Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters











Publication year range
1.
Animals (Basel) ; 14(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38473122

ABSTRACT

Reducing the emission of global warming gases currently remains one of the strategic tasks. Therefore, the objective of our work was to determine the effect of saponite clay on fermentation in the rumen of cows. The pH, total gas production, CH4, and volatile fatty acid (VFA) production in ruminal fluid was determined in vitro. Saponite clay from the Tashkiv deposit (Ukraine) has a high content of silicon, iron, aluminum, and magnesium. The addition of 0.15 and 0.25 g of saponite clay to the incubated mixture did not change the pH but reduced the total production (19% and 31%, respectively) and CH4 (24% and 46%, respectively) in the ruminal fluid compared to the control group and had no significant effect on the total VFA levels, but propionic acid increased by 15% and 21% and butyric acid decreased by 39% and 32%, respectively. We observed a decrease in the fermentation rates, with a simultaneous increase in the P:B ratio and an increase in the fermentation efficiency (FE) in the groups fermented with saponite clay, probably a consequence of the high efficiency in the breakdown of starch in the rumen. Therefore, further in vivo studies to determine the effective dose and effect of saponite clay on cow productivity and the reduction of gas emissions are promising and important.

2.
Chemosphere ; 311(Pt 1): 136922, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36273612

ABSTRACT

Calcite as a sorbent can interact with both inorganic and organic substances through their functional groups. To measure its adsorption ability, another sorbent, saponite was selected because it can sorb glyphosate, an organic compound with a polar molecule and widely used as a herbicide. In this study, the two sorbents calcite and saponite were saturated by calcium chloride, and characterized by SEM-EDX, X-ray diffraction, and Zeta Potential Analyzer to investigate their capacity to sorb glyphosate. After saturation, the saponite became homoionic Ca-saponite with minor changes in morphology and specific surface area. But, the morphology of calcite transformed from rhombohedron to scalenohedron, with an increase of 75-folds in its specific surface, and the zeta potential became positive in alkaline pH, which contradicts the results of all previous research. The modified sorbents (Ca-calcite and Ca-saponite) were added to two soil samples to investigate each sorbent's effect on glyphosate sorption. Adsorption isotherm and percentage of glyphosate desorbed revealed the difference in binding and adsorption sites. The Langmuir and Temkin models fitted isotherm data in low concentrations better and suggested chemosorption for the uptake of glyphosate. FTIR analyses of samples with and without glyphosate were compared and results suggested that the bulk of adsorption happened in siloxane groups and on calcium carbonates surfaces.


Subject(s)
Calcium Carbonate , Glycine , Adsorption , Calcium Carbonate/chemistry , Glycine/chemistry , Glyphosate
3.
ACS Appl Mater Interfaces ; 14(49): 54812-54821, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36458834

ABSTRACT

Transition-metal compounds (oxides, sulfides, hydroxides, etc.) as lithium-ion battery (LIB) anodes usually show extraordinary capacity larger than the theoretical value due to the transformation of LiOH into Li2O/LiH. However, there has rarely been a report relaying the transformation of LiOH into Li2O/LiH as the main reaction for LIBs, due to the strong alkalinity of LiOH leading to battery deterioration. In this work, layered silicate MgAl saponite (MA-SAP) is applied as a -OH donor to generate LiOH as the anode material of LIBs for the first time. The MA-SAP maintains a layered structure during the (dis)charging process and has zero-strain characteristic on the (001) crystal plane. In the discharging process, Mg, Al, and Si in the saponite sheets become electron-rich, while the active hydroxyl groups escape from the sheets and combine with lithium ions to form LiOH in the "caves" on sheets, and the LiOH continues to decompose into Li2O and LiH. Consequently, the MA-SAP delivers a maximum capacity of 536 mA h·g-1 at 200 mA·g-1 with a good high-current discharging ability of 155 mA h·g-1 after 1000 cycles under 1 A·g-1. Considering its extremely low cost and completely nontoxic characteristics, MA-SAP has great application prospects in energy storage. In addition, this work has an enlightening effect on the development of new anodes based on extraordinary mechanisms.

4.
Molecules ; 27(10)2022 May 10.
Article in English | MEDLINE | ID: mdl-35630525

ABSTRACT

Organo-modified layered materials characterization poses challenges due to their complexity and how other aspects such as contamination, preparation methods and degree of intercalation influence the properties of these materials. Consequently, a deep understanding of their interlayer organization is of utmost importance to optimize their applications. These materials can in fact improve the stability of photoactive molecules through intercalation, avoiding the quenching of their emission at the solid state, to facilitate their use in sensors or other devices. Two synthetic methods for the preparation of saponites with a cationic surfactant (CTABr) and a neutral chromophore (Fluorene) were tested and the obtained products were initially characterized with several complementary techniques (XRPD, SEM, TGA, IR, UV-Vis, Fluorescence and Raman spectroscopy), but a clear understanding of the organization of the guest molecules in the material could not be obtained by these techniques alone. This information was obtained only by thermogravimetry coupled with gas chromatography and mass spectroscopy (TGA-GC-MS) which allowed identifying the species present in the sample and the kind of interaction with the host by distinguishing between intercalated and adsorbed on the surface.


Subject(s)
Aluminum Silicates , Surface-Active Agents , Gas Chromatography-Mass Spectrometry , Thermogravimetry
5.
Life (Basel) ; 12(2)2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35207546

ABSTRACT

There are three groups of scientists dominating the search for the origin of life: the organic chemists (the Soup), the molecular biologists (RNA world), and the inorganic chemists (metabolism and transient-state metal ions), all of which have experimental adjuncts. It is time for Clays and the Origin of Life to have its experimental adjunct. The clay data coming from Mars and carbonaceous chondrites have necessitated a review of the role that clays played in the origin of life on Earth. The data from Mars have suggested that Fe-clays such as nontronite, ferrous saponites, and several other clays were formed on early Mars when it had sufficient water. This raised the question of the possible role that these clays may have played in the origin of life on Mars. This has put clays front and center in the studies on the origin of life not only on Mars but also here on Earth. One of the major questions is: What was the catalytic role of Fe-clays in the origin and development of metabolism here on Earth? First, there is the recent finding of a chiral amino acid (isovaline) that formed on the surface of a clay mineral on several carbonaceous chondrites. This points to the formation of amino acids on the surface of clay minerals on carbonaceous chondrites from simpler molecules, e.g., CO2, NH3, and HCN. Additionally, there is the catalytic role of small organic molecules, such as dicarboxylic acids and amino acids found on carbonaceous chondrites, in the formation of Fe-clays themselves. Amino acids and nucleotides adsorb on clay surfaces on Earth and subsequently polymerize. All of these observations and more must be subjected to strict experimental analysis. This review provides an overview of what has happened and is now happening in the experimental clay world related to the origin of life. The emphasis is on smectite-group clay minerals, such as montmorillonite and nontronite.

6.
J Appl Crystallogr ; 54(Pt 1): 251-262, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33833651

ABSTRACT

The understanding of the structural formula of smectite minerals is basic to predicting their physicochemical properties, which depend on the location of the cation substitutions within their 2:1 layer. This implies knowing the correct distribution and structural positions of the cations, which allows assigning the source of the layer charge of the tetrahedral or octahedral sheet, determining the total number of octahedral cations and, consequently, knowing the type of smectite. However, sometimes the structural formula obtained is not accurate. A key reason for the complexity of obtaining the correct structural formula is the presence of different exchangeable cations, especially Mg. Most smectites, to some extent, contain Mg2+ that can be on both octahedral and interlayer positions. This indeterminacy can lead to errors when constructing the structural formula. To estimate the correct position of the Mg2+ ions, that is their distribution over the octahedral and interlayer positions, it is necessary to substitute the interlayer Mg2+ and work with samples saturated with a known cation (homoionic samples). Seven smectites of the dioctahedral and trioctahedral types were homoionized with Ca2+, substituting the natural exchangeable cations. Several differences were found between the formulae obtained for the natural and Ca2+ homoionic samples. Both layer and interlayer charges increased, and the calculated numbers of octahedral cations in the homoionic samples were closer to four and six in the dioctahedral and trioctahedral smectites, respectively, with respect to the values calculated in the non-homoionic samples. This change was not limited to the octahedral sheet and interlayer, because the tetrahedral content also changed. For both dioctahedral and trioctahedral samples, the structural formulae improved considerably after homoionization of the samples, although higher accuracy was obtained the more magnesic and trioctahedral the smectites were. Additionally, the changes in the structural formulae sometimes resulted in changing the classification of the smectite.

7.
Materials (Basel) ; 15(1)2021 Dec 27.
Article in English | MEDLINE | ID: mdl-35009309

ABSTRACT

Nylon/saponite nanocomposites were synthesized and characterized. The nanocomposites were prepared by means of a fast, efficient, low cost, and environmentally friendly method. All of the tested preparations resulted in the pre-designed nanocomposites. To this end, delaminated saponites were directly synthesized to be used as a filler in a polymer matrix formed by nylon-6 by the in situ intercalation polymerisation of an ε-caprolactam monomer without the use of surfactants or other organic reagents to organophilise the clay, thus avoiding the drawbacks of contamination. The efficiency of the preparation method increased, and significant savings were achieved in terms of both energy reaction time, savings of 60% and 70%, respectively, by using microwave radiation as an energy source during the synthesis of the nanocomposites. In addition, given that the method that was followed avoids the use of contaminating organophilic agents, it is important to highlight the savings in reagents and the fact that there was zero environmental contamination.

8.
Chemistry ; 27(14): 4723-4730, 2021 Mar 08.
Article in English | MEDLINE | ID: mdl-33368657

ABSTRACT

For the first time, the co-presence in the saponite structure of luminescent EuIII and catalytic NbV metal sites was exploited for the simultaneous detection and catalytic abatement of sulfur-containing blister chemical warfare agents. Metal centers were introduced in structural positions of the saponite (in the interlayer space or inside the inorganic framework) following two different synthetic methodologies. The functionalized saponites were able to reveal the presence of a sulfur mustard simulant (2-chloroethyl)ethyl sulfide (CEES) after few seconds of contact time and more than 80 % of the substrate was catalytically decomposed after 24 h in the presence of aqueous hydrogen peroxide.

9.
Life (Basel) ; 10(9)2020 Aug 28.
Article in English | MEDLINE | ID: mdl-32872173

ABSTRACT

Clay minerals surfaces potentially play a role in prebiotic synthesis through adsorption of organic monomers that give rise to highly concentrated systems; facilitate condensation and polymerization reactions, protection of early biomolecules from hydrolysis and photolysis, and surface-templating for specific adsorption and synthesis of organic molecules. This review presents processes of clay formation using saponite as a model clay mineral, since it has been shown to catalyze organic reactions, is easy to synthesize in large and pure form, and has tunable properties. In particular, a method involving urea is presented as a reasonable analog of natural processes. The method involves a two-step process: (1) formation of the precursor aluminosilicate gel and (2) hydrolysis of a divalent metal (Mg, Ni, Co, and Zn) by the slow release of ammonia from urea decomposition. The aluminosilicate gels in the first step forms a 4-fold-coordinated Al3+ similar to what is found in nature such as in volcanic glass. The use of urea, a compound figuring in many prebiotic model reactions, circumvents the formation of undesirable brucite, Mg(OH)2, in the final product, by slowly releasing ammonia thereby controlling the hydrolysis of magnesium. In addition, the substitution of B and Ga for Si and Al in saponite is also described. The saponite products from this urea-assisted synthesis were tested as catalysts for several organic reactions, including Friedel-Crafts alkylation, cracking, and isomerization reactions.

