Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Discov Oncol ; 15(1): 339, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39117970

ABSTRACT

To investigate the effects of higher cellular stanniocalcin 2 (STC2) on suppressing the migration and invasion but promoting the apoptosis of triple-negative breast cancer (TNBC). STC2 in TNBC and the para-carcinoma tissues were analyzed by immunohistochemistry (IHC), while the mRNA level was measured by qPCR. Over-expressing or silencing STC2 was established in MDA-MB-231 cells. Epithelial mesenchymal transition (EMT) related proteins, cell migration, invasion, proliferation and apoptosis were detected. MDA-MB-231 with over-expressing or silencing STC2 were injected into nude mice to formatting tumors, and then EMT related proteins were measured by IHC. Lower STC2 expressed in TNBC tissues than in the para-carcinoma tissues. Silencing STC2 promoted EMT of TNBC cell MDA-MB-231, as well as cell migration, invasion and proliferation, but suppressed MDA-MB-231 apoptosis, while over-expressing STC2 had the opposite results, which might be related to PKC/PI3K/AKT/mTOR pathway. STC2 was the protective gene in TNBC, by suppressing migration and invasion to inhibit MDA-MB-231 cell EMT but promote cell apoptosis, in order to suppress TNBC progression.

2.
Front Biosci (Landmark Ed) ; 29(7): 245, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39082333

ABSTRACT

BACKGROUND: Improving the clinical outcome of colorectal cancer (CRC) patients remains a major challenge. This study aimed to develop a new predictive classifier for CRC and to examine its relationship with the immune environment and therapeutic response. METHODS: A comprehensive bioinformatics analysis was applied to develop a risk panel comprised of cancer function status-related genes (CFSRGs). This panel was evaluated for prognostic utility by Area Under the Curve (AUC) and Kaplan-Meier (KM) analyses. Differences between high- and low-risk groups were subsequently investigated using multi-omics data. Immunohistochemistry (IHC), quantitative real-time polymerase chain reaction (qRT-PCR), and cell phenotype assays were also employed to ascertain the clinical value of STC2 expression. RESULTS: Significant differences were observed in the survival rate between high- and low-risk groups defined by our 7-CFSRG panel, both in internal and external CRC patient cohorts. The AUC for prediction of survival at 1-, 3- and 5-years was satisfactory in all cohorts. Detailed analysis revealed that tumor mutation burden, drug sensitivity, and pathological stage were closely associated with the risk score. Elevated expression of STC2 in CRC tissues relative to normal paraneoplastic tissues was associated with less favorable patient outcomes. qRT-PCR experiments confirmed that STC2 expression was significantly upregulated in several CRC cell lines (HCT116, SW480, and LOVO) compared to a normal intestinal epithelial cell line (NCM460). The proliferation, migration, and invasion of CRC cells were all significantly inhibited by knockdown of STC2. CONCLUSIONS: Our 7-CFSRG panel is a promising classifier for assessing the prognosis of CRC patients. Moreover, the targeting of STC2 may provide a novel therapeutic approach for improving patient outcomes.


Subject(s)
Biomarkers, Tumor , Colorectal Neoplasms , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Prognosis , Female , Male , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Kaplan-Meier Estimate , Middle Aged , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Glycoproteins/genetics , Glycoproteins/metabolism , Aged , Cell Proliferation/genetics , Computational Biology/methods
3.
J Nutr ; 154(6): 1790-1802, 2024 06.
Article in English | MEDLINE | ID: mdl-38636707

ABSTRACT

BACKGROUND: Stanniocalcin 2 (STC2), a glycoprotein hormone, is extensively expressed in various organs and tissues, particularly in the mammary gland. STC2 plays a crucial role in enabling cells to adapt to stress conditions and avert apoptosis. The efficiency of milk production is closely linked to both the quantity and quality of mammary cells. Yet, there remains a dearth of research on the impact of STC2 on mammary cells' activity in dairy cows. OBJECTIVES: The objective of this study was to investigate the effects of STC2 on the viability of mammary epithelial cells in dairy cows and to elucidate the underlying mechanisms. METHODS: First, the Gene Expression Profiling and Interactive Analysis database was employed to perform survival analysis on STC2 expression in relation to prognosis using The Cancer Genome Atlas and GETx data. Subsequently, the basic physical and chemical properties, gene expression, and potential signaling pathways involved in the growth of dairy cow mammary epithelial cells were determined using STC2 knockdown. RESULTS: STC2 knockdown significantly suppressed autophagy in mammary epithelial cells of dairy cows. Moreover, STC2 knockdown upregulated glutathione peroxidase 4 protein expression, elicited an elevation in lipid ROS concentrations, and inhibited the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway, consequently repressing downstream genes involved in lipid synthesis regulated by mTORC1 and ultimately inducing ferroptosis. CONCLUSIONS: The findings of our study suggest that STC2 suppresses autophagy and ferroptosis through the activation of mTORC1. Mechanically, STC2 exerts an inhibitory effect on ferroptosis by activating antioxidative stress-related proteins, such as glutathione peroxidase 4, to suppress lipid ROS production and stimulating the mTORC1 signaling pathway to enhance the expression of genes associated with lipid synthesis.


Subject(s)
Autophagy , Epithelial Cells , Ferroptosis , Glycoproteins , Mammary Glands, Animal , Mechanistic Target of Rapamycin Complex 1 , Animals , Cattle , Female , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/cytology , Epithelial Cells/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Ferroptosis/drug effects , Ferroptosis/physiology , Glycoproteins/metabolism , Glycoproteins/genetics , Signal Transduction
4.
Acta Biochim Biophys Sin (Shanghai) ; 56(5): 740-752, 2024 05 25.
Article in English | MEDLINE | ID: mdl-38477044

ABSTRACT

Dysregulation of microRNA (miRNA) expression in cancer is a significant factor contributing to the progression of chemoresistance. The objective of this study is to explore the underlying mechanisms by which miR-34b-3p regulates chemoresistance in cervical cancer (CC). Previous findings have demonstrated low expression levels of miR-34b-3p in both CC chemoresistant cells and tissues. In this study, we initially characterize the behavior of SiHa/DDP cells which are CC cells resistant to the chemotherapeutic drug cisplatin (DDP). Subsequently, miR-34b-3p mimics are transfected into SiHa/DDP cells. It is observed that overexpression of miR-34b-3p substantially inhibits the proliferation, migration, and invasion abilities of SiHa/DDP cells and also enhances their sensitivity to DDP-induced cell death. Quantitative RT-PCR and western blot analysis further reveal elevated expression levels of STC2 and FN1 in SiHa/DDP cells, contrary to the expression pattern of miR-34b-3p. Moreover, STC2 and FN1 contribute to DDP resistance, proliferation, migration, invasion, and decreased apoptosis in CC cells. Through dual-luciferase assay analysis, we confirm that STC2 and FN1 are direct targets of miR-34b-3p in CC. Finally, rescue experiments demonstrate that overexpression of either STC2 or FN1 can partially reverse the inhibitory effects of miR-34b-3p overexpression on chemoresistance, proliferation, migration and invasion in CC cells. In conclusion, our findings support the role of miR-34b-3p as a tumor suppressor in CC. This study indicates that targeting the miR-34b-3p/STC2 or FN1 axis has potential therapeutic implications for overcoming chemoresistance in CC patients.


Subject(s)
Cell Proliferation , Cisplatin , Drug Resistance, Neoplasm , Fibronectins , MicroRNAs , Uterine Cervical Neoplasms , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/drug therapy , Female , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cisplatin/pharmacology , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , Fibronectins/metabolism , Fibronectins/genetics , Cell Movement/genetics , Cell Movement/drug effects , Gene Expression Regulation, Neoplastic , Apoptosis/genetics , Apoptosis/drug effects , Antineoplastic Agents/pharmacology , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Glycoproteins
5.
J Transl Med ; 22(1): 66, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38229155

ABSTRACT

BACKGROUND: Osteosarcoma is the most common malignant primary bone tumor in infants and adolescents. The lack of understanding of the molecular mechanisms underlying osteosarcoma progression and metastasis has contributed to a plateau in the development of current therapies. Endoplasmic reticulum (ER) stress has emerged as a significant contributor to the malignant progression of tumors, but its potential regulatory mechanisms in osteosarcoma progression remain unknown. METHODS: In this study, we collected RNA sequencing and clinical data of osteosarcoma from The TCGA, GSE21257, and GSE33382 cohorts. Differentially expressed analysis and the least absolute shrinkage and selection operator regression analysis were conducted to identify prognostic genes and construct an ER stress-related prognostic signature (ERSRPS). Survival analysis and time dependent ROC analysis were performed to evaluate the predictive performance of the constructed prognostic signature. The "ESTIMATE" package and ssGSEA algorithm were utilized to evaluate the differences in immune cells infiltration between the groups. Cell-based assays, including CCK-8, colony formation, and transwell assays and co-culture system were performed to assess the effects of the target gene and small molecular drug in osteosarcoma. Animal models were employed to assess the anti-osteosarcoma effects of small molecular drug. RESULTS: Five genes (BLC2, MAGEA3, MAP3K5, STC2, TXNDC12) were identified to construct an ERSRPS. The ER stress-related gene Stanniocalcin 2 (STC2) was identified as a risk gene in this signature. Additionally, STC2 knockdown significantly inhibited osteosarcoma cell proliferation, migration, and invasion. Furthermore, the ER stress-related gene STC2 was found to downregulate the expression of MHC-I molecules in osteosarcoma cells, and mediate immune responses through influencing the infiltration and modulating the function of CD8+ T cells. Patients categorized by risk scores showed distinct immune status, and immunotherapy response. ISOX was subsequently identified and validated as an effective anti-osteosarcoma drug through a combination of CMap database screening and in vitro and in vivo experiments. CONCLUSION: The ERSRPS may guide personalized treatment decisions for osteosarcoma, and ISOX holds promise for repurposing in osteosarcoma treatment.


Subject(s)
Antineoplastic Agents , Bone Neoplasms , Osteosarcoma , Protein Disulfide Reductase (Glutathione) , Adolescent , Animals , Humans , Prognosis , Osteosarcoma/drug therapy , Osteosarcoma/genetics , Algorithms , Bone Neoplasms/drug therapy , Bone Neoplasms/genetics
6.
J Clin Endocrinol Metab ; 109(3): e920-e931, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38066647

ABSTRACT

CONTEXT: Anorexia nervosa (AN) can cause severe undernutrition associated with alterations in the IGF axis. Pappalysins (PAPP-A, PAPP-A2) and stanniocalcins (STC-1, STC-2) modulate IGF binding-protein (IGFBP) cleavage and IGF bioavailability, but their implications in AN are unknown. OBJECTIVE: We determined serum levels of PAPP-As and STCs in relationship with classical IGF axis parameters in female adolescents with AN and their association with nutritional status and secondary amenorrhea. METHODS: Parameters of the IGF axis were determined in fasting serum samples of 68 female adolescents with AN at diagnosis and 62 sex- and age-matched controls. Standardized body mass index (BMI) and bone mineral density (BMD) were calculated. RESULTS: Patients with AN had lower concentrations of total and free IGF-I, total IGFBP-3, acid-labile subunit (ALS), insulin, PAPP-A2, STC-1, and STC-2 and higher levels of IGF-II and IGFBP-2. Their free/total IGF-I ratio was decreased and the intact/total IGFBP-3 and -4 ratios increased. BMI was directly related to total IGF-I and intact IGFBP-3 and inversely with IGFBP-2 and intact IGFBP-4. Weight loss was directly correlated with intact IGFBP-4 and negatively with intact IGFBP-3, ALS, STC-2, and PAPP-A2 concentrations. BMD was directly related to intact IGFBP-3 and inversely with intact IGFBP-4 and PAPP-A2 levels. Patients with amenorrhea had lower levels of total IGF-I and IGFBP-3 than those with menses. CONCLUSION: The reduction of PAPP-A2 in patients with AN may be involved in a decline in IGFBP cleavage, which could underlie the decrease in IGF-I bioavailability that is influenced by nutritional status and amenorrhea.


Subject(s)
Anorexia Nervosa , Peptide Hormones , Humans , Female , Adolescent , Insulin-Like Growth Factor I/metabolism , Insulin-Like Growth Factor Binding Protein 4 , Insulin-Like Growth Factor Binding Protein 3 , Insulin-Like Growth Factor Binding Protein 2 , Biological Availability , Amenorrhea , Insulin-Like Growth Factor Binding Proteins , Pregnancy-Associated Plasma Protein-A/metabolism
7.
Leg Med (Tokyo) ; 67: 102382, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38159418

ABSTRACT

Death from mechanical asphyxia (DMA) is a common cause of death in forensic pathology. However, due to the lack of biomarkers, the authentication of DMA now relies on a series of non-specific signs, which may cause troubles in the judicial trials, especially when the criminal scene is not fully elucidated. To search for the potential biomarkers for DMA, brain samples of DMA and craniocerebral injury groups were screened by microarray. The obtained mRNAs were validated by animal and human samples. Primary cell culture was conducted to explore the biochemical changes under hypoxia. 415 differentially expressed mRNAs between two groups were discovered. Ten mRNAs were examined in both human and animal samples died of different causes of death. Stanniocalcin-2 (STC2) showed significant down-regulation in DMA samples compared to other groups, regardless of PMI, age, or temperature. Cellular experiments indicated that ROS level peaked after 15-min-hypoxic culture, when the expression level of STC2 was significant down-regulated simultaneously. The ER-stress-related proteins also showed potential connection with STC2. In general, it is indicated that the down-regulation of STC2 may serve as a biomarker for DMA.


Subject(s)
Asphyxia , Intercellular Signaling Peptides and Proteins , Animals , Humans , Down-Regulation , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , RNA, Messenger/metabolism , Glycoproteins/genetics , Glycoproteins/metabolism , Biomarkers
8.
Int J Biol Macromol ; 253(Pt 8): 127575, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37866563

ABSTRACT

Nrf1 (encoded by Nfe2l1) and Nrf2 (encoded by Nfe2l2), as two key members of the CNC-bZIP transcription factor, exhibit significant functional differences in their pathophysiology. Our previous findings demonstrated that loss of Nrf1α (i.e., a full-length isoform of Nrf1) promotes HepG2-derived tumor growth in xenograft mice, but malgrowth of the xenograft tumor is significantly suppressed by knockout of Nrf2. To gain insights into the mechanism underlying such marked distinctions in their pathologic phenotypes, we mined transcriptome data from liver cancer in the TCGA database to establish a prognostic model and calculate predicted risk scores for each cell line. The results revealed that knockout of Nrf1α markedly increased the risk score in HepG2 cells, whereas the risk score was reduced by knockout of Nrf2. Notably, stanniocalcin 2 (STC2), a biomarker associated with liver cancer, that is upexpressed in hepatocellular carcinoma (HCC) tissues with a reduction in the overall survival ratio of those patients. We observed increased expression levels of STC2 in Nrf1α-/- cells but decreased expression in Nrf2-/- cells. These findings suggested that STC2 may play a role in mediating the distinction between Nrf1α-/- and Nrf2-/-. Such potential function of STC2 was further corroborated through a series of experiments combined with transcriptomic sequencing. The results revealed that STC2 functions as a dominant tumor-promoter, because the STC2-leading increases in clonogenicity of hepatoma cells and malgrowth of relevant xenograft tumor were almost completely abolished in STC2-/- cells. Together, these demonstrate that STC2 could be paved as a potential therapeutic target, albeit as a diagnostic marker, for HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Animals , Mice , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , NF-E2-Related Factor 2/genetics , Intercellular Signaling Peptides and Proteins , Biomarkers , Glycoproteins/genetics , Glycoproteins/metabolism
9.
Article in English | MEDLINE | ID: mdl-37792175

ABSTRACT

Stanniocalcin 2 (STC2) is involved in many tumour types, but it remains unclear what its biological function is in laryngeal squamous cell carcinoma (LSCC). Therefore, we investigated STC2's expression, potential function, and prognostic significance of in LSCC. The expression and prognosis of STC2 in LSCC were described using the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. In the TCGA database, the relationship between STC2 and immune infiltration, expression of immune cell chemokine and receptor genes, immune cell molecular marker genes, and epithelial‒mesenchymal transition (EMT) marker genes were analysed. The biological processes involved in STC2 and its expression-related genes were analysed comprehensively using bioinformatics. The single-gene ceRNA network of STC2 was constructed in the TCGA database. Finally, LSCC patients' tumour tissue STC2 expression was verified. STC2 silencing with the RNAi technique was used for the determination of cellular functions in a laryngeal cancer cell line. STC2 expression was higher in most tumours, including LSCC, than in normal tissues and was associated with poor prognosis. The relative proportions of naïve B, plasma, follicular helper T, and macrophage M0 cells in LSCC and normal samples differed significantly. STC2 expression correlated significantly positively with that of TGFB1 (biomarker of Tregs) and significantly negatively with that of D79A and CD19 (biomarkers of B cells). Furthermore, STC2 affected chemokine and receptor gene expression in immune cells. STC2 expression correlated with EMT marker gene expression in LSCC. STC2 was enriched in the PI3K/AKT signalling pathway, extracellular matrix (ECM) organisation, ECM-receptor interaction, and other tumour-related signalling pathways. STC2 was highly expressed in our clinical samples. N-cadherin and vimentin expression were decreased in the TU686 cell line after successful silencing of STC2, indicating that high STC2 expression may prompt LSCC cells to adopt a mesenchymal cell phenotype. STC2 silencing substantially reduced proliferation and migration in the TU686 cell line. STC2 may be a promising predictive biomarker for tumours, providing new approaches for LSCC diagnosis and treatment monitoring.

10.
Physiol Rep ; 11(15): e15793, 2023 08.
Article in English | MEDLINE | ID: mdl-37568262

ABSTRACT

AIMS: Stanniocalcin-2 (STC2) has recently been implicated in human muscle mass variability by genetic analysis. Biochemically, STC2 inhibits the proteolytic activity of the metalloproteinase PAPP-A, which promotes muscle growth by upregulating the insulin-like growth factor (IGF) axis. The aim was to examine if STC2 affects skeletal muscle mass and to assess how the IGF axis mediates muscle hypertrophy induced by functional overload. METHODS: We compared muscle mass and muscle fiber morphology between Stc2-/- (n = 21) and wild-type (n = 15) mice. We then quantified IGF1, IGF2, IGF binding proteins -4 and -5 (IGFBP-4, IGFBP-5), PAPP-A and STC2 in plantaris muscles of wild-type mice subjected to 4-week unilateral overload (n = 14). RESULTS: Stc2-/- mice showed up to 10% larger muscle mass compared with wild-type mice. This increase was mediated by greater cross-sectional area of muscle fibers. Overload increased plantaris mass and components of the IGF axis, including quantities of IGF1 (by 2.41-fold, p = 0.0117), IGF2 (1.70-fold, p = 0.0461), IGFBP-4 (1.48-fold, p = 0.0268), PAPP-A (1.30-fold, p = 0.0154) and STC2 (1.28-fold, p = 0.019). CONCLUSION: Here we provide evidence that STC2 is an inhibitor of muscle growth upregulated, along with other components of the IGF axis, during overload-induced muscle hypertrophy.


Subject(s)
Insulin-Like Growth Factor Binding Protein 4 , Peptide Hormones , Animals , Mice , Glycoproteins/genetics , Glycoproteins/metabolism , Hypertrophy , Insulin-Like Growth Factor Binding Protein 4/metabolism , Insulin-Like Growth Factor I/metabolism , Muscle, Skeletal/metabolism , Peptide Hormones/metabolism , Pregnancy-Associated Plasma Protein-A/genetics
11.
J Orthop Surg Res ; 18(1): 518, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37480032

ABSTRACT

BACKGROUND: Low back pain (LBP) has become the second leading cause of disability worldwide, which has brought great economic burden to people. It is generally believed that intervertebral disc degeneration (IDD) is the main cause of LBP. This study aimed to explore the role of circ-STC2 in the pathogenesis of IDD. METHODS: Nucleus pulposus cells (NPCs) were treated with T-Butyl Hydrogen Peroxide (TBHP) to establish IDD model in vitro. RT-qPCR was performed to detect mRNA expressions. The cell viability was detected with CCK-8 assay. The levels of lactate dehydrogenase (LDH), malondialdehyde (MDA), Fe2+ and glutathione (GSH) of NPCs were measured by corresponding kits. The protein expressions were determined by western blot. Dual-luciferase reporter and RNA pull-down assays were conducted to verify the relationship between circ-STC2 or transferrin recepto 2 (TFR2) and miR-486-3p. RESULTS: Circ-STC2 and TFR2 expressions were up-regulated in IDD tissues, and miR-486-3p expression was down-regulated. Knockdown of circ-STC2 promoted the cell viability and inhibited the ferroptosis of the NPCs. The GSH levels, and glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11) protein expressions were increased, the LDH, MDA and Fe2+ levels and achaete-scute complexlike 4 (ASCL4) protein expressions were decreased after circ-STC2 knockdown. Knockdown of miR-486-3p abrogated the si-circ-STC2 effects and overexpression of TFR2 reversed the miR-486-3p mimic effects. CONCLUSIONS: Circ-STC2 inhibits the cell viability, induced the ferroptosis of the TBHP treated NPCs via targeting miR-486-3p/TFR2 axis.


Subject(s)
Ferroptosis , Intervertebral Disc Degeneration , Low Back Pain , MicroRNAs , Nucleus Pulposus , Humans , Apoptosis , Blotting, Western , Cell Proliferation , Cell Survival , Glycoproteins , Hydrogen Peroxide , Intercellular Signaling Peptides and Proteins , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/pathology , L-Lactate Dehydrogenase/metabolism , Low Back Pain/metabolism , Low Back Pain/pathology , MicroRNAs/genetics , Nucleus Pulposus/metabolism , Nucleus Pulposus/pathology
12.
Front Endocrinol (Lausanne) ; 14: 1193742, 2023.
Article in English | MEDLINE | ID: mdl-37334305

ABSTRACT

Introduction: Pregnancy-associated plasma protein-A (PAPP-A) is an IGF-activating enzyme suggested to influence aging-related diseases. However, knowledge on serum PAPP-A concentration and regulation in elderly subjects is limited. Therefore, we measured serum PAPP-A in elderly same-sex monozygotic (MZ) and dizygotic (DZ) twins, as this allowed us to describe the age-relationship of PAPP-A, and to test the hypothesis that serum PAPP-A concentrations are genetically determined. As PAPP-A is functionally related to stanniocalcin-2 (STC2), an endogenous PAPP-A inhibitor, we included measurements on STC2 as well as IGF-I and IGF-II. Methods: The twin cohort contained 596 subjects (250 MZ twins, 346 DZ twins), whereof 33% were males. The age ranged from 73.2 to 94.3 (mean 78.8) years. Serum was analyzed for PAPP-A, STC2, IGF-I, and IGF-II by commercial immunoassays. Results: In the twin cohort, PAPP-A increased with age (r=0.19; P<0.05), whereas IGF-I decreased (r=-0.12; P<0.05). Neither STC2 nor IGF-II showed any age relationship. When analyzed according to sex, PAPP-A correlated positively with age in males (r=0.18; P<0.05) and females (r=0.25; P<0.01), whereas IGF-I correlated inversely in females only (r=-0.15; P<0.01). Males had higher levels of PAPP-A (29%), STC2 (18%) and IGF-I (19%), whereas serum IGF-II was 28% higher in females (all P<0.001). For all four proteins, within-pair correlations were significantly higher for MZ twins than for DZ twins, and they demonstrated substantial and significant heritability, which after adjustment for age and sex averaged 59% for PAPP-A, 66% for STC2, 58% for IGF-I, and 52% for IGF-II. Discussion: This twin study confirms our hypothesis that the heritability of PAPP-A serum concentrations is substantial, and the same is true for STC2. As regards the age relationship, PAPP-A increases with age, whereas STC2 remains unchanged, thereby supporting the idea that the ability of STC2 to inhibit PAPP-A enzymatic activity decreases with increasing age.


Subject(s)
Insulin-Like Growth Factor I , Peptide Hormones , Male , Female , Humans , Aged , Aged, 80 and over , Insulin-Like Growth Factor I/metabolism , Insulin-Like Growth Factor II/metabolism , Pregnancy-Associated Plasma Protein-A/genetics , Pregnancy-Associated Plasma Protein-A/metabolism , Twins, Dizygotic
13.
Heliyon ; 9(6): e17295, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37389061

ABSTRACT

Sorafenib resistance is one of the main obstacles to the treatment of advanced hepatocellular carcinoma (HCC). Stress proteins TRIB3 and STC2 confer cell resistance to a variety of stresses, including hypoxia, nutritional deprivation, and other perturbations, which induce endoplasmic reticulum stress. However, the role of TRIB3 and STC2 in sorafenib sensitivity to HCC remains unclear. In this study, our results indicated that the common differentially expressed genes (DEGs) in sorafenib-treated HCC cells obtained from the NCBI-GEO database (Huh7 and Hep3B cells; GSE96796) included TRIB3, STC2, HOXD1, C2orf82, ADM2, RRM2, and UNC93A. The most significantly upregulated DEGs were TRIB3 and STC2, which were both stress protein genes. Bioinformatic analysis in NCBI public databases indicated that TRIB3 and STC2 were highly expressed in HCC tissues and closely associated with poor prognoses in HCC patients. Further investigation showed that inhibition of TRIB3 or STC2 with siRNA could enhance the anti-cancer effect of sorafenib in HCC cell lines. In conclusion, our study showed that stress proteins TRIB3 and STC2 are closely associated with sorafenib resistance in HCC. The combination of TRIB3 or STC2 inhibition and sorafenib may be a promising therapeutic strategy for HCC.

14.
Redox Biol ; 60: 102626, 2023 04.
Article in English | MEDLINE | ID: mdl-36764215

ABSTRACT

Radioresistance is the major reason for the failure of radiotherapy in esophageal squamous cell carcinoma (ESCC). Previous evidence indicated that stanniocalcin 2 (STC2) participates in various biological processes of malignant tumors. However, researches on its effect on radioresistance in cancers are limited. In this study, STC2 was screened out by RNA-sequencing and bioinformatics analyses as a potential prognosis predictor of ESCC radiosensitivity and then was determined to facilitate radioresistance. We found that STC2 expression is increased in ESCC tissues compared to adjacent normal tissues, and a higher level of STC2 is associated with poor prognosis. Also, STC2 mRNA and protein expression levels were higher in radioresistant cells than in their parental cells. Further investigation revealed that STC2 could interact with protein methyltransferase 5 (PRMT5) and activate PRMT5, thus leading to the increased expression of symmetric dimethylation of histone H4 on Arg 3 (H4R3me2s). Mechanistically, STC2 can promote DDR through the homologous recombination and non-homologous end joining pathways by activating PRMT5. Meanwhile, STC2 can participate in SLC7A11-mediated ferroptosis in a PRMT5-dependent manner. Finally, these results were validated through in vivo experiments. These findings uncovered that STC2 might be an attractive therapeutic target to overcome ESCC radioresistance.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Ferroptosis , Humans , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/radiotherapy , Esophageal Neoplasms/genetics , Esophageal Neoplasms/radiotherapy , Ferroptosis/genetics , Protein Methyltransferases , Cell Line, Tumor , DNA Damage , Gene Expression Regulation, Neoplastic , Glycoproteins/genetics , Intercellular Signaling Peptides and Proteins/genetics , Protein-Arginine N-Methyltransferases/genetics
15.
BMC Med Genomics ; 16(1): 30, 2023 02 20.
Article in English | MEDLINE | ID: mdl-36803385

ABSTRACT

BACKGROUND: Osteosarcoma has been the most common primary bone malignant tumor in children and adolescents. Despite the considerable improvement in the understanding of genetic events attributing to the rapid development of molecular pathology, the current information is still lacking, partly due to the comprehensive and highly heterogeneous nature of osteosarcoma. The study is to identify more potential responsible genes during the development of osteosarcoma, thus identifying promising gene indicators and aiding more precise interpretation of the disease. METHODS: Firstly, from GEO database, osteosarcoma transcriptome microarrays were used to screen the differential expression genes (DEGS) in cancer comparing to normal bone samples, followed by GO/KEGG interpretation, risk score assessment and survival analysis of the genes, for the purpose of selecting a credible key gene. Further, the basic physicochemical properties, predicted cellular location, gene expression in human cancers, the association with clinical pathological features and potential signaling pathways involved in the key gene's regulation on osteosarcoma development were in succession explored. RESULTS: Based on the selected GEO osteosarcoma expression profiles, we identified the differential expression genes in osteosarcoma versus normal bone samples, and the genes were classified into four groups based on the difference level, further genes interpretation indicated that the high differently level (> 8 fold) genes were mainly located extracellular and related to matrix structural constituent regulation. Meanwhile, module function analysis of the 67 high differential level (> 8 fold) DEGS revealed a 22-gene containing extracellular matrix regulation associated hub gene cluster. Further survival analysis of the 22 genes revealed that STC2 was an independent prognosis indicator in osteosarcoma. Moreover, after validating the differential expression of STC2 in cancer vs. normal tissues using local hospital osteosarcoma samples by IHC and qRT-PCR experiment, the gene's physicochemical property revealed STC2 as a cellular stable and hydrophilic protein, and the gene's association with osteosarcoma clinical pathological parameters, expression in pan-cancers and the probable biological functions and signaling pathways it involved were explored. CONCLUSION: Using multiple bioinformatic analysis and local hospital samples validation, we revealed the gain of expression of STC2 in osteosarcoma, which associated statistical significantly with patients survival, and the gene's clinical features and potential biological functions were also explored. Although the results shall provide inspiring insights into further understanding of the disease, further experiments and detailed rigorous clinical trials are needed to reveal its potential drug-target role in clinical medical use.


Subject(s)
Bone Neoplasms , Osteosarcoma , Adolescent , Child , Humans , Transcriptome , Disease Progression , Osteosarcoma/genetics , Osteosarcoma/pathology , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Risk Factors , Gene Expression Profiling/methods , Computational Biology/methods , Gene Expression Regulation, Neoplastic , Glycoproteins/genetics , Glycoproteins/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism
16.
Exp Cell Res ; 424(1): 113473, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36634743

ABSTRACT

Long non-coding RNA (lncRNA) anomalies cause early ovarian failure. LncRNA nuclear enriched abundant transcript 1 (NEAT1) was down-regulated in premature ovarian failure (POF) mice and connected to the illness, however, the mechanism remained unclear. The levels of gene and protein were measured by using quantitative real-time polymerase chain reaction, Western blot, and immunofluorescence. Follicle stimulating hormone (FSH), estradiol (E2), and luteinizing hormone (LH) levels were determined using enzyme-linked immunosorbent assay (ELISA). 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and flow cytometry were used to determine cell viability and apoptosis. The interaction of NEAT1, miR-654, and stanniocalcin-2 (STC2) was verified by dual-luciferase reporter assay or RNA binding protein immunoprecipitation (RIP) assays. The results showed NEAT1 and STC2 down-regulated, while miR-654 up-regulated in POF mice. Overexpression of NEAT1 reduced apoptosis and autophagy in cyclophosphamide (CTX)-treated ovarian granulosa cells (OGCs), and Bax, cleaved-caspase3, LC3B, LC3II/LC3I ratio were decreased and Bcl-2 and p62 were raised. NEAT1 suppressed miR-654 expression by directly targeting miR-654. The inhibition of NEAT1 overexpression on apoptosis and autophagy in OGCs was reversed by miR-654 mimics. STC2 was a target gene of miR-654, and miR-654 inhibitor reduced the apoptosis and autophagy by regulating the STC2/MAPK axis. To sum up, NEAT1 reduced miR-654 expression and modulated the STC2/MAPK pathway to decrease apoptosis and autophagy in POF, indicating a potential therapeutic target.


Subject(s)
Apoptosis , Autophagy , Granulosa Cells , MicroRNAs , RNA, Long Noncoding , Animals , Mice , Apoptosis/genetics , Autophagy/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Signal Transduction , Granulosa Cells/metabolism , Granulosa Cells/pathology
17.
Front Neurosci ; 16: 882559, 2022.
Article in English | MEDLINE | ID: mdl-35812222

ABSTRACT

The quest for neuroprotective factors that can prevent or slow down the progression of retinal degeneration is still ongoing. Acute hypoxic stress has been shown to provide transient protection against subsequent damage in the retina. Stanniocalcins - STC1 and STC2 - are secreted glycoproteins that are hypoxia-regulated and were shown to be cytoprotective in various in vitro studies. Hence, we investigated the expression of stanniocalcins in the normal, degenerating and hypoxic retina. We show that the expression of Stc1 and Stc2 in the retina was detectable as early as postnatal day 10 and persisted during aging. Retinal expression of Stc2, but not Stc1, was induced in mice in an in vivo model of acute hypoxia and a genetic model of chronic hypoxia. Furthermore, we show that HIF1, not HIF2, is responsible for regulating Stc2 in cells with the molecular response to hypoxia activated due to the absence of von Hippel Lindau protein. Surprisingly, Stc2 was not normally expressed in photoreceptors but in the inner retina, as shown by laser capture microdissection and immunofluorescence data. The expression of both Stc1 and Stc2 remained unchanged in the degenerative retina with an almost complete loss of photoreceptors, confirming their expression in the inner retina. However, the absence of either Stc1 or Stc2 had no effect on retinal architecture, as was evident from retinal morphology of the respective knockout mice. Taken together our data provides evidence for the differential regulation of STC1 and STC2 in the retina and the prospect of investigating STC2 as a retinal neuroprotective factor.

18.
Mol Biol Rep ; 49(9): 8693-8699, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35796937

ABSTRACT

BACKGROUND: Coronavirus-19 is still considered a pandemic that influences the world. Other molecular alterations should be clearer besides the increasing cytokine storm and pro-inflammatory molecules. Hypoxic conditions that induce HIF-1α lead to stimulate gene expression of STC-2 that targets PAPP-A expression. This study aimed to determine gene expression levels of PAPP-A, STC-2, and HIF-1α in COVID-19 infection. We also aimed to reveal the relationship of these genes with laboratory and clinical data of COVID-19 patients. MATERIALS AND RESULTS: We extracted RNA from peripheral blood samples of COVID-19(+) and COVID-19(-) individuals. The real-time PCR method was used to measure mRNA expression of PAPP-A, STC-2, and HIF-1α. Gene expression analysis was evaluated by the 2-ΔΔCt method. PAPP-A, STC-2, and HIF-1α mRNA expressions of severe patients were higher than healthy individuals (p = 0.0451, p = 0.4466, p < 0.0001, respectively). Correlation analysis of gene expression patterns of severe patients demonstrated a positive correlation between PAPP-A and STC-2 (p < 0.0001, r = 0.8638). CONCLUSION: This is the first study that investigates the relation of PAPP-A, STC-2, and HIF-1α gene expression in patients with COVID-19 infection. Besides the routine laboratory findings, PAPP-A, STC-2, and HIF-1α mRNA expressions may be considered to patients' prognosis as a sign of increased cytokines and pro-inflammatory molecules.


Subject(s)
COVID-19 , Glycoproteins , Hypoxia-Inducible Factor 1, alpha Subunit , Intercellular Signaling Peptides and Proteins , Pregnancy-Associated Plasma Protein-A , COVID-19/genetics , Gene Expression , Glycoproteins/genetics , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Intercellular Signaling Peptides and Proteins/genetics , Pregnancy-Associated Plasma Protein-A/genetics , RNA, Messenger/genetics , SARS-CoV-2
19.
Endocrine ; 78(1): 95-103, 2022 10.
Article in English | MEDLINE | ID: mdl-35788886

ABSTRACT

PURPOSE: To evaluate the potential role of immunohistochemical changes in stanniocalcin 1 (STC1) and stanniocalcin 2 (STC2) expressions in papillary thyroid cancer (PTC) tissues in the disease's diagnosis and to investigate their relationship with classical clinicopathological prognostic factors. METHODS: The study included 100 patients with PTC. Normal thyroid tissue adjacent to the tumor was taken as the control group. Clinicopathological prognostic features at the time of diagnosis of patients were recorded. STC1 and STC2 expressions of tumor tissue and adjacent normal tissue were determined immunohistochemically. RESULTS: The sensitivity of STC1 in the diagnosis of PTC was 93%, the specificity was 94%, positive predictive value (PPV) 93.9%, and negative predictive value (NPV) 93.1%. It was determined that the STC1 staining score in tumor tissue was positively correlated with the disease TNM stage score (r = 0.259, p = 0.009) and the increase in STC1 staining score were independent risk factors that increased the risk of lymph node metastasis (R2 = 0.398, p < 0.001). While 21% of the tumor tissues were stained with STC2, none of the normal thyroid tissues adjacent to the tumor tissue showed any staining with STC2. No correlation was found between STC2 immunohistochemical staining of tumor tissue and clinicopathological risk factors for the disease. CONCLUSION: Increased STC1 expression in thyroid lesions may be helpful in diagnosing PTC. In addition, since increased STC1 expression in PTC tissues is associated with the risk of lymph node metastasis, it may be an efficient marker for predicting the prognosis of the disease.


Subject(s)
Thyroid Neoplasms , Glycoproteins , Humans , Lymphatic Metastasis , Prognosis , Thyroid Cancer, Papillary/diagnosis , Thyroid Neoplasms/diagnosis
20.
Metabolism ; 132: 155218, 2022 07.
Article in English | MEDLINE | ID: mdl-35588861

ABSTRACT

BACKGROUND: Diabetic nephropathy (DN) is a serious complication of diabetes and a common cause of end stage renal failure. Insulin-like growth factor (IGF)-signaling has been implicated in DN, but is mechanistically poorly understood. Here, we assessed the activity of the metalloproteinase PAPP-A, an activator of IGF activity, and its possible interaction with the endogenous PAPP-A inhibitors stanniocalcin (STC)-1 and -2 in the mammalian kidney under normal and hyperglycemic conditions. METHODS AND RESULTS: Immunohistochemistry demonstrated that PAPP-A, its proteolytic substrate IGF binding protein-4, STC1 and STC2 are present in the human kidney. Endogenous inhibited complexes of PAPP-A (PAPP-A:STC1 and PAPP-A:STC2) were demonstrated in media conditioned by human mesangial cells (HMCs), suggesting that PAPP-A activity is regulated by the STCs in kidney tissue. A method for the selective detection of active PAPP-A in tissue was developed and a significant increase in glomerular active PAPP-A in human diabetic kidney relative to normal was observed. In DN patients, the estimated glomerular filtration rate correlated with PAPP-A activity. In diabetic mice, glomerular growth was reduced when PAPP-A activity was antagonized by adeno-associated virus-mediated overexpression of STC2. CONCLUSION: We propose that PAPP-A activity in renal tissue is precisely balanced by STC1 and STC2. An imbalance in this equilibrium causing increased PAPP-A enzymatic activity potentially contributes to the development of DN, and thus, therapeutic targeting of PAPP-A activity may represent a novel strategy for its treatment.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Pregnancy-Associated Plasma Protein-A , Animals , Diabetes Mellitus, Experimental/complications , Diabetic Nephropathies/etiology , Humans , Hypertrophy , Intercellular Signaling Peptides and Proteins/metabolism , Mammals/metabolism , Mice , Pregnancy-Associated Plasma Protein-A/metabolism , Proteolysis
SELECTION OF CITATIONS
SEARCH DETAIL