Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 799
Filter
1.
Environ Sci Technol ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39053901

ABSTRACT

Indicators of male fertility are in decline globally, but the underlying causes, including the role of environmental exposures, are unclear. This study aimed to examine organic chemical pollutants in seminal plasma, including both known priority environmental chemicals and less studied chemicals, to identify uncharacterized male reproductive environmental toxicants. Semen samples were collected from 100 individuals and assessed for sperm concentration, percent motility, and total motile sperm. Targeted and nontargeted organic pollutant exposures were measured from seminal plasma using gas chromatography, which showed widespread detection of organic pollutants in seminal plasma across all exposure classes. We used principal component pursuit (PCP) on our targeted panel and derived one component (driven by etriadizole) associated with total motile sperm (p < 0.001) and concentration (p = 0.03). This was confirmed by the exposome-wide association models using individual chemicals, where etriadizole was negatively associated with total motile sperm (FDR q = 0.01) and concentration (q = 0.07). Using PCP on 814 nontargeted spectral peaks identified a component that was associated with total motile sperm (p = 0.001). Bayesian kernel machine regression identified one principal driver of this association, which was analytically confirmed to be N-nitrosodiethylamine. These findings are promising and consistent with experimental evidence showing that etridiazole and N-nitrosodiethylamine may be reproductive toxicants.

2.
Int J Mol Sci ; 25(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39000599

ABSTRACT

Seminal plasma contains a heterogeneous population of extracellular vesicles (sEVs) that remains poorly characterized. This study aimed to characterize the lipidomic profile of two subsets of differently sized sEVs, small (S-) and large (L-), isolated from porcine seminal plasma by size-exclusion chromatography and characterized by an orthogonal approach. High-performance liquid chromatography-high-resolution mass spectrometry was used for lipidomic analysis. A total of 157 lipid species from 14 lipid classes of 4 major categories (sphingolipids, glycerophospholipids, glycerolipids, and sterols) were identified. Qualitative differences were limited to two cholesteryl ester species present only in S-sEVs. L-sEVs had higher levels of all quantified lipid classes due to their larger membrane surface area. The distribution pattern was different, especially for sphingomyelins (more in S-sEVs) and ceramides (more in L-sEVs). In conclusion, this study reveals differences in the lipidomic profile of two subsets of porcine sEVs, suggesting that they differ in biogenesis and functionality.


Subject(s)
Extracellular Vesicles , Lipidomics , Lipids , Semen , Animals , Extracellular Vesicles/metabolism , Swine , Semen/metabolism , Semen/chemistry , Male , Lipids/analysis , Lipids/chemistry , Lipidomics/methods , Chromatography, High Pressure Liquid , Mass Spectrometry , Chromatography, Gel
3.
Int J Biol Macromol ; 277(Pt 1): 134022, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39038569

ABSTRACT

MicroRNAs (miRNAs) are bio-active elements cargoed by seminal plasma extracellular vesicles extracellular vesicles (SPEVs) which are crucial for sperm function and fertility modulation. This study aimed to isolate, characterize, and identify the miRNA expression profiles in the SPEVs from high (HSM) and low sperm motility (LSM) groups that could serve as fertility biomarkers and explain the underlying mechanisms. The isolated SPEVs were round spherical structures of approximately 50-200 nm in diameter expressing molecular markers. A total of 1006 and 1084 miRNAs were detected in HSM and LSM, respectively, with 34 being differentially expressed. Their targeted genes involved in SNARE interactions in vesicular transport, Metabolic pathways, and Apelin signaling pathway, etc. The joint analysis with mRNAs of sperm and sperm storage tubules cells highlighted the cellular communication mediated by SPEVs miRNAs, where they may rule fertility by affecting sperm maturation and amino acid metabolism. SPEVs as additives could improve fertility of fresh and frozen sperm, while the knockdown of one of the differentially expressed miRNAs, miR-24-3p, diminished this effect, indicating its crucial roles. This study expands our understanding of SPEVs miRNAs mediated sperm maturation and fertility modulation, and may help to develop new therapeutic strategies for infertility and sperm storage.

4.
J Reprod Immunol ; 164: 104287, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964132

ABSTRACT

Expedited development of SARS-CoV-2 vaccines led to public concerns regarding impacts of the novel vaccine on gametes in patients seeking assisted reproduction. In cases of an acute intermittent illness or fever in men, it is often advised to postpone ART treatments so that efforts can be made to enhance wellbeing and improve sperm parameters. However, it is unknown whether sperm parameters are altered in the acute (24-72 hour) phase following COVID-19 vaccination. We performed a longitudinal cohort study of 17 normospermic male patients attending a fertility clinic for semen analysis. Semen and matched peripheral blood samples were collected prior to vaccination, within 46 + 18.9 hours of vaccine course completion (acute) and at 88.4 + 12 days (3 months) post-vaccination. No overall change from baseline was seen in symptoms, mean volume, pH, sperm concentration, motility, morphology or DNA damage in the acute or long phase. Seminal plasma was found to be negative for anti-SARS-CoV2 Spike antibody detection, and MCP-1 levels showed an acute but transient elevation post-vaccine, while IL-8 was marginally increased 3 months after completion of vaccination. A modest, positive correlation was noted between serum levels of the anti-inflammatory cytokine IL-10 and self-reported symptoms post-vaccine. Our findings are reassuring in that no significant adverse effect of vaccination was noted and provide evidence to support the current recommendations of reproductive medicine organisations regarding timing of vaccination during fertility treatment.