10.
Environ Sci Pollut Res Int ; 27(31): 38384-38396, 2020 Nov.
Article in English | MEDLINE | ID: mdl-31813121

ABSTRACT

The fine fraction of the Tagaran natural clay (TC) from the Kurdistan region of Iraq-Sulaimani was characterized and used to remove Cd ions from industrial swage. Using XRF, XRD, SEM, and FTIR, the dominant clay mineral of the Tagaran clay mineral was identified as saponite, with minor amounts of chlorite. The clay was examined for its efficiency to adsorb and remove (Cd2+) in the presence of other heavy metal contaminants from Sulaimani industrial zone sewage by a batch method. The effect of initial pH, equilibrium time, temperature, clay dosage, and Cd2+ concentration was studied. Results were evaluated using Langmuir, Freundlich, Temkin, and Redlich-Peterson isotherms. The kinetics could be best fitted to pseudo-second-order reaction kinetic model. In addition, the activation energy and the amount of calculated and experimentally determined heavy metal loads were consistent. The thermodynamic studies showed spontaneous endothermic adsorption. The trioctahedral smectite (saponite) showed a good efficiency for the adsorption of Cd2+ from the real sample (up to 100%) which at least partly can be explained by cation exchange. Tagaran clay is a candidate material for the production of an adsorber material for removing Cd2+ from aqueous solutions.


Subject(s)
Cadmium/analysis , Water Pollutants, Chemical/analysis , Adsorption , Clay , Hydrogen-Ion Concentration , Iraq , Kinetics , Sewage , Thermodynamics
11.
Pharmaceuticals (Basel) ; 12(3)2019 Jul 10.
Article in English | MEDLINE | ID: mdl-31295860

ABSTRACT

In the present research study, a 2:1 type of smectite clay minerals, namely natural saponite (NSAP) and synthetic saponite (SSAP), was demonstrated for the first time to be controlled drug release host materials for the model drug quinine hydrochloride dihydrate (QU). The popular sol-gel hydrothermal technique was followed for the synthesis of saponite. The QU was ion exchanged and intercalated into an interlayered gallery of synthetic as well as natural saponite matrices. The developed QU-loaded hybrid composite materials along with the pristine materials were characterized by powder X-ray diffraction (PXRD), Fourier transformed infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), the Brunauer-Emmett-Teller method (BET) for surface area (SA), and scanning electron microscopy (SEM). The characterization of material results using DSC, FTIR and PXRD confirmed the presence of saponite clay mineral phases in the original and the synthesized saponite samples. Similarly, the drug-loaded composites confirmed the successful intercalation of QU drug on the natural and synthesized saponite matrices. The oral drug release performance of both nanocomposites along with pure quinine drug was monitored in sequential buffer environments at 37 ± 0.5 °C. These composite hybrid materials showed the superior controlled release of QU in gastric fluid (pH = 1.2) and intestinal fluid (pH = 7.4). QU release was best fitted in the Korsmeyer-Peppas kinetic model and demonstrated a diffusion-controlled release from nanocomposite layered materials. The observed controlled drug release results suggest that the applied natural/synthetic saponite matrices have the potential to provide critical design parameters for the development of bioengineered materials for controlled drug release.

12.
Colloids Surf B Biointerfaces ; 180: 457-465, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31100672

ABSTRACT

A simple method for preparing AgNPs/clay nanocomposites using an adsorption process without any reducing agent was developed in which saponite iron-rich clay was both the solid inorganic support and reducing agent. Silver adsorption by ion exchange of silver ions and saponite ferrous ions resulted in simultaneous silver reduction and silver nanoparticle formation. The maximum loading of silver was determined as 48 mg/g (4.8 mass %). Microscopy showed a homogeneous distribution of sphere-like silver nanoparticles which are composed from smaller crystallites in the form of twinned triangular prisms. The silver particle sizes ranged from 1 nm to 50 nm but predominantly between 8 and 10 nm. The optimum pH range for silver immobilization on saponite support was between 4 and 8. Characterization of the clay samples and synthesized AgNPs/saponite nanocomposites was performed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), porosimetry (low temperature nitrogen adsorption-desorption) and zeta potential measurements. The antibacterial activities of raw saponite and AgNPs/saponite nanocomposite samples were tested against clinical relevant Gram-positive Staphylococcus aureus, Staphylococcus epidermidis, and Gram-negative Escherichia coli, Pseudomonas aeruginosa and Proteus mirabilis bacteria by the well diffusion method.


Subject(s)
Anti-Bacterial Agents/pharmacology , Metal Nanoparticles/chemistry , Nanocomposites/chemistry , Reducing Agents/chemistry , Silver/pharmacology , Adsorption , Aluminum Silicates/chemistry , Hydrogen-Ion Concentration , Kinetics , Metal Nanoparticles/ultrastructure , Microbial Sensitivity Tests , Nanocomposites/ultrastructure , Spectroscopy, Fourier Transform Infrared , Time Factors , X-Ray Diffraction
13.
Chemosphere ; 184: 1355-1361, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28687034

ABSTRACT

In the present study, the adsorption capacities of two intercalated smectites, CTAB-saponite and CTAB-montmorillonite with a cationic surfactant, were investigated with three fluorescent dyes namely Rhodamine 640 perchlorate rhodamine (Rho), sulforhodamine B (SR) and Kiton red 620 (KR). The adsorption isotherms fit well with the non-linear Langmuir isotherm model and the maximum adsorption capacities of all the composites are determined. The photophysical properties such as anisotropy and fluorescence lifetime of all the fluorescent dyes over the clay materials are determined. The set of experimental data based on X-Ray diffraction (XRD), transmission electron microscopy (TEM), Thermal analysis (TG-DTA) and fluorescence measurements allow highlighting the presence or the absence of interactions between the dyes and the modified clay minerals.


Subject(s)
Aluminum Silicates/chemistry , Bentonite/chemistry , Fluorescent Dyes/chemistry , Surface-Active Agents/chemistry , Adsorption , Clay , Microscopy, Electron, Transmission , Rhodamines , Silicates , X-Ray Diffraction
14.
Chemosphere ; 174: 28-38, 2017 May.
Article in English | MEDLINE | ID: mdl-28157606

ABSTRACT

Clay minerals are quite vital in biogeochemical processes but the effect of organo-clays in the microbial degradation of crude oil polycyclic aromatic hydrocarbons is not well understood. The role of organo-saponite and organo-montmorillonite in comparison with the unmodified clays in crude oil polycyclic aromatic hydrocarbons (PAHs) removal via adsorption and biodegradation was studied by carrying out microcosm experiments in aqueous clay/oil systems with a hydrocarbon degrading microbial community that is predominantly alcanivorax spp. Montmorillonite and saponite samples were treated with didecyldimethylammonium bromide to produce organo-montmorillonite and organo-saponite used in this study. Obtained results indicate that clays with high cation exchange capacity (CEC) such as montmorillonite produced organo-clay (organomontmorillonite) that was not stimulatory to biodegradation of crude oil polycyclic aromatic compounds, especially the low molecular weight (LMW) ones, such as dimethylnaphthalenes. It is suggested that interaction between the organic phase of the organo-clay and the crude oil PAHs which is hydrophobic in nature must have reduced the availability of the polycyclic aromatic hydrocarbons for biodegradation. Organo-saponite did not enhance the microbial degradation of dimethylnaphthalenes but enhanced the biodegradation of some other PAHs such as phenanthrene. The unmodified montmorillonite enhanced the microbial degradation of the PAHs and is most likely to have done so as a result of its high surface area that allows the accumulation of microbes and nutrients enhancing their contact.


Subject(s)
Aluminum Silicates/metabolism , Bacteria/metabolism , Environmental Restoration and Remediation/methods , Petroleum/metabolism , Polycyclic Aromatic Hydrocarbons/isolation & purification , Aluminum Silicates/chemistry , Biodegradation, Environmental , Clay , Microbial Interactions , Minerals/chemistry , Minerals/metabolism , Polycyclic Aromatic Hydrocarbons/metabolism
15.
Nanoscale Res Lett ; 11(1): 161, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27003429

ABSTRACT

Magnetic composite sorbents based on saponite clays with different content of magnetite (2-7 wt%.) were synthesized. The samples were analyzed by X-ray diffraction methods, and it was found that the Fe3O4 in composites is in the nanorange. It has been shown that the magnetic nanocomposites have more developed microporosity and mesoporosity compared to saponite clay. The sorption properties of magnetic nanocomposite sorbents were determined, and the results evidenced that their efficiency is significantly higher than the individual phases of the composite. It was shown that all waste composite magnetic sorbents are successfully removed from the water environment by magnetic separation.

16.
J Photochem Photobiol B ; 151: 135-41, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26248233

ABSTRACT

Solid or colloidal materials with embedded photosensitizers are promising agents from the medical or environmental perspective, where the direct use of photoactive solutions appears to be problematic. Colloids based on layered silicates of the saponite (Sap) and montmorillonite (Mon) type, including those modified with dodecylammonium cations (C12) and photosensitizer--methylene blue (MB) were studied. Two representatives of bacteria, namely Enterobacter cloacae and Escherichia coli, were selected for this work. A spectral study showed that MB solutions and also colloids with Sap including C12 exhibited the highest photoactivities. The antimicrobial properties of the smectite colloids were not directly linked to the photoactivity of the adsorbed MB cations. They were also influenced by other parameters, such as light vs. dark conditions, the spectrum, power and duration of the light used for the irradiation; growth phases, and the pre-treatment of microorganisms. Both the photoactivity and antimicrobial properties of the colloids were improved upon pre-modification with C12. Significantly higher antimicrobial properties were observed for the colloids based on Mon with MB in the form of molecular aggregates without significant photoactivities. The MB/Mon colloids, both modified and non-modified with C12 cations, exhibited higher antimicrobial effects than pure MB solution. Besides the direct effect of photosensitization, the surface properties of the silicate particles likely played a crucial role in the interactions with microorganisms.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Methylene Blue/chemistry , Silicates/chemistry , Aluminum Silicates/chemistry , Aluminum Silicates/pharmacology , Bentonite/chemistry , Colloids , Dose-Response Relationship, Drug , Enterobacter cloacae/drug effects , Enterobacter cloacae/growth & development , Escherichia coli/drug effects , Escherichia coli/growth & development , Methylene Blue/pharmacology , Microbial Sensitivity Tests , Photochemical Processes , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Quaternary Ammonium Compounds/chemistry , Spectrometry, Fluorescence , Surface Properties , Surface-Active Agents/chemistry
17.
ACS Appl Mater Interfaces ; 7(20): 10853-62, 2015 May 27.
Article in English | MEDLINE | ID: mdl-25938521

ABSTRACT

This study aimed to assess the capacity of saponite modified with n-hexadecyltrimethylammonium bromide (CTAB) and/or 3-aminopropyltriethoxysilane (APTS) to adsorb and remove caffeine from aqueous solutions. Powder X-ray diffraction (PXRD) revealed increased basal spacing in the modified saponites. Small-angle X-ray scattering (SAXS) confirmed the PXRD results; it also showed how the different clay layers were stacked and provided information on the swelling of natural saponite and of the saponites functionalized with CTAB and/or APTS. Thermal analyses, infrared spectroscopy, scanning electron microscopy, element chemical analysis, and textural analyses confirmed functionalization of the natural saponite. The maximum adsorption capacity at equilibrium was 80.54 mg/g, indicating that the saponite modified with 3-aminopropyltriethoxysilane constitutes an efficient and suitable caffeine adsorbent.


Subject(s)
Aluminum Silicates/chemistry , Caffeine/isolation & purification , Organic Chemicals/chemistry , Water Purification/methods , X-Ray Diffraction/methods , Adsorption , Caffeine/chemistry , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Particle Size , Scattering, Small Angle , Water Pollutants, Chemical/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL