Itk-deficient mice suggests a functional connection between Gads and Itk. Additional Gads binding partners include costimulatory proteins such as CD28 and CD6, adaptors such as Shc, ubiquitin regulatory proteins such as USP8 and AMSH, and kinases such as HPK1 and BCR-ABL, but the functional implications of these interactions are not yet fully understood. No interacting proteins or function have been ascribed to the evolutionarily conserved N-terminal SH3 of Gads. Here we explore the biochemical and functional properties of Gads, and its role in regulating allergy, T cell development and T-cell mediated immunity.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , GRB2 Adaptor Protein/metabolism , Hypersensitivity/immunology , Hypersensitivity/metabolism , Immunity, Cellular , Signal Transduction , Animals , Biomarkers , Disease Susceptibility , Humans , Immunomodulation , Lymphocyte Activation/immunology , Models, Biological , Multiprotein Complexes , Protein Binding , Receptors, Antigen, T-Cell/metabolism
14.
J Cell Sci ; 131(21)2018 11 08.
Article in English | MEDLINE | ID: mdl-30305305

ABSTRACT

Antigen recognition by the T cell receptor (TCR) directs the assembly of essential signaling complexes known as SLP-76 (also known as LCP2) microclusters. Here, we show that the interaction of the adhesion and degranulation-promoting adaptor protein (ADAP; also known as FYB1) with SLP-76 enables the formation of persistent microclusters and the stabilization of T cell contacts, promotes integrin-independent adhesion and enables the upregulation of CD69. By analyzing point mutants and using a novel phospho-specific antibody, we show that Y595 is essential for normal ADAP function, that virtually all tyrosine phosphorylation of ADAP is restricted to a Y595-phosphorylated (pY595) pool, and that multivalent interactions between the SLP-76 SH2 domain and its binding sites in ADAP are required to sustain ADAP phosphorylation. Although pY595 ADAP enters SLP-76 microclusters, non-phosphorylated ADAP is enriched in protrusive actin-rich structures. The pre-positioning of ADAP at the contact sites generated by these structures favors the retention of nascent SLP-76 oligomers and their assembly into persistent microclusters. Although ADAP is frequently depicted as an effector of SLP-76, our findings reveal that ADAP acts upstream of SLP-76 to convert labile, Ca2+-competent microclusters into stable adhesive junctions with enhanced signaling potential.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Jurkat Cells/metabolism , Phosphoproteins/metabolism , Receptors, Antigen, T-Cell/metabolism , Adaptor Proteins, Signal Transducing/immunology , Cell Adhesion/physiology , Cell Communication/physiology , Cytoskeleton/immunology , Cytoskeleton/metabolism , Humans , Jurkat Cells/cytology , Jurkat Cells/immunology , Lymphocyte Activation , Phosphoproteins/immunology , Phosphorylation , Receptors, Antigen, T-Cell/immunology , Signal Transduction , src Homology Domains
15.
Cell Signal ; 45: 132-144, 2018 05.
Article in English | MEDLINE | ID: mdl-29410283

ABSTRACT

Vav1 is a hematopoietic-specific Rho GDP/GTP exchange factor and signaling adaptor. Although these activities are known to be stimulated by direct Vav1 phosphorylation, little information still exists regarding the regulatory layers that influence the overall Vav1 activation cycle. Using a collection of cell models and activation-mimetic Vav1 mutants, we show here that the dephosphorylated state of Vav1 in nonstimulated T cells requires the presence of a noncatalytic, phospholipase Cγ1-Slp76-mediated inhibitory pathway. Upon T cell stimulation, Vav1 becomes rapidly phosphorylated via the engagement of Lck and, to a much lesser extent, other Src family kinases and Zap70. In this process, Lck, Zap70 and the adaptor protein Lat contribute differently to the dynamics and amplitude of the Vav1 phosphorylated pool. Consistent with a multiphosphosite activation mechanism, the optimal stimulation of Vav1 can only be recapitulated by the combination of several activation-mimetic phosphosite mutants. The analysis of these mutants has also unveiled the presence of different Vav1 signaling competent states that are influenced by phosphosites present in the N- and C-terminal domains of the protein.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Membrane Proteins/metabolism , Proto-Oncogene Proteins c-vav/metabolism , T-Lymphocytes/metabolism , ZAP-70 Protein-Tyrosine Kinase/metabolism , Humans , Jurkat Cells , Mutation , Phospholipase C gamma/metabolism , Phosphoproteins/metabolism , Phosphorylation , Proto-Oncogene Proteins c-vav/genetics , Signal Transduction , T-Lymphocytes/cytology
16.
Front Immunol ; 8: 789, 2017.
Article in English | MEDLINE | ID: mdl-28736554

ABSTRACT

In a synthetic biology approach using Schneider (S2) cells, we show that SLP-76 is directly phosphorylated at tyrosines Y113 and Y128 by SYK in the presence of ITAM-containing adapters such as CD3ζ, DAP12, or FcεRγ. This phosphorylation was dependent on at least one functional ITAM and a functional SH2 domain within SYK. Inhibition of Src-kinases by inhibitors PP1 and PP2 did not reduce SLP-76 phosphorylation in S2 cells, suggesting an ITAM and SYK dependent, but Src-kinase independent signaling pathway. This direct ITAM/SYK/SLP-76 signaling pathway therefore differs from previously described ITAM signaling. However, the SYK-family kinase ZAP70 required the additional co-expression of the Src-family kinases Fyn or Lck to efficiently phosphorylate SLP-76 in S2 cells. This difference in Src-family kinase dependency of SYK versus ZAP70-mediated ITAM-based signaling was further demonstrated in human lymphocytes. ITAM signaling in ZAP70-expressing T cells was dependent on the activity of Src-family kinases. In contrast, Src-family kinases were partially dispensable for ITAM signaling in SYK-expressing B cells or in natural killer cells, which express SYK and ZAP70. This demonstrates that SYK can signal using a Src-kinase independent ITAM-based signaling pathway, which may be involved in calibrating the threshold for lymphocyte activation.

17.
J Proteome Res ; 16(8): 2729-2742, 2017 08 04.
Article in English | MEDLINE | ID: mdl-28644030

ABSTRACT

Phospholipase C gamma 1 (PLC-γ1) occupies a critically important position in the T-cell signaling pathway. While its functions as a regulator of both Ca2+ signaling and PKC-family kinases are well characterized, PLC-γ1's role in the regulation of early T-cell receptor signaling events is incompletely understood. Activation of the T-cell receptor leads to the formation of a signalosome complex between SLP-76, LAT, PLC-γ1, Itk, and Vav1. Recent studies have revealed the existence of both positive and negative feedback pathways from SLP-76 to the apical kinase in the pathway, Lck. To determine if PLC-γ1 contributes to the regulation of these feedback networks, we performed a quantitative phosphoproteomic analysis of PLC-γ1-deficient T cells. These data revealed a previously unappreciated role for PLC-γ1 in the positive regulation of Zap-70 and T-cell receptor tyrosine phosphorylation. Conversely, PLC-γ1 negatively regulated the phosphorylation of SLP-76-associated proteins, including previously established Lck substrate phosphorylation sites within this complex. While the positive and negative regulatory phosphorylation sites on Lck were largely unchanged, Tyr192 phosphorylation was elevated in Jgamma1. The data supports a model wherein Lck's targeting, but not its kinase activity, is altered by PLC-γ1, possibly through Lck Tyr192 phosphorylation and increased association of the kinase with protein scaffolds SLP-76 and TSAd.


Subject(s)
Adaptor Proteins, Signal Transducing/physiology , Feedback, Physiological/physiology , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Phospholipase C gamma/metabolism , Phosphoproteins/physiology , Receptors, Antigen, T-Cell/physiology , Humans , Jurkat Cells , Phosphorylation , Protein-Tyrosine Kinases/metabolism , Signal Transduction , Tyrosine/metabolism , ZAP-70 Protein-Tyrosine Kinase/metabolism
18.
Oncotarget ; 8(13): 21871-21883, 2017 Mar 28.
Article in English | MEDLINE | ID: mdl-28423532

ABSTRACT

Several lymphangiogenic factors, such as vascular endothelial growth factors (VEGFs), have been found to drive the development of lymphatic metastasis in bladder cancer (BCa).Here, we have analyzed the gene expression of lymphangiogenic factors in tissue specimens from 12 non-muscle invasive bladder cancers (NMIBC) and 11 muscle invasive bladder cancers (MIBC), considering tumor and tumor-adjacent normal bladder areas obtained from the same organs. We then compared the results observed in patients with those obtained after treating human primary bladder microvascular endothelial cells (MEC) with either direct stimulation with VEGF-A or VEGF-C or by co-culturing (trans-well assay) MEC with bladder cancer cell lines varying in VEGF-A and VEGF-C production based on tumor grade.The genes of three markers of lymphatic endothelial commitment and development (PDPN, LYVE-1 and SLP-76) were significantly overexpressed in tissues of MIBC patients showing positive lymphovascular invasion (LVI+), lymph node metastasis (Ln+) and tumor progression. Their expression was also significantly enhanced either after direct stimulation of MEC by VEGF-A and VEGF-C or in the trans-well assay with each bladder cancer cell line.SLP-76 showed the highest gene expression. Both VEGF-A and VEGF-C also enhanced the expression of SLP-76 protein in MEC. However, a correlation between increase of SLP-76 gene expression and the ability of MEC to migrate could only be seen after induction by VEGF-C.The significant expression of SLP-76 in LVI+/Ln+ progressive MIBC and its overexpression in MEC after VEGF-A and VEGF-C stimulation suggest the need to develop this regulator of developmental lymphangiogenesis as a diagnostic tool in BCa.


Subject(s)
Carcinoma, Transitional Cell/pathology , Lymphatic Vessels/pathology , Urinary Bladder Neoplasms/pathology , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor C/metabolism , Adaptor Proteins, Signal Transducing/biosynthesis , Adult , Aged , Biomarkers, Tumor/analysis , Blotting, Western , Carcinoma, Transitional Cell/metabolism , Female , Flow Cytometry , Fluorescent Antibody Technique , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/physiology , Humans , Lymphangiogenesis/physiology , Lymphatic Metastasis , Lymphatic Vessels/metabolism , Male , Middle Aged , Phosphoproteins/biosynthesis , Polymerase Chain Reaction , Transcriptome , Urinary Bladder Neoplasms/metabolism
19.
Mol Cell Biol ; 37(11)2017 06 01.
Article in English | MEDLINE | ID: mdl-28289074

ABSTRACT

The cell surface receptor CD6 regulates T cell activation in both activating and inhibitory manners. The adaptor protein SLP-76 is recruited to the phosphorylated CD6 cytoplasmic Y662 residue during T cell activation, providing an activating signal to T cells. In this study, a biochemical approach identified the SH2 domain-containing adaptor protein GADS as the dominant interaction partner for the CD6 cytoplasmic Y629 residue. Functional experiments in human Jurkat and primary T cells showed that both mutations Y629F and Y662F abolished costimulation by CD6. In addition, a restraint on T cell activation by CD6 was revealed in primary T cells expressing CD6 mutated at Y629 and Y662. These data are consistent with a model in which bivalent recruitment of a GADS/SLP-76 complex is required for costimulation by CD6.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , Lymphocyte Activation/immunology , Phosphoproteins/metabolism , T-Lymphocytes/immunology , Adaptor Proteins, Signal Transducing/chemistry , CD4-Positive T-Lymphocytes/immunology , Humans , Interleukin-2/biosynthesis , Jurkat Cells , Models, Biological , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Mutation/genetics , Protein Binding , src Homology Domains
20.
Eur J Immunol ; 46(9): 2121-36, 2016 09.
Article in English | MEDLINE | ID: mdl-27349342

ABSTRACT

TCR ligation is critical for the selection, activation, and integrin expression of T lymphocytes. Here, we explored the role of the TCR adaptor protein slp-76 on iNKT-cell biology. Compared to B6 controls, slp-76(ace/ace) mice carrying a missense mutation (Thr428Ile) within the SH2-domain of slp-76 showed an increase in iNKT cells in the thymus and lymph nodes, but a decrease in iNKT cells in spleens and livers, along with reduced ADAP expression and cytokine response. A comparable reduction in iNKT cells was observed in the livers and spleens of ADAP-deficient mice. Like ADAP(-/-) iNKT cells, slp-76(ace/ace) iNKT cells were characterized by enhanced CD11b expression, correlating with an impaired induction of the TCR immediate-early gene Nur77 and a decreased adhesion to ICAM-1. Furthermore, CD11b-intrinsic effects inhibited cytokine release, concanavalin A-mediated inflammation, and iNKT-cell accumulation in the liver. Unlike B6 and ADAP(-/-) mice, the expression of the transcription factors Id3 and PLZF was reduced, whereas NP-1-expression was enhanced in slp-76(ace/ace) mice. Blockade of NP-1 decreased the recovery of iNKT cells from peripheral lymph nodes, identifying NP-1 as an iNKT-cell-specific adhesion factor. Thus, slp-76 contributes to the regulation of the tissue distribution, PLZF, and cytokine expression of iNKT cells via ADAP-dependent and -independent mechanisms.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Cytokines/biosynthesis , Mutation , Natural Killer T-Cells/immunology , Natural Killer T-Cells/metabolism , Phosphoproteins/genetics , src Homology Domains/genetics , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/metabolism , Animals , Biomarkers , C-Reactive Protein/genetics , C-Reactive Protein/metabolism , CD11b Antigen/genetics , CD11b Antigen/metabolism , Gene Deletion , Gene Expression , Hepatitis/etiology , Hepatitis/metabolism , Hepatitis/pathology , Inhibitor of Differentiation Proteins/genetics , Inhibitor of Differentiation Proteins/metabolism , Intercellular Adhesion Molecule-1/metabolism , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Liver/immunology , Lymph Nodes/immunology , Lymphocyte Function-Associated Antigen-1/genetics , Lymphocyte Function-Associated Antigen-1/metabolism , Mice , Mice, Knockout , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Organ Specificity/immunology , Phenotype , Phosphoproteins/chemistry , Phosphoproteins/metabolism , Promyelocytic Leukemia Zinc Finger Protein , Protein Binding , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , Spleen/immunology , Thymus Gland/immunology
SELECTION OF CITATIONS
SEARCH DETAIL