Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Biophys Chem ; 314: 107307, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39173313

ABSTRACT

The two transesterification reactions of pre-mRNA splicing require highly complex yet well-controlled rearrangements of small nuclear RNAs and proteins (snRNP) in the spliceosome. The efficiency and accuracy of these reactions are critical for gene expression, as almost all human genes pass through pre-mRNA splicing. Key parameters that determine the splicing outcome are the length of the intron, the strengths of its splicing signals and gaps between them, and the presence of splicing controlling elements. In particular, the gap between the branchpoint (BP) and the 3' splice site (ss) of introns is a major determinant of the splicing efficiency. This distance falls within a small range across the introns of an organism. The constraints exist possibly because BP and 3'ss are recognized by BP-binding proteins, U2 snRNP and U2 accessory factors (U2AF) in a coordinated manner. Furthermore, varying distances between the two signals may also affect the second transesterification reaction since the intervening RNA needs to be accurately positioned within the complex RNP machinery. Splicing such pre-mRNAs requires cis-acting elements in the RNA and many trans-acting splicing regulators. Regulated pre-mRNA splicing with BP-distant 3'ss adds another layer of control to gene expression and promotes alternative splicing.


Subject(s)
Introns , RNA Splice Sites , RNA Splicing , Humans , RNA Precursors/genetics , RNA Precursors/metabolism , Spliceosomes/metabolism , Spliceosomes/genetics , Animals
2.
New Phytol ; 243(4): 1374-1386, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38558017

ABSTRACT

The regulatory mechanisms of anthocyanin biosynthesis have been well documented at the transcriptional and translational levels. By contrast, how anthocyanin biosynthesis is epigenetically regulated remains largely unknown. In this study, we employed genetic, molecular biology, and chromatin immunoprecipitation-quantitative polymerase chain reaction assays to identify a regulatory module essential for repressing the expression of genes involved in anthocyanin biosynthesis through chromatin remodeling. We found that SILENCING DEFECTIVE 2 (SDE2), which was previously identified as a negative regulator for sucrose-induced anthocyanin accumulation in Arabidopsis, is cleaved into N-terminal SDE2-UBL and C-terminal SDE2-C fragments at the first diglycine motif, and the cleaved SDE2-C, which can fully complement the sde2 mutant, is localized in the nucleus and physically interacts with LIKE HETEROCHROMATIN PROTEIN 1 (LHP1) in vitro and in vivo. Genetic analyses showed that both SDE2 and LHP1 act as negative factors for anthocyanin biosynthesis. Consistently, immunoblot analysis revealed that the level of LHP1-bound histone H3 lysine 27 trimethylation (H3K27me3) significantly decreases in sde2 and lhp1 mutants, compared to wild-type (WT). In addition, we found that sugar can induce expression of SDE2 and LHP1, and enhance the level of the nucleus-localized SDE2-C. Taken together, our data suggest that the SDE2-C-LHP1 module is required for repression of gene expression through H3K27me3 modification during sugar-induced anthocyanin biosynthesis in Arabidopsis thaliana.


Subject(s)
Anthocyanins , Arabidopsis Proteins , Arabidopsis , Cell Nucleus , Gene Expression Regulation, Plant , Histones , Mutation , Protein Binding , Sucrose , Anthocyanins/biosynthesis , Anthocyanins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Cell Nucleus/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Histones/metabolism , Methylation , Mutation/genetics , Protein Binding/drug effects , Sucrose/metabolism , Transcription Factors
3.
J Biol Chem ; 298(8): 102268, 2022 08.
Article in English | MEDLINE | ID: mdl-35850305

ABSTRACT

Elevated DNA replication stress causes instability of the DNA replication fork and increased DNA mutations, which underlies tumorigenesis. The DNA replication stress regulator silencing-defective 2 (SDE2) is known to bind to TIMELESS (TIM), a protein of the fork protection complex, and enhances its stability, thereby supporting replisome activity at DNA replication forks. However, the DNA-binding activity of SDE2 is not well defined. Here, we structurally and functionally characterize a new conserved DNA-binding motif related to the SAP (SAF-A/B, Acinus, PIAS) domain in human SDE2 and establish its preference for ssDNA. Our NMR solution structure of the SDE2SAP domain reveals a helix-extended loop-helix core with the helices aligned parallel to each other, consistent with known canonical SAP folds. Notably, we have shown that the DNA interaction of this SAP domain extends beyond the core SAP domain and is augmented by two lysine residues in the C-terminal tail, which is uniquely positioned adjacent to the SAP motif and conserved in the pre-mRNA splicing factor SF3A3. Furthermore, we found that mutation in the SAP domain and extended C terminus not only disrupts ssDNA binding but also impairs TIM localization at replication forks, thus inhibiting efficient fork progression. Taken together, our results establish SDE2SAP as an essential element for SDE2 to exert its role in preserving replication fork integrity via fork protection complex regulation and highlight the structural diversity of the DNA-protein interactions achieved by a specialized DNA-binding motif.


Subject(s)
DNA Replication , DNA-Binding Proteins , DNA/metabolism , DNA, Single-Stranded/metabolism , DNA-Binding Proteins/metabolism , Humans , Protein Domains
4.
Vet Med Sci ; 7(5): 1728-1735, 2021 09.
Article in English | MEDLINE | ID: mdl-33991412

ABSTRACT

Worldwide use of elite sires has caused inbreeding accumulation and high frequencies of genetic defects in dairy cattle populations. In recent years, several genetic defect genes or haplotypes have been identified in Holstein cattle. A rapid and reliable microfluidic chip with Kompetitive allele-specific PCR (KASP) assay was developed in our previous study for the detection of heterozygotes at eight genetic defect loci of bovine leukocyte adhesion deficiency (BLAD), Brachyspina syndrome (BS), complex vertebral malformation (CVM), Holstein haplotype 1 (HH1), Holstein haplotype 3 (HH3), Holstein haplotype 4 (HH4), Holstein haplotype 5 (HH5) and haplotype for cholesterol deficiency (HCD). This study aimed to extend that assay to include a newly identified genetic defect of Holstein haplotype 6 (HH6) and to estimate the frequencies of carriers for each of the nine genetic defects in six Chinese Holstein herds. Of the 1633 cows, carrier frequencies of the genetic defects were 6.92%, 5.76%, 4.46%, 4.30%, 3.62%, 2.94%, 1.86% and 0.37% for HH1, HH3, CVM, HH5, HCD, BS, HH6 and BLAD, respectively. No carrier was found for HH4. Notably, 27.43% of cows carried at least one genetic defect, while 2.27% and 0.12% of cows carried double and triple genetic defect alleles, respectively. The existence of genetic defects calls for routine molecular testing and effective management of genetic defects by avoiding carrier-to-carrier mating in production herds and eliminating or at least reducing the frequency of the defective alleles through marker-assisted selection in breeding herds.


Subject(s)
Cattle Diseases , Cattle , Leukocyte-Adhesion Deficiency Syndrome , Animals , Cattle/genetics , Cattle Diseases/epidemiology , Cattle Diseases/genetics , China/epidemiology , Female , Haplotypes , Leukocyte-Adhesion Deficiency Syndrome/epidemiology , Leukocyte-Adhesion Deficiency Syndrome/genetics , Leukocyte-Adhesion Deficiency Syndrome/veterinary , Prevalence
5.
Mol Cell Oncol ; 8(1): 1855053, 2021.
Article in English | MEDLINE | ID: mdl-33553608

ABSTRACT

The fork protection complex (FPC), comprising the TIMELESS (TIM)-TIPIN heterodimer, acts as a scaffold of the replisome to support seamless DNA replication. We recently showed that SDE2, a PCNA-associated DNA replication stress regulator, maintains the integrity of the FPC, and together with TIM, protects stalled replication forks from nucleolytic degradation.

6.
Pol J Vet Sci ; 22(3): 627-630, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31560480

ABSTRACT

The aim of the study was to find out whether carriers of new lethal mutation in SDE2 gene occur in the population of Polish Holstein-Friesian bulls. Eighty seven bulls were included in the analysis. Bulls were selected as having in the pedigree known carrier of SDE2 mutation (bull Mountain USAM000002070579). All bulls were diagnosed by PCR amplification of 524 bp fragment of SDE2 gene followed by digestion of Bcc I restriction enzyme. Heterozygotes (carriers) were confirmed by sequencing. Each new carrier was used to trace another potential carriers among its offspring available in Polish Holstein Bull Repository Database. Among 87 bulls, 50 new SDE2 carriers were found. The study has shown that mutation in SDE2 gene causing early embryo mortality is already transmitted to Polish Holstein-Friesian cattle. The results are sufficient to initiate the screening program to reveal new carriers and to avoid further spreading of SDE2 lethal mutation.


Subject(s)
Abortion, Veterinary/genetics , Cattle Diseases/genetics , Cattle/genetics , DNA-Binding Proteins/genetics , Embryo Loss/veterinary , Animals , Embryo Loss/genetics , Genetic Predisposition to Disease , Genotype , Male , Mutation, Missense
7.
Trends Biochem Sci ; 43(11): 896-907, 2018 11.
Article in English | MEDLINE | ID: mdl-30269981

ABSTRACT

Ubiquitin-like proteins (UBLs) belong to the protein family whose members share a globular beta-grasp fold structure. The archetypal member, ubiquitin, is known for its function in proteasome-mediated protein degradation. UBLs have been shown to play several crucial roles besides protein turnover, including DNA damage response, cell cycle control, cellular signaling, protein trafficking, and innate immunity activation. In the past few years, accumulating evidence illustrates that four UBLs, namely, ubiquitin, SUMO, Hub1, and Sde2, are involved in eukaryotic pre-mRNA splicing. They modify the spliceosomes and promote splicing by adding new surfaces for intermolecular interactions, thereby refining the outcome of gene expression. In this review article, we highlight recent discoveries with an emphasis on the emerging roles of UBLs in splicing regulation.


Subject(s)
RNA Precursors/genetics , RNA Splicing/genetics , RNA, Messenger/metabolism , Ubiquitin/metabolism , Ubiquitins/metabolism , Animals , Humans , RNA, Messenger/genetics
8.
J Dairy Sci ; 101(7): 6220-6231, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29680649

ABSTRACT

Researching depletions in homozygous genotypes for specific haplotypes among the large cohorts of animals genotyped for genomic selection is a very efficient strategy to map recessive lethal mutations. In this study, by analyzing real or imputed Illumina BovineSNP50 (Illumina Inc., San Diego, CA) genotypes from more than 250,000 Holstein animals, we identified a new locus called HH6 showing significant negative effects on conception rate and nonreturn rate at 56 d in at-risk versus control mating. We fine-mapped this locus in a 1.1-Mb interval and analyzed genome sequence data from 12 carrier and 284 noncarrier Holstein bulls. We report the identification of a strong candidate mutation in the gene encoding SDE2 telomere maintenance homolog (SDE2), a protein essential for genomic stability in eukaryotes. This A-to-G transition changes the initiator ATG (methionine) codon to ACG because the gene is transcribed on the reverse strand. Using RNA sequencing and quantitative reverse-transcription PCR, we demonstrated that this mutation does not significantly affect SDE2 splicing and expression level in heterozygous carriers compared with control animals. Initiation of translation at the closest in-frame methionine codon would truncate the SDE2 precursor by 83 amino acids, including the cleavage site necessary for its activation. Finally, no homozygote for the G allele was observed in a large population of nearly 29,000 individuals genotyped for the mutation. The low frequency (1.3%) of the derived allele in the French population and the availability of a diagnostic test on the Illumina EuroG10K SNP chip routinely used for genomic evaluation will enable rapid and efficient selection against this deleterious mutation.


Subject(s)
Cattle/embryology , Cattle/genetics , Codon, Initiator , Mutation , Animals , Genotype , Haplotypes , Homozygote , Male , Polymorphism, Single Nucleotide
9.
Curr Genet ; 64(4): 777-784, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29299619

ABSTRACT

The occurrence of spliceosomal introns in eukaryotic genomes is highly diverse and ranges from few introns in an organism to multiple introns per gene. Introns vary with respect to their lengths, strengths of splicing signals, and position in resident genes. Higher intronic density and diversity in genetically complex organisms relies on increased efficiency and accuracy of spliceosomes for pre-mRNA splicing. Since intron diversity is critical for functions in RNA stability, regulation of gene expression and alternative splicing, RNA-binding proteins, spliceosomal regulatory factors and post-translational modifications of splicing factors ought to make the splicing process intron-specific. We recently reported function and regulation of a ubiquitin fold harboring splicing regulator, Sde2, which following activation by ubiquitin-specific proteases facilitates excision of selected introns from a subset of multi-intronic genes in Schizosaccharomyces pombe (Thakran et al. EMBO J, https://doi.org/10.15252/embj.201796751 , 2017). By reviewing our findings with understandings of intron functions and regulated splicing processes, we propose possible functions and mechanism of intron-specific pre-mRNA splicing and suggest that this process is crucial to highlight importance of introns in eukaryotic genomes.


Subject(s)
Alternative Splicing/genetics , Introns/genetics , RNA Precursors/genetics , RNA Splicing/genetics , DNA-Binding Proteins/genetics , Humans , RNA Stability/genetics , Schizosaccharomyces/genetics , Spliceosomes/genetics , Ubiquitin/genetics
10.
Sci Bull (Beijing) ; 62(23): 1585-1592, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-36659476

ABSTRACT

Anthocyanin biosynthesis is regulated by a conserved transcriptional MBW complex composed of MYB, bHLH and WD40 subunits. However, molecular mechanisms underlying transcriptional regulation of these MBW subunits remain largely elusive. In this study, we isolated an Arabidopsis mutant that displays a constitutive red color in aboveground tissues with retarded growth phenotypes. In the presence of sucrose, the mutant accumulates more than 3-fold anthocyanins of the wild type (WT), but cannot produce anthocyanins as WT in the absence of sucrose. Map-based cloning results demonstrated that the mutation occurs in the locus At4G01000, which encodes a conserved nuclear-localized ubiquitin-like (UBL) superfamily protein, silencing defective 2 (SDE2), in eukaryotes. SDE2 is ubiquitously expressed in various tissues. In the sucrose-induced anthocyanin biosynthesis, SDE2 expression was not responded to sucrose treatment at the early stage but was enhanced at the late stage. SDE2 mutations result in up-regulation of anthocyanin biosynthetic and regulatory genes. Yeast-two hybrid analysis indicated that SDE2 has no direct interaction with the MYB transcription factor PAP1 and bHLH factor TT8, indicating that SDE2 is a indirect factor to affect anthocyanin accumulation. Taking together, our data suggest that SDE2 may play a role in finely coordinating anthocyanin biosynthesis with other biological processes.

SELECTION OF CITATIONS
SEARCH DETAIL