Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 788
Filter
1.
Front Neurol ; 15: 1419372, 2024.
Article in English | MEDLINE | ID: mdl-38948136

ABSTRACT

Background: Vestibular migraine (VM), an intricate subtype of migraine, amalgamates the dual attributes of migraine and vestibular disorders. In clinical settings, individuals with VM frequently articulate concerns regarding the manifestation of subjective cognitive impairment. This cognitive dysfunction is intricately linked with diminished mobility, heightened susceptibility to falls, and increased absenteeism in afflicted patients. Consequently, comprehending the features of cognitive impairment in VM patients holds potential clinical significance. The pursuit of rapid and objective methods for detection and assessment is foundational and prerequisite for efficacious cognitive management of VM patients. Methods: The study encompassed 50 patients diagnosed with vestibular migraine and recruited 50 age-sex matched healthy controls. All participants underwent anti-saccade tasks, and cognitive evaluation was performed using the MMSE and MoCA to assess overall cognitive function. Additionally, RBANS scales were employed to measure specific cognitive domains. Results: The VM patients and normal controls demonstrated statistical parity in terms of age, gender, education, weight, and BMI, with no significant differences observed. Analysis of cognitive scores divulged a marked increase in the incidence of Mild Cognitive Impairment (MCI) in VM patients compared to Healthy Controls (HCs). Both MMSE and MoCA scores were notably lower in VM patients compared to their healthy counterparts. The RBANS cognitive test indicated significant impairment in immediate memory, visuospatial construction, language, attention, and delayed memory among VM patients. Notably, the Trail Making Test and Stroop Color-Word Test revealed compromised processing speed and executive function cognitive domains. The anti-saccadic task highlighted significantly elevated anti-saccadic latency and frequency of direction errors in vestibular migraine patients. Symptom severity, illness duration, and episode frequency in VM patients positively correlated with counter-scanning errors and negatively correlated with cognitive performance across diverse cognitive domains. Conclusion: VM patients exhibit cognitive decline across multiple cognitive domains during the interictal period. This cognitive impairment may not be fully reversible, underscoring its potential clinical significance for cognitive management in VM patients. The sensitivity of anti-saccade tasks to the cognitive status of VM patients positions them as promising objective indicators for diagnosis, intervention, and evaluation of cognitive impairment effects in VM in future applications.

2.
Int J Occup Saf Ergon ; : 1-10, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39056265

ABSTRACT

A tunnel shading shed is crucial in improving driving safety as a type of traffic facility to ease the transition of light environments. To study the effect of installation of a shading shed on the visual characteristics of drivers in the connecting zone of the adjacent tunnels, a total of 32 drivers were gathered to perform a real vehicle experiment. The study zone of the adjacent tunnels was divided into three sections: upstream tunnel exit; connecting zone; and downstream tunnel threshold zone. Fixation duration, saccade duration and saccade frequency were selected as research indexes. The results suggest that installation of a shading shed in the connecting zone significantly reduced the fixation (saccade) duration in the upstream tunnel exit and downstream tunnel threshold zones, with a significantly higher saccade frequency. In addition, fixation is better improved at the downstream tunnel entrance, and saccade is better enhanced at the upstream tunnel exit.

3.
Cureus ; 16(6): e62786, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39036179

ABSTRACT

Objectives This study aims to evaluate semicircular canal function using video head impulse test (vHIT) in patients with peripheral vestibular disorders without nystagmus. Methods Patients who underwent vHIT were enrolled in this study, and the proportion of abnormal findings on vHIT in patients without nystagmus was investigated. In addition, the results of vestibular testing were investigated in cases in which both vHIT and caloric testing were performed in patients without nystagmus. Results Forty-six patients (23.4%) of 197 patients who had no abnormal findings on the nystagmus tests, including the gaze nystagmus test, positional nystagmus test, and positioning nystagmus test, showed dysfunction in at least one semicircular canal on vHIT. The most frequent diagnosis was vestibular schwannoma (14/46, 30.4%), and cases with bilateral vestibular dysfunction were also included (12/46, 26.1%). A disorganized pattern of catch-up saccade was observed more frequently in patients with subjective symptoms of dizziness/vertigo compared to those without subjective symptoms. Although the sensitivity of vHIT was low compared to caloric testing, vHIT could detect isolated vertical canal dysfunction not detected by caloric testing. Conclusions vHIT is considered to be a useful test for patients without nystagmus, as vHIT could detect abnormalities in approximately one-quarter of patients without nystagmus. vHIT is considered to be one of the first tests to be performed following nystagmus testing, including the gaze nystagmus test, the positional nystagmus test, and the positioning nystagmus test. On the other hand, there are some cases in which vHIT shows no abnormality while caloric testing shows canal paresis. It is necessary to perform vHIT, bearing in mind that there are abnormalities that cannot be detected by vHIT alone.

4.
Article in English | MEDLINE | ID: mdl-38977612

ABSTRACT

Extensive research conducted in controlled laboratory settings has prompted an inquiry into how results can be generalized to real-world situations influenced by the subjects' actions. Virtual reality lends itself ideally to investigating complex situations but requires accurate classification of eye movements, especially when combining it with time-sensitive data such as EEG. We recorded eye-tracking data in virtual reality and classified it into gazes and saccades using a velocity-based classification algorithm, and we cut the continuous data into smaller segments to deal with varying noise levels, as introduced in the REMoDNav algorithm. Furthermore, we corrected for participants' translational movement in virtual reality. Various measures, including visual inspection, event durations, and the velocity and dispersion distributions before and after gaze onset, indicate that we can accurately classify the continuous, free-exploration data. Combining the classified eye-tracking with the EEG data, we generated fixation-onset event-related potentials (ERPs) and event-related spectral perturbations (ERSPs), providing further evidence for the quality of the eye-movement classification and timing of the onset of events. Finally, investigating the correlation between single trials and the average ERP and ERSP identified that fixation-onset ERSPs are less time sensitive, require fewer repetitions of the same behavior, and are potentially better suited to study EEG signatures in naturalistic settings. We modified, designed, and tested an algorithm that allows the combination of EEG and eye-tracking data recorded in virtual reality.

5.
Exp Brain Res ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980340

ABSTRACT

Noise is a ubiquitous component of motor systems that leads to behavioral variability of all types of movements. Nonetheless, systems-based models investigating human movements are generally deterministic and explain only the central tendencies like mean trajectories. In this paper, a novel approach to modeling kinematic variability of movements is presented and tested on the oculomotor system. This approach reconciles the two prominent philosophies of saccade control: displacement-based control versus velocity-based control. This was achieved by quantifying the variability in saccadic eye movements and developing a stochastic model of its control. The proposed stochastic dual model generated significantly better fits of inter-trial variances of the saccade trajectories compared to existing models. These results suggest that the saccadic system can flexibly use the information of both desired displacement and velocity for its control. This study presents a potential framework for investigating computational principles of motor control in the presence of noise utilizing stochastic modeling of kinematic variability.

6.
Vision Res ; 222: 108454, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38986179

ABSTRACT

When two peripheral objects are presented in close proximity, saccades towards one of these objects land at a weighted average location between the two objects. This phenomenon, known as the 'global effect' or 'saccade averaging', disappears when the distance between the objects increases. When objects are further apart, outside the averaging zone, saccades land on one of the objects with little or no saccade averaging. Although it is known that the strength of the global effect is dependent on the specific features of the two objects, it is unclear if the size of the zone in which averaging can occur (i.e., the averaging zone) is adaptive. The aim of the current study was to investigate whether the size of the averaging zone adapts to variations in object luminance contrast of the objects. In order to systematically assess changes in the averaging zone, in two experiments, observers made saccadic eye movements while the luminance of the target and the distractor varied. We report three major findings: 1) When a distractor was more luminant relative to the target, the averaging zone increased (Exp. 1). Notably, saccade averaging never entirely ceased to exist, even for remote distractors. 2) When target and distractor were equiluminant, the averaging zone did not change with absolute luminance (Exp. 2). 3) Higher (relative and absolute) luminance increased the averaging zone especially for shorter saccadic response times (SRT). We conclude that the averaging zone is adaptive and becomes larger with increasing relative luminance and especially when SRTs are short.

7.
Physiol Behav ; 284: 114630, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38971571

ABSTRACT

Working memory (WM) is a cognitive system with limited capacity that can temporarily store and process information. The purpose of this study was to investigate functional connectivity based on phase synchronization during WM and its relationship with the behavioral response. In this regard, we recorded EEG/Eye tracking data of seventeen healthy subjects while performing a memory-guided saccade (MGS) task with two different positions (near eccentricity and far eccentricity). We computed saccade error as memory performance and measured functional connectivity using Phase Locking Value (PLV) in the alpha frequency band (8-12 Hz). The results showed that PLV is negatively correlated with saccade error. Our finding indicated that during the maintenance period, PLV between the frontal and visual area in trials with low saccade error increased significantly compared to trials with high saccade error. Furthermore, we observed a significant difference between PLV for near and far conditions in the delay period. The results suggest that PLV in memory maintenance, in addition to predicting saccade error as behavioral performance, can be related to the coding of spatial information in WM.

8.
BMC Ophthalmol ; 24(1): 278, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982388

ABSTRACT

OBJECTIVE: To investigate the characteristics of eye movement in children with anisometropic amblyopia, and to compare those characteristics with eye movement in a control group. METHODS: 31 children in the anisometropic amblyopia group (31 amblyopic eyes in group A, 31 contralateral eyes in group B) and 24 children in the control group (48 eyes in group C). Group A was subdivided into groups Aa (severe amblyopia) and Ab (mild-moderate amblyopia). The overall age range was 6-12 years (mean, 7.83 ± 1.79 years). All children underwent ophthalmic examinations; eye movement parameters including saccade latency and amplitude were evaluated using an Eyelink1000 eye tracker. Data Viewer and MATLAB software were used for data analysis. RESULTS: Mean and maximum saccade latencies, as well as mean and maximum saccade amplitudes, were significantly greater in group A than in groups B and C before and after treatment (P < 0.05). Mean and maximum saccade latencies were significantly different among groups Aa, Ab, and C (P < 0.05). Pupil trajectories in two detection modes suggested that binocular fixation was better than monocular fixation. CONCLUSIONS: Eye movement parameters significantly differed between contralateral normal eyes and control eyes. Clinical evaluation of children with anisometropic amblyopia should not focus only on static visual acuity, but also on the assessment of eye movement.


Subject(s)
Amblyopia , Vision, Binocular , Visual Acuity , Humans , Amblyopia/physiopathology , Child , Male , Female , Visual Acuity/physiology , Vision, Binocular/physiology , Saccades/physiology , Eye Movements/physiology , Anisometropia/physiopathology , Anisometropia/complications , Fixation, Ocular/physiology
9.
Front Neurosci ; 18: 1399923, 2024.
Article in English | MEDLINE | ID: mdl-38988765

ABSTRACT

Introduction: Cognitive dysfunction is commonplace in Motor Neurone Disease (MND). However, due to the prominent motor symptoms in MND, assessing patients' cognitive function through traditional cognitive assessments, which oftentimes require motoric responses, may become increasingly challenging as the disease progresses. Oculomotor pathways are apparently resistant to pathological degeneration in MND. As such, abnormalities in oculomotor functions, largely driven by cognitive processes such as saccades and smooth pursuit eye movement, may be reflective of frontotemporal cognitive deficits in MND. Thus, saccadic and smooth pursuit eye movements may prove to be ideal mechanistic markers of cognitive function in MND. Methods: To ascertain the utility of saccadic and smooth pursuit eye movements as markers of cognitive function in MND, this review summarizes the literature concerning saccadic and smooth pursuit eye movement task performance in people with MND. Results and discussion: Of the 22 studies identified, noticeable patterns suggest that people with MND can be differentiated from controls based on antisaccade and smooth pursuit task performance, and thus the antisaccade task and smooth pursuit task may be potential candidates for markers of cognition in MND. However, further studies which ascertain the concordance between eye tracking measures and traditional measures of cognition are required before this assumption is extrapolated, and clinical recommendations are made. Systematic review registration: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=376620, identifier CRD42023376620.

10.
Neuroimage ; 297: 120699, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38944172

ABSTRACT

After more than 30 years of extensive investigation, impressive progress has been made in identifying the neural correlates of consciousness (NCC). However, the functional role of spatiotemporally distinct consciousness-related neural activity in conscious perception is debated. An influential framework proposed that consciousness-related neural activities could be dissociated into two distinct processes: phenomenal and access consciousness. However, though hotly debated, its authenticity has not been examined in a single paradigm with more informative intracranial recordings. In the present study, we employed a visual awareness task and recorded the local field potential (LFP) of patients with electrodes implanted in cortical and subcortical regions. Overall, we found that the latency of visual awareness-related activity exhibited a bimodal distribution, and the recording sites with short and long latencies were largely separated in location, except in the lateral prefrontal cortex (lPFC). The mixture of short and long latencies in the lPFC indicates that it plays a critical role in linking phenomenal and access consciousness. However, the division between the two is not as simple as the central sulcus, as proposed previously. Moreover, in 4 patients with electrodes implanted in the bilateral prefrontal cortex, early awareness-related activity was confined to the contralateral side, while late awareness-related activity appeared on both sides. Finally, Granger causality analysis showed that awareness-related information flowed from the early sites to the late sites. These results provide the first LFP evidence of neural correlates of phenomenal and access consciousness, which sheds light on the spatiotemporal dynamics of NCC in the human brain.

11.
Exp Brain Res ; 242(7): 1797-1806, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38839617

ABSTRACT

People with multiple sclerosis (PwMS) who report dizziness often have gaze instability due to vestibulo-ocular reflex (VOR) deficiencies and compensatory saccade (CS) abnormalities. Herein, we aimed to describe and compare the gaze stabilization mechanisms for yaw and pitch head movements in PwMS. Thirty-seven PwMS (27 female, mean ± SD age = 53.4 ± 12.4 years old, median [IQR] Expanded Disability Status Scale Score = 3.5, [1.0]. We analyzed video head impulse test results for VOR gain, CS frequency, CS latency, gaze position error (GPE) at impulse end, and GPE at 400 ms after impulse start. Discrepancies were found for median [IQR] VOR gain in yaw (0.92 [0.14]) versus pitch-up (0.71 [0.44], p < 0.001) and pitch-down (0.81 [0.44], p = 0.014]), CS latency in yaw (258.13 [76.8]) ms versus pitch-up (208.78 [65.97]) ms, p = 0.001] and pitch-down (132.17 [97.56] ms, p = 0.006), GPE at impulse end in yaw (1.15 [1.85] degs versus pitch-up (2.71 [3.9] degs, p < 0.001), and GPE at 400 ms in yaw (-0.25 [0.98] degs) versus pitch-up (1.53 [1.07] degs, p < 0.001) and pitch-down (1.12 [1.82] degs, p = 0.001). Compared with yaw (0.91 [0.75]), CS frequency was similar for pitch-up (1.03 [0.93], p = 0.999) but lower for pitch-down (0.65 [0.64], p = 0.023). GPE at 400 ms was similar for yaw and pitch-down (1.88 [2.76] degs, p = 0.400). We postulate that MS may have preferentially damaged the vertical VOR and saccade pathways in this cohort.


Subject(s)
Multiple Sclerosis , Reflex, Vestibulo-Ocular , Humans , Female , Male , Middle Aged , Multiple Sclerosis/physiopathology , Multiple Sclerosis/complications , Adult , Reflex, Vestibulo-Ocular/physiology , Aged , Fixation, Ocular/physiology , Head Movements/physiology , Saccades/physiology , Head Impulse Test/methods
12.
J Neurophysiol ; 132(2): 335-346, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38865580

ABSTRACT

Saccade adaptation plays a crucial role in maintaining saccade accuracy. The behavioral characteristics and neural mechanisms of saccade adaptation for an externally cued movement, such as visually guided saccades (VGS), are well studied in nonhuman primates. In contrast, little is known about the saccade adaptation of an internally driven movement, such as memory-guided saccades (MGS), which are guided by visuospatial working memory. As the oculomotor plant changes because of growth, aging, or skeletomuscular problems, both types of saccades need to be adapted. Do both saccade types engage a common adaptation mechanism? In this study, we compared the characteristics of amplitude decrease adaptation in MGS with VGS in nonhuman primates. We found that the adaptation speed was faster for MGS than for VGS. Saccade duration changed during MGS adaptation, whereas saccade peak velocity changed during VGS adaptation. We also compared the adaptation field, that is, the gain change for saccade amplitudes other than the adapted. The gain change for MGS declines on both smaller and larger sides of adapted amplitude, more rapidly for larger than smaller amplitudes, whereas the decline in VGS was reversed. Thus, the differences between VGS and MGS adaptation characteristics support the previously suggested hypothesis that the adaptation mechanisms of VGS and MGS are distinct. Furthermore, the result suggests that the MGS adaptation site is a brain structure that influences saccade duration, whereas the VGS adaptation site influences saccade peak velocity. These results should be beneficial for future neurophysiological experiments.NEW & NOTEWORTHY Plasticity helps to overcome persistent motor errors. Such motor plasticity or adaptation can be investigated with saccades. Thus far our knowledge is primarily about visually guided saccades, an externally cued movement, which we can make only when the object is visible at the time of saccade. However, as the world is complex, we can make saccades even when the object is not visible. Here, we investigate the adaptation of an internally driven movement: the memory-guided saccade.


Subject(s)
Adaptation, Physiological , Macaca mulatta , Saccades , Saccades/physiology , Animals , Adaptation, Physiological/physiology , Male , Visual Perception/physiology , Memory, Short-Term/physiology , Female , Memory/physiology
13.
J Neurol ; 2024 May 26.
Article in English | MEDLINE | ID: mdl-38796801

ABSTRACT

BACKGROUND AND OBJECTIVES: The diagnostic challenge of myasthenia gravis (MG) is exacerbated by the variable efficacy of current testing methodologies, necessitating innovative approaches to accurately identify the condition. This study aimed to assess ocular muscle fatigue in patients with MG using video-oculography (VOG) by examining repetitive saccadic eye movements and comparing these metrics to those of healthy control participants. METHODS: This prospective, cross-sectional study was conducted at a tertiary care center and involved 62 patients diagnosed with MG (48 with ocular MG and 14 with generalized MG) and a control group of 31 healthy individuals, matched for age and sex. The assessment involved recording saccadic eye movements within a ± 15° range, both horizontally and vertically, at a rate of 15 saccades per minute over a 5-min period, resulting in 75 cycles. Participants were afforded a 3-min rest interval between each set to mitigate cumulative fatigue. The primary outcome was the detection of oculomotor fatigue, assessed through changes in saccadic waveforms, range, peak velocity, latency, and the duration from onset to target, with a focus on comparing the second saccade against the average of the last five saccades. RESULTS: In the evaluation of repetitive saccadic movements, patients with MG exhibited a reduced saccadic range and a prolonged duration to reach the target, compared to healthy subjects. Furthermore, a significant elevation in the frequency of multistep saccades was observed among MG patients, with a marked rise observed over consecutive trials. Receiver operating characteristic (ROC) analysis revealed the discriminative performance of multistep saccade frequency, in conjunction with variations in saccadic range and duration from onset to target achievement between the second saccade and the mean of the final five saccades, as effective in distinguishing MG patients from healthy subjects. Although alterations in peak saccadic velocity and latency were less pronounced, they were nevertheless detectable. DISCUSSION: The utilization of VOG for repetitive saccadic testing in the diagnosis of MG has demonstrated considerable diagnostic precision. This methodology affords significant accuracy in evaluating ocular muscle fatigue in MG patients, providing class III evidence supportive of its clinical application.

14.
J Neurophysiol ; 131(6): 1156-1167, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38690998

ABSTRACT

Our eyes execute rapid, directional movements known as saccades, occurring several times per second, to focus on objects of interest in our environment. During these movements, visual sensitivity is temporarily reduced. Despite numerous studies on this topic, the underlying mechanism remains elusive, including a lingering debate on whether saccadic suppression affects the parvocellular visual pathway. To address this issue, we conducted a study employing steady-state visual evoked potentials (SSVEPs) elicited by chromatic and luminance stimuli while observers performed saccadic eye movements. We also employed an innovative analysis pipeline to enhance the signal-to-noise ratio, yielding superior results compared to the previous method. Our findings revealed a clear suppression effect on SSVEP signals during saccades compared to fixation periods. Notably, this suppression effect was comparable for both chromatic and luminance stimuli. We went further to measure the suppression effect across various contrast levels, which enabled us to model SSVEP responses with contrast response functions. The results suggest that saccades primarily reduce response gain without significantly affecting contrast gain and that this reduction applies uniformly to both chromatic and luminance pathways. In summary, our study provides robust evidence that saccades similarly suppress visual processing in both the parvocellular and magnocellular pathways within the human early visual cortex, as indicated by SSVEP responses. The observation that saccadic eye movements impact response gain rather than contrast gain implies that they influence visual processing through a multiplicative mechanism.NEW & NOTEWORTHY The present study demonstrates that saccadic eye movements reduce the processing of both luminance and chromatic stimuli in the early visual cortex of humans. By modeling the contrast response function, the study further shows that saccades affect visual processing by reducing the response gain rather than altering the contrast gain, suggesting that a multiplicative mechanism of visual attenuation affects both parvocellular and magnocellular pathways.


Subject(s)
Evoked Potentials, Visual , Saccades , Visual Cortex , Humans , Saccades/physiology , Male , Evoked Potentials, Visual/physiology , Adult , Female , Visual Cortex/physiology , Young Adult , Color Perception/physiology , Contrast Sensitivity/physiology , Electroencephalography , Visual Pathways/physiology , Photic Stimulation
15.
J Neurophysiol ; 132(1): 61-67, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38810256

ABSTRACT

Temporal intervals appear compressed at the time of saccades. Here, I asked if saccadic compression of time is related to motor planning or to saccade execution. To dissociate saccade motor planning from its execution, I used the double-step paradigm, in which subjects have to perform two horizontal saccades successively. At various times around the saccade sequence, I presented two large horizontal bars, which marked an interval lasting 100 ms. After 700 ms, a second temporal interval was presented, varying in duration across trials. Subjects were required to judge which interval appeared shorter. I found that during the first saccades in the double-step paradigm, temporal intervals were compressed. Maximum temporal compression coincided with saccade onset. Around the time of the second saccade, I found temporal compression as well, however, the time of maximum compression preceded saccade onset by about 70 ms. I compared the magnitude and time of temporal compression between double-step saccades and amplitude-matched single saccades, which I measured separately. Although I found no difference in time compression magnitude, the time when maximum compression occurred differed significantly. I conclude that the temporal shift of time compression in double-step saccades demonstrates the influence of saccade motor planning on time perception.NEW & NOTEWORTHY Visually defined temporal intervals appear compressed at the time of saccades. Here, I tested time perception during double-step saccades dissociating saccade planning from execution. Although around the time of the first saccade, peak compression was found at saccade onset, compression around the time of the second saccade peaked 70 ms before saccade onset. The results suggest that saccade motor planning influences time perception.


Subject(s)
Saccades , Time Perception , Saccades/physiology , Humans , Male , Adult , Female , Time Perception/physiology , Young Adult , Psychomotor Performance/physiology
16.
Vision Res ; 221: 108424, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38744033

ABSTRACT

Visual attention is typically shifted toward the targets of upcoming saccadic eye movements. This observation is commonly interpreted in terms of an obligatory coupling between attentional selection and oculomotor programming. Here, we investigated whether this coupling is facilitated by a habitual expectation of spatial congruence between visual and motor targets. To this end, we conducted a dual-task (i.e., concurrent saccade task and visual discrimination task) experiment in which male and female participants were trained to either anticipate spatial congruence or incongruence between a saccade target and an attention probe stimulus. To assess training-induced effects of expectation on premotor attention allocation, participants subsequently completed a test phase in which the attention probe position was randomized. Results revealed that discrimination performance was systematically biased toward the expected attention probe position, irrespective of whether this position matched the saccade target or not. Overall, our findings demonstrate that visual attention can be substantially decoupled from ongoing oculomotor programming and suggest an important role of habitual expectations in the attention-action coupling.


Subject(s)
Attention , Saccades , Visual Perception , Humans , Saccades/physiology , Attention/physiology , Male , Female , Young Adult , Adult , Visual Perception/physiology , Photic Stimulation/methods , Reaction Time/physiology , Analysis of Variance
17.
18.
Acta Otorhinolaryngol Ital ; 44(3): 198-203, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38712769

ABSTRACT

Objective: We describe an uncharacteristic vestibular-ocular reflex (VOR) pattern, studied by video head impulse tests (VHIT) in patients suffering from unilateral isolated posterior semicircular canal (PSC) hypofunction. In these patients, we found an upward sliding of the eyes, followed by an oblique downward catch-up saccade during horizontal head impulse to the healthy side. Methods: We present a retrospective study of all VHIT exams presenting isolated PSC hypofunction between May 2020 and November 2022. Results: We found 37 patients, which led to the discovery of such incongruent eye movement in 19 cases; their gain data are shown and compared to the remaining 18 cases in which such an anomaly was absent. A control group of 31 healthy subjects was recruited to define the reference criteria for VHIT gain values. The correlation between the amplitude of the vertical saccade and the relative functional imbalance of the vertical semicircular canals was studied. Conclusions: We have observed that in approximately half of the subjects with isolated CSP deficiency, there is a VOR anomaly. A possible pathophysiological explanation of the unbalanced effect of vertical semicircular canal stimulation of a labyrinth during horizontal head thrust toward the opposite side is proposed. The planar incongruity of the response of the VOR described here appears more evident at the onset of the CSP deficit. Current VHIT systems do not detect this incongruent eye reflex. They can lead to an error in gain evaluation (pseudo-deficit) of the lateral semicircular canal of the healthy side and problems in performing the test (trace rejected). In the future, software for VHIT should take into account the possibility of non-coplanar ocular responses to cephalic stimuli.


Subject(s)
Head Impulse Test , Reflex, Vestibulo-Ocular , Saccades , Semicircular Canals , Humans , Retrospective Studies , Saccades/physiology , Semicircular Canals/physiopathology , Male , Female , Middle Aged , Adult , Reflex, Vestibulo-Ocular/physiology , Aged , Young Adult
19.
Proc Natl Acad Sci U S A ; 121(15): e2310291121, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38564641

ABSTRACT

Humans blink their eyes frequently during normal viewing, more often than it seems necessary for keeping the cornea well lubricated. Since the closure of the eyelid disrupts the image on the retina, eye blinks are commonly assumed to be detrimental to visual processing. However, blinks also provide luminance transients rich in spatial information to neural pathways highly sensitive to temporal changes. Here, we report that the luminance modulations from blinks enhance visual sensitivity. By coupling high-resolution eye tracking in human observers with modeling of blink transients and spectral analysis of visual input signals, we show that blinking increases the power of retinal stimulation and that this effect significantly enhances visibility despite the time lost in exposure to the external scene. We further show that, as predicted from the spectral content of input signals, this enhancement is selective for stimuli at low spatial frequencies and occurs irrespective of whether the luminance transients are actively generated or passively experienced. These findings indicate that, like eye movements, blinking acts as a computational component of a visual processing strategy that uses motor behavior to reformat spatial information into the temporal domain.


Subject(s)
Blinking , Eye Movements , Humans , Photic Stimulation , Visual Perception/physiology , Vision, Ocular
20.
Exp Brain Res ; 242(6): 1339-1348, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38563980

ABSTRACT

Using the "Don't look" (DL) paradigm, wherein participants are asked not to look at a specific feature (i.e., eye, nose, and mouth), we previously documented that Easterners struggled to completely avoid fixating on the eyes and nose. Their underlying mechanisms for attractiveness may differ because the fixations on the eyes were triggered only reflexively, whereas fixations on the nose were consistently elicited. In this study, we predominantly focused on the nose, where the center-of-gravity (CoG) effect, which refers to a person's tendency to look near an object's CoG, could be confounded. Full-frontal and mid-profile faces were used because the latter's CoG did not correspond to the nose location. Although we hypothesized that these two effects are independent, the results indicated that, in addition to the successful tracing of previous studies, the CoG effect explains the nose-attracting effect. This study not only reveals this explanation but also raises a question regarding the CoG effect on Eastern participants.


Subject(s)
Facial Recognition , Humans , Female , Male , Facial Recognition/physiology , Young Adult , Adult , Fixation, Ocular/physiology , Eye , Photic Stimulation/methods , Face
SELECTION OF CITATIONS
SEARCH DETAIL