ABSTRACT
Baculoviruses are insect pathogens that are characterized by assembling the viral dsDNA into two different enveloped virions during an infective cycle: occluded virions (ODVs; immersed in a protein matrix known as occlusion body) and budded virions (BVs). ODVs are responsible for the primary infection in midgut cells of susceptible larvae thanks to the per os infectivity factor (PIF) complex, composed of at least nine essential viral proteins. Among them, P74 is a crucial factor whose activity has been identified as virus-specific. In this work, the p74 gene from AcMNPV was pseudogenized using CRISPR/Cas9 technology and then complemented with wild-type alleles from SeMNPV and HearSNPV species, as well as chimeras combining the P74 amino and carboxyl domains. The results on Spodoptera exigua and Rachiplusia nu larvae showed that an amino terminal sector of P74 (lacking two potential transmembrane regions but possessing a putative nuclear export signal) is sufficient to restore the virus infectivity whether alone or fused to the P74 transmembrane regions of the other evaluated viral species. These results provide novel information about the functional role of P74 and delimit the region on which mutagenesis could be applied to enhance viral activity and, thus, produce better biopesticides.
Subject(s)
Nucleopolyhedroviruses/chemistry , Nucleopolyhedroviruses/physiology , Spodoptera/virology , Viral Envelope Proteins/chemistry , Amino Acid Motifs , Animals , CRISPR-Cas Systems , Genetic Complementation Test , Larva/virology , Moths/virology , Nucleopolyhedroviruses/genetics , Phylogeny , Protein Domains , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Sf9 Cells , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolismABSTRACT
This study describes four multiple nucleocapsid nucleopolyhedrovirus isolates recovered from infected larvae of beet armyworm, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae), on crops in two different geographical regions of Mexico. Molecular and biological characterization was compared with characterized S. exigua multiple nucleopolyhedrovirus (SeMNPV) isolates from the United States (SeUS1 and SeUS2) and Spain (SeSP2). Restriction endonuclease analysis of viral DNA confirmed that all Mexican isolates were SeMNPV isolates, but molecular differences between the Mexican and the reference isolates were detected using PCR combined with restriction fragment length polymorphism (RFLP). Amplification of the variable region V01 combined with RFLP distinguished the two Mexican isolates, SeSLP6 and SeSIN6. BglII digestions showed that the majority of the isolates contained submolar bands, indicating the presence of genetic heterogeneity. Amplification of the variable regions V04 and V05 distinguished between American and the Spanish isolates. Biological characterization was performed against two laboratory colonies of S. exigua, one from Mexico, and another from Switzerland. Insects from the Mexican colony were less susceptible to infection than insects from Se-Swiss colony. In the Se-Mex colony, SeSP2 was the most pathogenic isolate followed by SeSIN6, although their virulence was similar to most of the isolates tested. In Se-Swiss colony, similar LD50 values were observed for the five isolates, although the virulence was higher for the SeSLP6 isolate, which also had the highest OB (occlusion body) yield. We conclude that the Mexican isolates SeSIN6 and SeSLP6 possess insecticidal traits of value for the development of biopesticides for the control of populations of S. exigua.