Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
medRxiv ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38712295

ABSTRACT

Background: Measuring malaria transmission intensity using the traditional entomological inoculation rate is difficult. Antibody responses to mosquito salivary proteins such as SG6 have previously been used as biomarkers of exposure to Anopheles mosquito bites. Here, we investigate four mosquito salivary proteins as potential biomarkers of human exposure to mosquitoes infected with P. falciparum: mosGILT, SAMSP1, AgSAP, and AgTRIO. Methods: We tested population-level human immune responses in longitudinal and cross-sectional plasma samples from individuals with known P. falciparum infection from low and moderate transmission areas in Senegal using a multiplexed magnetic bead-based assay. Results: AgSAP and AgTRIO were the best indicators of recent exposure to infected mosquitoes. Antibody responses to AgSAP, in a moderate endemic area, and to AgTRIO in both low and moderate endemic areas, were significantly higher than responses in a healthy non-endemic control cohort (p-values = 0.0245, 0.0064, and <0.0001 respectively). No antibody responses significantly differed between the low and moderate transmission area, or between equivalent groups during and outside the malaria transmission seasons. For AgSAP and AgTRIO, reactivity peaked 2-4 weeks after clinical P. falciparum infection and declined 3 months after infection. Discussion: Reactivity to both AgSAP and AgTRIO peaked after infection and did not differ seasonally nor between areas of low and moderate transmission, suggesting reactivity is likely reflective of exposure to infectious mosquitos or recent biting rather than general mosquito exposure. Kinetics suggest reactivity is relatively short-lived. AgSAP and AgTRIO are promising candidates to incorporate into multiplexed assays for serosurveillance of population-level changes in P. falciparum-infected mosquito exposure.

2.
Trends Immunol ; 44(4): 256-265, 2023 04.
Article in English | MEDLINE | ID: mdl-36964020

ABSTRACT

Malaria is caused by Plasmodium protozoa that are transmitted by anopheline mosquitoes. Plasmodium sporozoites are released with saliva when an infected female mosquito takes a blood meal on a vertebrate host. Sporozoites deposited into the skin must enter a blood vessel to start their journey towards the liver. After migration out of the mosquito, sporozoites are associated with, or in proximity to, many components of vector saliva in the skin. Recent work has elucidated how Anopheles saliva, and components of saliva, can influence host-pathogen interactions during the early stage of Plasmodium infection in the skin. Here, we discuss how components of Anopheles saliva can modulate local host responses and affect Plasmodium infectivity. We hypothesize that therapeutic strategies targeting mosquito salivary proteins can play a role in controlling malaria and other vector-borne diseases.


Subject(s)
Anopheles , Malaria , Humans , Animals , Female , Anopheles/parasitology , Anopheles/physiology , Saliva , Mosquito Vectors/parasitology , Sporozoites
3.
Elife ; 102021 12 23.
Article in English | MEDLINE | ID: mdl-34939933

ABSTRACT

Background: Entomological surveillance for malaria is inherently resource-intensive and produces crude population-level measures of vector exposure which are insensitive in low-transmission settings. Antibodies against Anopheles salivary proteins measured at the individual level may serve as proxy biomarkers for vector exposure and malaria transmission, but their relationship is yet to be quantified. Methods: A systematic review of studies measuring antibodies against Anopheles salivary antigens (PROSPERO: CRD42020185449). Multilevel modelling (to account for multiple study-specific observations [level 1], nested within study [level 2], and study nested within country [level 3]) estimated associations between seroprevalence with Anopheles human biting rate (HBR) and malaria transmission measures. Results: From 3981 studies identified in literature searches, 42 studies across 16 countries were included contributing 393 study-specific observations of anti-Anopheles salivary antibodies determined in 42,764 samples. A positive association between HBR (log transformed) and seroprevalence was found; overall a twofold (100% relative) increase in HBR was associated with a 23% increase in odds of seropositivity (OR: 1.23, 95% CI: 1.10-1.37; p<0.001). The association between HBR and Anopheles salivary antibodies was strongest with concordant, rather than discordant, Anopheles species. Seroprevalence was also significantly positively associated with established epidemiological measures of malaria transmission: entomological inoculation rate, Plasmodium spp. prevalence, and malarial endemicity class. Conclusions: Anopheles salivary antibody biomarkers can serve as a proxy measure for HBR and malaria transmission, and could monitor malaria receptivity of a population to sustain malaria transmission. Validation of Anopheles species-specific biomarkers is important given the global heterogeneity in the distribution of Anopheles species. Salivary biomarkers have the potential to transform surveillance by replacing impractical, inaccurate entomological investigations, especially in areas progressing towards malaria elimination. Funding: Australian National Health and Medical Research Council, Wellcome Trust.


Subject(s)
Anopheles/immunology , Antigens, Protozoan/immunology , Insect Proteins/immunology , Malaria/transmission , Salivary Proteins and Peptides/immunology , Animals , Antibodies, Protozoan/immunology , Australia , Biomarkers , Humans , Immunoglobulin G/immunology , Insect Bites and Stings , Malaria/epidemiology , Malaria/immunology , Models, Theoretical , Mosquito Vectors/immunology , Plasmodium falciparum/immunology , Seroepidemiologic Studies
4.
Vet Parasitol ; 212(3-4): 336-49, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26293586

ABSTRACT

Ornithodoros moubata is the main vector of the pathogens causing African swine fever and human relapsing fever in Africa. The development of an efficient vaccine against this tick would facilitate its control and the prevention of the diseases it transmits to a considerable extent. Previous efforts to identify vaccine target candidates led us to the discovery of novel salivary proteins that probably act as anti-haemostatics at the host-tick interface, including a secreted phospholipase A2 (PLA2), a 7DB-like protein (7DB-like), a riboprotein 60S L10 (RP-60S), an apyrase (APY), and a new platelet aggregation inhibitor peptide, designated mougrin (MOU). In this work, the corresponding recombinant proteins were expressed in Escherichia coli and their individual vaccine efficacy was tested in rabbit vaccination trials. All of them, except the less immunogenic RP-60S, induced strong humoral responses that reduced tick feeding and survival, providing vaccine efficacies of 44.2%, 43.2% and 27.2%, 19.9% and 17.3% for PLA2, APY, MOU, RP-60S and 7DB-like, respectively. In the case of the more protective recombinant antigens (PLA2, APY and MOU), the immunodominant protective linear B-cell epitopes were identified and their combined vaccine efficacy was tested in a second vaccine trial using different adjuvants. In comparison with the best efficacy of individual antigens, the multicomponent vaccine increased vaccine efficacy by 13.6%, indicating additive protective effects rather than a synergistic effect. Tick saliva inoculated during natural tick-host contacts had a boosting effect on vaccinated animals, increasing specific antibody levels and protection.


Subject(s)
Epitopes, B-Lymphocyte/immunology , Hemostatics/antagonists & inhibitors , Ornithodoros/metabolism , Proteins/immunology , Saliva/metabolism , Vaccines/immunology , Amino Acid Sequence , Animals , Antigens/immunology , Cloning, Molecular , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/metabolism , Female , Immunization, Secondary , Male , Models, Molecular , Molecular Sequence Data , Ornithodoros/immunology , Protein Conformation , Proteins/metabolism , Rabbits , Recombinant Proteins , Saliva/chemistry , Vaccines/administration & dosage
5.
Ticks Tick Borne Dis ; 6(3): 211-20, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25802033

ABSTRACT

Ticks are parasites of great medical and veterinary importance since they are vectors of numerous pathogens that affect humans, livestock and pets. Among the argasids, several species of the genus Ornithodoros transmit serious diseases such as tick-borne human relapsing fever (TBRF) and African Swine Fever (ASF). In particular, Ornithodoros erraticus is the main vector of these two diseases in the Mediterranean while O. moubata is the main vector in Africa. The presence of these Ornithodoros ticks in domestic and peridomestic environments may greatly hinder the eradication of TBRF and ASF from endemic areas. In addition, there is a constant threat of reintroduction and spreading of ASF into countries from where it has been eradicated (Spain and Portugal) or where it was never present (the Caucasus, Russia and Eastern Europe). In these countries, the presence of Ornithodoros vectors could have a tremendous impact on ASF transmission and long-term maintenance. Therefore, elimination of these ticks from at least synanthropic environments would contribute heavily to the prevention and control of the diseases they transmit. Tick control is a difficult task and although several methods for such control have been used, none of them has been fully effective against all ticks and the problems they cause. Nevertheless, immunological control using anti-tick vaccines offers an attractive alternative to the traditional use of acaricides. The aim of the present paper is to offer a brief overview of the current status in control measure development for Ornithodoros soft ticks, paying special attention to the development of vaccines against O. erraticus and O. moubata. Thus, our contribution includes an analysis of the chief attributes that the ideal antigens for an anti-tick vaccine should have, an exhaustive compilation and analysis of the scant anti-soft tick vaccine trials carried out to date using both concealed and salivary antigens and, finally, a brief description of the new reverse vaccinology approaches currently used to identify new and more effective protective tick antigens.


Subject(s)
Antigens/immunology , Ornithodoros/immunology , Relapsing Fever/prevention & control , Tick Control/methods , Tick Infestations/prevention & control , Vaccines/immunology , Animals , Humans , Swine
6.
Ticks Tick Borne Dis ; 5(6): 607-19, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25178542

ABSTRACT

Ticks are the main vector for infectious disease pathogens in both humans and animals, and tick-borne diseases are currently spreading throughout Europe. Various surveillance methods have been developed to estimate the burden and risk of tick-borne diseases and host exposure to tick bites. The ultimate aims of these approaches are to determine the risk level of a tick-borne disease in a given area, determine its health priority, identify the at-risk population and propose specific countermeasures or complementary studies as needed. The purpose of this review is to present the current methods for monitoring the circulation of tick-borne diseases and to highlight the use of salivary antigens as original and recently developed serological tools that could be useful for tick bite risk assessment and could improve the current surveillance methods.


Subject(s)
Population Surveillance/methods , Tick Bites/epidemiology , Tick-Borne Diseases/epidemiology , Ticks/physiology , Animals , Europe/epidemiology , Humans
7.
Ticks Tick Borne Dis ; 4(5): 459-68, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23890749

ABSTRACT

Ixodes ricinus, the primary vector of tick-borne disease in Europe, is currently expanding its distribution area and its activity in many countries. Antibody responses to tick salivary antigens have been proposed as an alternative marker of exposure to tick bites. However, the identification of the I. ricinus corresponding antigens remains elusive. Using rabbits artificially exposed to I. ricinus and 2 other European tick species (Rhipicephalus sanguineus and Dermacentor reticulatus) as controls, a cross-comparison of IgG profiles was performed against protein salivary gland extracts (pSGE) from these 3 tick species using immunoblots. Immunoblot analysis highlighted a singularity in the immune patterns according to tick species exposure and pSGE antigen source. Two protein bands were detected against I. ricinus pSGE only in rabbits exposed to I. ricinus bites. An immunoproteomic approach based on a fluorescence detection method was developed to unambiguously identify corresponding antigenic spots on 2-D gels. Among the unique I. ricinus salivary antigenic proteins detected by sera from rabbits exposed to this tick species, I. ricinus calreticulin was identified. Although tick calreticulin was previously proposed as a potential antigenic marker following exposure to ticks (particularly in North American tick species), the present study suggested that Ixodes calreticulin does not appear to be cross-recognized by the 2 other tick genera tested. Additional experiments are needed to confirm the use of I. ricinus calreticulin salivary protein as a potential discriminant antigenic biomarker to Ixodes tick exposure.


Subject(s)
Antibody Specificity , Immunoglobulin G/immunology , Ixodes/immunology , Proteomics/methods , Salivary Proteins and Peptides/immunology , Tick Infestations/immunology , Animals , Biomarkers , Calreticulin/immunology , Calreticulin/isolation & purification , Dermacentor/immunology , Dermacentor/metabolism , Electrophoresis, Gel, Two-Dimensional , Female , Ixodes/metabolism , Mass Spectrometry , Models, Animal , Rabbits , Rhipicephalus sanguineus/immunology , Rhipicephalus sanguineus/metabolism , Salivary Glands/immunology , Salivary Proteins and Peptides/isolation & purification , Specific Pathogen-Free Organisms , Tick Bites , Tick Infestations/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL