Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Pediatr ; 27(7S): 7S3-7S8, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33357595

ABSTRACT

Autosomal-recessive spinal muscular atrophy (SMA) is characterized by the loss of specific motor neurons of the spinal cord and skeletal muscle atrophy. SMA is caused by mutations or deletions of the survival motor neuron 1 (SMN1) gene, and disease severity correlates with the expression levels of the nearly identical copy gene, SMN2. Both genes ubiquitously express SMN protein, but SMN2 generates only low levels of protein that do not fully compensate for the loss-of-function of SMN1. SMN protein forms a multiprotein complex essential for the cellular assembly of ribonucleoprotein particles involved in diverse aspects of RNA metabolism. Other studies using animal models revealed a spatio-temporal requirement of SMN that is high during the development of the neuromuscular system and later, in the general maintenance of cellular and tissues homeostasis. These observations define a period for maximum therapeutic efficiency of SMN restoration, and suggest that cells outside the central nervous system may also participate in the pathogenesis of SMA. Finally, recent innovative therapies have been shown to mitigate SMN deficiency and have been approved to treat SMA patients. We briefly review major findings from the past twenty-five years of SMA research. © 2020 French Society of Pediatrics. Published by Elsevier Masson SAS. All rights reserved.


Subject(s)
Genetic Therapy/methods , Neuromuscular Agents/therapeutic use , Spinal Muscular Atrophies of Childhood/genetics , Spinal Muscular Atrophies of Childhood/therapy , Survival of Motor Neuron 1 Protein/genetics , Animals , Biomarkers/metabolism , Genetic Markers , Humans , Mutation , RNA/metabolism , Spinal Muscular Atrophies of Childhood/metabolism , Spinal Muscular Atrophies of Childhood/physiopathology , Survival of Motor Neuron 1 Protein/metabolism , Survival of Motor Neuron 2 Protein/genetics , Survival of Motor Neuron 2 Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL