Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 374
Filter
1.
Vet Sci ; 11(7)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39057987

ABSTRACT

Enteric viruses are responsible for a significant number of gastrointestinal illnesses in dogs globally. One of the main enteric viruses is the canine astrovirus (CaAstV), which causes diarrhea in dogs of various ages. It is linked to symptoms such as diarrhea, vomiting, depression and a significant mortality rate due to gastrointestinal disorders. It is a single-stranded positive RNA virus, with three open reading frames, ORF1a, ORF1b and ORF2, where the last one codes for the virus capsid protein and is the most variable and antigenic region of the virus. The aim of this work is to develop and standardize a quick detection method to enable the diagnosis of this etiological agent in dogs with gastroenteritis in Ecuador in order to provide prompt and suitable treatment. The assay was specific for amplification of the genome of CaAstV, as no amplification was shown for other canine enteric viruses (CPV-2, CCoV and CDV), sensitive by being able to detect up to one copy of viral genetic material, and repeatable with inter- and intra-assay coefficients of variation of less than 10% between assays. The standard curve showed an efficiency of 103.9%. For the validation of this method, 221 fecal samples from dogs affected with gastroenteritis of various ages from different provinces of Ecuador were used. From the RT-qPCR protocol, 119 samples were found positive for CaAstV, equivalent to 53.8% of the samples processed. CaAstV was detected in dogs where both the highest virus prevalence in the tested strains and the highest viral loads were seen in the younger canine groups up to 48 weeks; in addition, different strains of the virus were identified based on a sequenced fragment of ORF1b, demonstrating the first report of the presence of CaAstV circulating in the domestic canine population affected by gastroenteritis in Ecuador, which could be associated with the etiology and severity of enteric disease.

2.
MethodsX ; 13: 102818, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39049931

ABSTRACT

Real-time PCR with intercalating dyes can only be performed once. The expensive fluorescent hydrolysis probes are target specific and are suitable to detect multiplex targets. Uracil-DNA N-glycosylase (UNG), which specifically hydrolyzes and degrades any uracil-containing PCR products, is often applied before PCR to reduce carryover contamination. We developed an optimized protocol for recovering DNA from PCR products and revaluating by real-time PCR with intercalating dye using UNG processing, which is particularly useful when the sample volume is very small and insufficient for multiple assays of real-time PCR.•A real-time PCR master mix with dUTP instead of dTTP was used.•UNG at 1 % and 10 % concentrations of PCR product volumes were used for the first and second processing.•The second real-time PCR was performed with different primer pairs than the first real-time PCR.

3.
Biol Methods Protoc ; 9(1): bpae035, 2024.
Article in English | MEDLINE | ID: mdl-38835855

ABSTRACT

The gold standard for coronavirus disease 2019 diagnostic testing relies on RNA extraction from naso/oropharyngeal swab followed by amplification through reverse transcription-polymerase chain reaction (RT-PCR) with fluorogenic probes. While the test is extremely sensitive and specific, its high cost and the potential discomfort associated with specimen collection made it suboptimal for public health screening purposes. In this study, we developed an equally reliable, but cheaper and less invasive alternative test based on a one-step RT-PCR with the DNA-intercalating dye SYBR Green, which enables the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directly from saliva samples or RNA isolated from nasopharyngeal (NP) swabs. Importantly, we found that this type of testing can be fine-tuned to discriminate SARS-CoV-2 variants of concern. The saliva RT-PCR SYBR Green test was successfully used in a mass-screening initiative targeting nearly 4500 asymptomatic children under the age of 12. Testing was performed at a reasonable cost, and in some cases, the saliva test outperformed NP rapid antigen tests in identifying infected children. Whole genome sequencing revealed that the antigen testing failure could not be attributed to a specific lineage of SARS-CoV-2. Overall, this work strongly supports the view that RT-PCR saliva tests based on DNA-intercalating dyes represent a powerful strategy for community screening of SARS-CoV-2. The tests can be easily applied to other infectious agents and, therefore, constitute a powerful resource for an effective response to future pandemics.

4.
J Colloid Interface Sci ; 672: 236-243, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38838631

ABSTRACT

This study reports the development of a photocatalytic electrochemical aptasensor for the purpose of detecting chloramphenicol (CAP) antibiotic residues in water by utilizing SYBR Green I (SG) and chemically exfoliated MoS2 (ce-MoS2) as synergistically signal-amplification platforms. The Au nanoparticles (AuNPs) were electrodeposited onto the surface of an indium tin oxide (ITO) electrode. After that, the thiolate-modified cDNA, also known as capture DNA, was combined with the aptamer. Subsequently, photosensitized SG molecules and ce-MoS2 nanomaterial were inserted into the groove of the resultant double-stranded DNA (dsDNA). The activation of the photocatalytic process upon exposure to light resulted in the generation of singlet oxygen. The singlet oxygen effectively split the dsDNA, resulting in significant enhancement in the current of [Fe(CN)6]3-/4-. When the CAP was present, both SG molecules and ce-MoS2 broke away from the dsDNA, which turned off the photosensitization response, leading to significant reduction in the current of [Fe(CN)6]3-/4-. Under the optimal conditions, the aptasensor exhibited a linear relationship between the current of [Fe(CN)6]3-/4- with logarithmic concentrations of CAP from 20 to 1000 nM, with a detection of limit (3σ) of 3.391 nM. The aptasensor also demonstrated good selectivity towards CAP in the presence of interfering antibiotics, such as tetracycline, streptomycin, levofloxacin, ciprofloxacin, and sulfadimethoxine. Additionally, the results obtained from the analysis of natural water samples using the proposed aptasensor were consistent with the findings acquired through the use of a liquid chromatograph-mass spectrometer. Therefore, with its simplicity and high selectivity, this aptasensor can potentially detect alternative antibiotics in environmental water samples by replacing the aptamers based on photosensitization.


Subject(s)
Aptamers, Nucleotide , Benzothiazoles , Biosensing Techniques , Chloramphenicol , Diamines , Disulfides , Electrochemical Techniques , Molybdenum , Organic Chemicals , Quinolines , Chloramphenicol/analysis , Aptamers, Nucleotide/chemistry , Electrochemical Techniques/methods , Molybdenum/chemistry , Diamines/chemistry , Disulfides/chemistry , Benzothiazoles/chemistry , Quinolines/chemistry , Organic Chemicals/chemistry , Biosensing Techniques/methods , Metal Nanoparticles/chemistry , Gold/chemistry , Photosensitizing Agents/chemistry , Anti-Bacterial Agents/analysis , Limit of Detection , Water Pollutants, Chemical/analysis , Photochemical Processes , Particle Size
5.
J Fungi (Basel) ; 10(4)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38667967

ABSTRACT

Flow cytometry is commonly employed for ploidy determination and cell cycle analysis in cryptococci. The cells are subjected to fixation and staining with DNA-binding fluorescent dyes, most commonly with propidium iodide (PI), before undergoing flow cytometric analysis. In ploidy determination, cell populations are classified according to variations in DNA content, as evidenced by the fluorescence intensity of stained cells. As reported in Saccharomyces cerevisiae, we found drawbacks with PI staining that confounded the accurate analysis of ploidy by flow cytometry when the size of the cryptococci changed significantly. However, the shift in the fluorescence intensity, unrelated to ploidy changes in cells with increased size, could be accurately interpreted by applying the ImageStream system. SYTOX Green or SYBR Green I, reported to enable DNA analysis with a higher accuracy than PI in S. cerevisiae, were nonspecific for nuclear DNA staining in cryptococci. Until dyes or methods capable of reducing the variability inherent in the drastic changes in cell size or shape become available, PI appears to remain the most reliable method for cell cycle or ploidy analysis in Cryptococcus.

6.
BMC Vet Res ; 20(1): 33, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38291450

ABSTRACT

BACKGROUND: Enteric viruses are among the most prominent etiological agents of Runting-Stunting Syndrome (RSS). The Avian Nephritis Virus (ANV) is an astrovirus associated with enteric diseases in poultry, whose early diagnosis is essential for maintaining a good poultry breeding environment. ANV is an RNA virus that rapidly mutates, except for some conserved regions such as ORF1b. Therefore, the approach of a diagnostic method based on fast-RT-qPCR using SYBR® Green that focuses on the amplification of a fragment of ORF1b is presented as a feasible alternative for the diagnosis of this viral agent. In this study, the proposed assay showed a standard curve with an efficiency of 103.8% and a LoD and LoQ of 1 gene viral copies. The assay was specific to amplify the ORF 1b gene, and no amplification was shown from other viral genomes or in the negative controls. 200 enteric (feces) samples from chickens (broilers) and laying hens with signs of RSS from Ecuadorian poultry flocks were examined to validate the proposed method. RESULTS: Using our method, 164 positive results were obtained out of the total number of samples run, while the presence of viral RNA was detected in samples collected from one day to 44 weeks old in both avian lines. CONCLUSIONS: Our study presents a novel, rapid, robust, and sensitive molecular assay capable of detecting and quantifying even low copy numbers of the ANV in commercial birds, therefore introducing a handy tool in the early diagnosis of ANV in enteric disease outbreaks in poultry.


Subject(s)
Astroviridae Infections , Avastrovirus , Poultry Diseases , RNA Viruses , Animals , Female , Chickens , Avastrovirus/genetics , Astroviridae Infections/diagnosis , Astroviridae Infections/veterinary , RNA, Viral/genetics , RNA, Viral/analysis , Poultry , RNA Viruses/genetics
7.
Anal Bioanal Chem ; 416(1): 299-311, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37932512

ABSTRACT

Methylmercury (MeHg+) is a common form of organic mercury that is substantially more toxic than inorganic mercury and is more likely to accumulate in organisms through biological enrichment. Therefore, developing a method to enable the specific and rapid detection of MeHg+ in seafood is important and remains challenging to accomplish. Herein, a rapid, label-free fluorescence detection method for MeHg+ determination was developed based on SYBR Green I. The detection system implemented "add and measure" detection mode can be completed in 10 min. Under optimal assay conditions, the detection platform showed a linear relationship with the concentration of MeHg+ within 1-50 nM (Y = 8.573x + 42.89, R2 = 0.9928), with a detection limit of 0.3218 nM. The results obtained for competitive substances, such as inorganic mercury ions and anions, show a high specificity of the method. In addition, this method successfully detected MeHg+ in seawater and marine products, with an accompanying spike recovery rate of 96.45-105.1%.


Subject(s)
Mercury , Methylmercury Compounds , Fluorometry , Seawater
8.
J Virol Methods ; 323: 114853, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37979697

ABSTRACT

Canine distemper virus (CDV) is a major threat to domestic dogs and wildlife worldwide. Molecular assays are the most sensitive and specific tests to diagnose the disease, however, the high CDV genetic variability may compromise laboratory diagnosis. Herein, we designed a high-coverage primer set for end-point (RT-PCR) and real-time (RT-qPCR) for CDV detection. Initially, we collected 194 complete/near-complete CDV genomes (GenBank) and analyzed them for highly conserved regions for primer design. We then assessed the in silico coverage, analytical sensitivity, specificity and diagnostic performance of RT-PCR/RT-qPCR reactions based on our primers. Furthermore, the coverage of our primers, as well as their analytical sensitivity and diagnostic performance, were compared to a commonly used primer set for CDV detection (named PP-I). Our forward (F) and reverse (R) primers fully matched 100 % (194/194) and 99 % (192/194) of the analyzed sequences, whereas the PP-I F and R primers fully matched 15 % (29/194) and 9 % (18/194) sequences, respectively. The detection limit of our RT-PCR and RT-qPCR was equivalent to that of PP-I primers (0.001 TCID50/mL). Out of 70 clinical samples tested, 38 were positive by our RT-PCR/RT-qPCR assays, whereas reactions with primers PP-I failed to detect 9/28 (32 %) positive samples selected for comparison purposes. In addition, our assays did not amplify other canine viruses associated with respiratory and neurological diseases: canine adenovirus 2, canine parainfluenza virus 2, canine herpesvirus 1 and rabies virus. Overall, we describe a high-coverage primer set for CDV detection, which represents an attractive tool for laboratory diagnosis of canine distemper.


Subject(s)
Distemper Virus, Canine , Distemper , Animals , Dogs , Reverse Transcriptase Polymerase Chain Reaction , Distemper Virus, Canine/genetics , Sensitivity and Specificity , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction , Distemper/diagnosis
9.
Expert Rev Respir Med ; 17(11): 1079-1089, 2023.
Article in English | MEDLINE | ID: mdl-38058175

ABSTRACT

BACKGROUND: Diagnosis of pleural tuberculosis (TB) is tedious owing to its close resemblance with malignant pleural effusion and sparse bacterial load in clinical specimens. There is an immediate need to design a rapid and dependable diagnostic test to prevent unnecessary morbidity/mortality. RESEARCH DESIGN AND METHODS: A multi-targeted loop-mediated isothermal amplification (MT-LAMP) was deliberated using mpt64 and IS6110 to diagnose pleural TB within pleural fluids/biopsies. MT-LAMP products were analyzed by gel-based and visual detection methods, viz. SYBR Green I, SYBR Green I+deoxyuridine triphosphate uracil-N-glycosylase (dUTP-UNG), and dry methyl green reactions. RESULTS: In a pilot study, while assessing pleural TB/non-TB control subjects (n = 40), both SYBR Green I+dUTP-UNG/gel-based MT-LAMP assays exhibited better sensitivity/specificity than SYBR Green I and dry methyl green MT-LAMP. Since it is facile to work with SYBR Green I+dUTP-UNG than gel-based MT-LAMP, we validated the performance of SYBR Green I+dUTP-UNG in a higher number of specimens (n = 97), which revealed somewhat higher sensitivity (85.2 vs. 81.5%) and specificity (97.7 vs. 90.7%) than SYBR Green I MT-LAMP. Furthermore, the sensitivity attained by SYBR Green I+dUTP-UNG MT-LAMP was significantly higher (p < 0.001) than GeneXpert. CONCLUSIONS: Our SYBR Green I+dUTP-UNG MT-LAMP is a simple and reliable method to diagnose pleural TB, which may translate into a point-of-care test.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Pleural , Humans , Tuberculosis, Pleural/diagnosis , Methyl Green , Pilot Projects , Sensitivity and Specificity , Mycobacterium tuberculosis/genetics
10.
Article in English | MEDLINE | ID: mdl-38041745

ABSTRACT

Brucellosis is a zoonosis caused by Brucella, which poses a great threat to human health and animal husbandry. Pathogen surveillance is an important measure to prevent brucellosis, but the traditional method is time-consuming and not suitable for field applications. In this study, a recombinase polymerase amplification-SYBR Green I (RPAS) assay was developed for the rapid and visualized detection of Brucella in the field by targeting BCSP31 gene, a conserved marker. The method was highly specific without any cross-reactivity with other common bacteria and its detection limit was 2.14 × 104 CFU/mL or g of Brucella at 40 °C for 20 min. It obviates the need for costly instrumentation and exhibits robustness towards background interference in serum, meat, and milk samples. In summary, the RPAS assay is a rapid, visually intuitive, and user-friendly detection that is highly suitable for use in resource-limited settings. Its simplicity and ease of use enable swift on-site detection of Brucella, thereby facilitating timely implementation of preventive measures.

11.
Food Sci Biotechnol ; 32(14): 2153-2161, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37869529

ABSTRACT

Oplopanax elatus and Aralia cordata, commonly referred to as "Dureub" in Korea, are generally used as medicinal or food raw materials. Although O. elatus, a rare and endangered plant, is typically sold at high prices, the more abundant A. cordata is comparatively inexpensive. Given their common names and morphological root similarities, both plants can easily be confused, thereby providing potential opportunities for fraudulent use in food products. Species-specific molecular markers that can be used for quantitative real-time PCR (qPCR) analysis were developed. Verification of the six primer pairs revealed a correlation coefficient greater than 0.99, with a slope between -3.33 and -3.56. The assay confirmed specificity based on an analysis of 14 non-target plant species and verified its practicality using 10 commercial products with reliability based on a blind test. Thus, qPCR assays can contribute to food safety and protect consumer rights and interests. Supplementary Information: The online version of this article contains supplementary material available 10.1007/s10068-023-01313-1.

12.
J Pharmacol Toxicol Methods ; 124: 107472, 2023.
Article in English | MEDLINE | ID: mdl-37778462

ABSTRACT

Several assay methods are in use for monitoring the drug sensitivity of malaria parasites and screening new antimalarial drugs. Plasmodium lactate dehydrogenase (pLDH) and SYBR Green I in vitro assays were used to evaluate the drug efficacy of Chloroquine, Artemisinin and Azadirachta indica silver nano particles against Plasmodium falciparum 3D7 strain. The half-maximal inhibitory concentration (IC50) of each compound was estimated with non-linear regression model - dose-response analysis. The consistency between two methods was analysed with Cohen's kappa coefficient, interclass correlation and Bland-Altman plots. No statistical difference was found between IC50 values determined by both assays (p = 0.714). The proportion of resistant isolates to chloroquine according to SYBR green I (43.48%) and pLDH (34.78%) assays were similar (z = 0.302; p = 0.762) with significant concordant between methods (k = 0.819, p < 0.001). The results of pLDH Qualisa assay was comparable with classic SYBR green I assay and can be potentially useful in antimalarial drug efficacy surveillance.


Subject(s)
Antimalarials , Antimalarials/pharmacology , Plasmodium falciparum , L-Lactate Dehydrogenase , Parasitic Sensitivity Tests/methods , Chloroquine/pharmacology
13.
J Fungi (Basel) ; 9(8)2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37623613

ABSTRACT

Aspergillus mold is a ubiquitously found, airborne pathogen that can cause a variety of diseases from mild to life-threatening in severity. Limitations in diagnostic methods combined with anti-fungal resistance render Aspergillus a global emerging pathogen. In industry, Aspergilli produce toxins, such as aflatoxins, which can cause food spoilage and pose public health risk issues. Here, we report a multiplex qPCR method for the detection and identification of the five most common pathogenic Aspergillus species, Aspergillus fumigatus, Aspergillus flavus, Aspergillus niger, Aspergillus terreus, and Aspergillus nidulans. Our approach exploits species-specific nucleotide polymorphisms within their ITS genomic regions. This novel assay combines multiplex single-color real time qPCR and melting curve analysis and provides a straight-forward, rapid, and cost-effective detection method that can identify five Aspergillus species simultaneously in a single reaction using only six unlabeled primers. Due to their unique fragment lengths, the resulting amplicons are directly linked to certain Aspergillus species like fingerprints, following either electrophoresis or melting curve analysis. Our method is characterized by high analytical sensitivity and specificity, so it may serve as a useful and inexpensive tool for Aspergillus diagnostic applications both in health care and the food industry.

14.
Acta Parasitol ; 68(3): 705-710, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37531009

ABSTRACT

PURPOSE: This study aims to develop and evaluate a cost-effective, user-friendly multiplex quantitative real-time polymerase chain reaction (qPCR) method for detecting multiple tick-borne pathogens associated with human and veterinary diseases. METHODS: In silico PCR was performed to design and evaluate primer sequences reported for amplifying Rickettsia spp., Borrelia spp., and Ehrlichia spp. Single and multiplex qPCR assays were then standardized to detect individual pathogens and multiple pathogens in a single reaction. Positive controls were generated to determine the dynamic range of the methods. In the validation phase, a total of 800 samples were screened for the presence of tick-borne pathogens. RESULTS: Identification in a single qPCR reaction (multiplex) of Ehrlichia spp., and Borrelia spp. with a limit of detection of 10 copies and Rickettsia spp. with 100 copies, a PCR efficiency (E) of 90-100% and a coefficient of correlation (R2) of 0.998-0.996 for all pathogens. CONCLUSION: The ability to detect three significant pathogens (Ehrlichia spp., Rickettsia spp., and Borrelia spp.) in a single qPCR reaction offers a significant advantage in the field of molecular diagnostics for tick-borne diseases. This advancement has a profound impact on public health as it facilitates the selection of appropriate treatment protocols, thereby reducing complications associated with disease progression. The streamlined approach provided by this method simplifies the diagnostic process and enables timely intervention, ultimately improving patient outcomes and mitigating the potential risks associated with untreated or misdiagnosed tick-borne infections.


Subject(s)
Borrelia , Rickettsia , Tick-Borne Diseases , Ticks , Animals , Humans , Ticks/microbiology , Real-Time Polymerase Chain Reaction , Rickettsia/genetics , Ehrlichia/genetics , Tick-Borne Diseases/diagnosis , Tick-Borne Diseases/veterinary , Borrelia/genetics
15.
Methods Mol Biol ; 2686: 403-428, 2023.
Article in English | MEDLINE | ID: mdl-37540371

ABSTRACT

Real-time, or quantitative, reverse transcription polymerase chain reaction (qRT-PCR) is a powerful method for rapid and reliable quantification of mRNA abundance. Although it has not featured prominently in flower development research in the past, the availability of novel techniques for the synchronized induction of flower development, or for the isolation of cell-specific mRNA populations, suggests that detailed quantitative analyses of gene expression over time and in specific tissues and cell types by qRT-PCR will become more widely used. In this chapter, we discuss specific considerations for studying gene expression by using qRT-PCR, such as the identification of suitable reference genes for the experimental set-up used. In addition, we provide protocols for performing qRT-PCR experiments in a multiwell plate format (with the LightCycler® 480 system, Roche) and with nanofluidic arrays (BioMark™ system, Fluidigm), which allow the automatic combination of sets of samples with sets of assays, and significantly reduce reaction volume and the number of liquid-handling steps performed during the experiment.


Subject(s)
Flowers , Gene Expression Profiling , Real-Time Polymerase Chain Reaction/methods , Gene Expression Profiling/methods , RNA, Messenger/genetics , Flowers/genetics , Flowers/metabolism , Biological Assay , Reverse Transcriptase Polymerase Chain Reaction
16.
Trop Med Infect Dis ; 8(8)2023 Jul 29.
Article in English | MEDLINE | ID: mdl-37624327

ABSTRACT

The initial and vital stage in the diagnosis of malaria involves extracting DNA. The efficiency of malaria testing is restricted by the multiple steps involved in commercial DNA extraction kits. We attempted to improve an existing loop-mediated isothermal amplification (LAMP) for the detection of Plasmodium knowlesi by using a simple DNA extraction approach, making it a feasible option for mass screening. We utilized a simple nucleic acid extraction method directly from whole blood for the detection of P. knowlesi, taking only 5 min to complete. The extracted DNA was evaluated by two fluorescent-based LAMP and one colorimetric-based LAMP assay. The detection limit for both SYTO-LAMP and SYBR green-LAMP was 0.00001% and 0.0001% parasitemia, respectively. Meanwhile, neutral red-LAMP had a detection limit of 0.01% parasitemia. Combining this simple and inexpensive DNA extraction method, SYTO-LAMP could serve as an alternative molecular diagnosis for the detection of P. knowlesi and other human Plasmodium spp.

17.
Future Microbiol ; 18: 771-783, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37540117

ABSTRACT

Aim: Diagnosis of extrapulmonary tuberculosis (EPTB) is difficult, and a rapid and dependable diagnostic test is urgently needed. Methods: A nano-based assay, SYBR Green magnetic bead-coupled gold nanoparticle-based real-time immuno-polymerase chain reaction (MB-AuNP-RT-I-PCR) was studied for the quantitative detection of Mycobacterium tuberculosis MPT-64+CFP-10 proteins in clinically suspected EPTB patients. Results: A wide range (270 fg/ml-9.9 ng/ml) of MPT-64+CFP-10 was quantified by MB-AuNP-RT-I-PCR in EPTB cases, whereas magneto-ELISA demonstrated a narrow range (1.8-10 ng/ml). Furthermore, high sensitivity (88.2%) and specificity (100%) were attained by MB-AuNP-RT-I-PCR in EPTB (n = 51) and non-TB control (n = 49) subjects, respectively. Both MB-AuNP-I-PCR/magneto-ELISA exhibited significantly lower (p < 0.05-0.01) sensitivities than MB-AuNP-RT-I-PCR. Conclusion: The MB-AuNP-RT-I-PCR described herein shows good diagnostic accuracy, which may translate into a credible diagnostic kit.


Extrapulmonary tuberculosis (EPTB) is a type of tuberculosis disease caused by the bacteria Mycobacterium tuberculosis (Mtb) that affect other regions of the body, rather than the lungs. Detecting EPTB is difficult, and a fast and reliable test is needed. This study developed a test based on a small particle, known as a nanoparticle, to identify Mtb in people with EPTB. The test shows good accuracy and could be used for routine testing.

18.
Int J Mol Sci ; 24(14)2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37511123

ABSTRACT

Optically active liquid-crystalline dispersions (LCD) of nucleic acids, obtained by polymer- and salt-induced (psi-) condensation, e.g., by mixing of aqueous saline solutions of low molecular weight DNA (≤106 Da) and polyethylene glycol (PEG), possess an outstanding circular dichroism (CD) signal (so-called psi-CD) and are of interest for sensor applications. Typically, such CD signals are observed in PEG content from ≈12.5% to ≈22%. However, in the literature, there are very conflicting data on the existence of psi-CD in DNA LCDs at a higher content of crowding polymer up to 30-40%. In the present work, we demonstrate that, in the range of PEG content in the system above ≈24%, optically polymorphic LCDs can be formed, characterized by both negative and positive psi-CD signals, as well as by ones rather slightly differing from the spectrum of isotropic DNA solution. Such a change in the CD signal is determined by the concentration of the stock solution of PEG used for the preparation of LCDs. We assume that various saturation of polymer chains with water molecules may affect the amount of active water, which in turn leads to a change in the hydration of DNA molecules and their transition from B-form to Z-form.


Subject(s)
DNA , Polymers , Polymers/chemistry , Nucleic Acid Conformation , DNA/chemistry , Polyethylene Glycols/chemistry , Circular Dichroism , Water
19.
Methods Mol Biol ; 2685: 149-174, 2023.
Article in English | MEDLINE | ID: mdl-37439981

ABSTRACT

Quantitative PCR is one of the fundamental steps performed when processing routine casework in a forensic laboratory. Quantitative PCR of Alu repeats using a SYBR® Green master mix can produce calculated estimates of how much DNA was extracted from a sample. This process offers more efficiency, human specificity, and can be performed faster than other outdated quantification methods, such as slot blot or yield gel. A qPCR master mix is prepared and consists of Alu-F primers, Alu-R primers, water, and SYBR® Green master mix. The Alu-F and Alu-R primers target Alu sequences that are present hundreds of thousands of times throughout the human genome and are effective markers for human DNA quantification. During qPCR, the 7500 system facilitates the amplification of target Alu repeats. The SYBR® Green I fluorescent dye intercalates between the amplified dsDNA targets. During each amplification cycle, the 7500 system agitates the SYBR® Green I dye, resulting in a fluorescence signal that is recorded when it passes a specified Ct value. After qPCR amplification is complete, a standard curve is created and used to determine how much DNA a sample contains. This chapter provides instructions on how to accurately prepare a 96-well plate for qPCR, use the 7500 system and associated software to set up the qPCR amplification, and interpret the corresponding results produced.


Subject(s)
DNA , Nucleic Acid Amplification Techniques , Humans , Polymerase Chain Reaction/methods , DNA/genetics , DNA/analysis , DNA Primers/genetics , Fluorescent Dyes , Benzothiazoles , Real-Time Polymerase Chain Reaction/methods
20.
Food Chem ; 428: 136789, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37423110

ABSTRACT

A simple and rapid colorimetric method for the detection of melamine in milk samples is described. Polythymidine oligonucleotide was adsorbed on to the surface of gold nanoparticles (AuNPs), protecting it from aggregation. In the presence of melamine, polythymidine oligonucleotide combined with melamine formed a double-strand DNA-like structure, allowing AuNPs aggregation. In the presence of positively charged SYBR Green I (SG I), AuNPs were further aggregated. In the presence of melamine and SG I, aggregation of AuNPs was synergistic. Thus, in this principle, melamine can be detected visually. Plasmon resonance peak changes enabled detection of melamine quantitatively using UV-vis spectroscopy. The limit of detection for this colorimetric method was 16 µg L-1 with a good linear range from 19.5 µg L-1 to 1.25 × 103 µg L-1, and detection took only 1 min. The method was successfully applied for detection of melamine in milk samples.


Subject(s)
Metal Nanoparticles , Animals , Metal Nanoparticles/chemistry , Gold/chemistry , Milk/chemistry , Triazines/analysis , Colorimetry/methods , Oligonucleotides , Limit of Detection
SELECTION OF CITATIONS
SEARCH DETAIL