Subject(s)
COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Semen , Vaccination , Humans , Male , COVID-19/prevention & control , COVID-19/immunology , Semen/immunology , Semen/virology , Adult , SARS-CoV-2/immunology , Vaccination/adverse effects , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Inflammation/immunology , Longitudinal Studies , Semen Analysis , Antibodies, Viral/blood , Antibodies, Viral/immunology , Spermatozoa/immunology
5.
Article in English | MEDLINE | ID: mdl-38991313

ABSTRACT

Donkeys of the Pêga breed (Equus asinus) have been used for two centuries to produce breeding stock and create hybrids for labor and transport in southeast Brazil, and for exporting meat and milk to other countries. Furthermore, they are used in competitions, as they are docile and easy to handle. However, assisted reproduction success rates for frozen donkey semen are remarkably low, with no standardized method for cryopreserving sperm after removal of seminal plasma. This work aims to reveal the biological involvement of seminal plasma proteins from Pêga donkeys in aiding the development of assisted reproduction. This study was carried out with 14 ejaculates collected every eight days, throughout the breeding season, from three healthy fertile Pêga donkeys, with an average age of four years. After confirming the high freezability of fresh semen by evaluating quality parameters, the seminal plasma was separated by centrifugation and an aliquot from each collection was microfiltered and frozen. A label-free technique followed by LC-MS/MS analysis applied to pools of seminal plasma samples from each animal revealed 522 proteins in the proteomic profile, of which 49.8 % (260 proteins) are related to cellular energy transformation, and many proteins involved in reproduction (76), spermatogenesis (38), fertilization (29), among other biological process. By comparison with literature, Pêga donkeys share many proteins with donkeys of Dezhou breed that present great potential as fertility biomarkers. Our results showed proteins positively related to fertilization for different breeds of donkeys around the world, helping to enhance the assisted reproduction of Pêga donkeys.

6.
Sci Rep ; 14(1): 16175, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003421

ABSTRACT

Seminal plasma (SP) is rich in extracellular vesicles (EVs), which are still poorly studied, especially in livestock species. To better understand their functional role in both spermatozoa and endometrial epithelial cells, proper characterization of EVs is an essential step. The objective was to phenotypically characterize porcine seminal EVs (sEVs) using cryogenic electron microscopy (cryo-EM), which allows visualization of EVs in their native state. Porcine ejaculates are released in fractions, each containing SP from different source. This allows characterization sEVs released from various male reproductive tissues. Two experiments were performed, the first with SP from the entire ejaculate (n:6) and the second with SP from three ejaculate fractions (n:15): the first 10 mL of the sperm-rich ejaculate fraction (SRF-P1) with SP mainly from the epididymis, the remainder of the SRF (SRF-P2) with SP mainly from the prostate, and the post-SRF with SP mainly from the seminal vesicles. The sEVs were isolated by size exclusion chromatography and 1840 cryo-EM sEV images were acquired using a Jeol-JEM-2200FS/CR-EM. The size, electron density, complexity, and peripheral corona layer were measured in each sEV using the ImageJ software. The first experiment showed that sEVs were structurally and morphologically heterogeneous, although most (83.1%) were small (less than 200 nm), rounded, and poorly electrodense, and some have a peripheral coronal layer. There were also larger sEVs (16.9%) that were irregularly shaped, more electrodense, and few with a peripheral coronal layer. The second experiment showed that small sEVs were more common in SRF-P1 and SRF-P2, indicating that they originated mainly from the epididymis and prostate. Large sEVs were more abundant in post-SRF, indicating that they originated mainly from seminal vesicles. Porcine sEVs are structurally and morphologically heterogeneous. This would be explained by the diversity of reproductive organs of origin.


Subject(s)
Cryoelectron Microscopy , Extracellular Vesicles , Semen , Animals , Extracellular Vesicles/ultrastructure , Extracellular Vesicles/metabolism , Male , Cryoelectron Microscopy/methods , Swine , Spermatozoa/ultrastructure , Seminal Vesicles/ultrastructure
7.
J Extracell Vesicles ; 13(7): e12457, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39007430

ABSTRACT

Seminal plasma induces immune tolerance towards paternal allogenic antigens within the female reproductive tract and during foetal development. Recent evidence suggests a role for extracellular vesicles in seminal plasma (spEVs). We isolated spEVs from seminal plasma that was donated by vasectomized men, thereby excluding any contributions from the testis or epididymis. Previous analysis demonstrated that such isolated spEVs originate mainly from the prostate. Here we observed that when isolated fluorescently labelled spEVs were mixed with peripheral blood mononuclear cells, they were endocytosed predominantly by monocytes, and to a lesser extent also by T-cells. In a mixed lymphocyte reaction, T-cell proliferation was inhibited by spEVs. A direct effect of spEVs on T-cells was demonstrated when isolated T cells were activated by anti-CD3/CD28 coated beads. Again, spEVs interfered with T cell proliferation, as well as with the expression of CD25 and the release of IFN-γ, TNF, and IL-2. Moreover, spEVs stimulated the expression of Foxp3 and IL-10 by CD4+CD25+CD127- T cells, indicating differentiation into regulatory T-cells (Tregs). Prior treatment of spEVs with proteinase K revoked their effects on T-cells, indicating a requirement for surface-exposed spEV proteins. The adenosine A2A receptor-specific antagonist CPI-444 also reduced effects of spEVs on T-cells, consistent with the notion that the development of Tregs and their immune suppressive functions are under the influence of adenosine-A2A receptor signalling. We found that adenosine is highly enriched in spEVs and propose that spEVs are targeted to and endocytosed by T-cells, after which they may release their adenosine content into the lumen of endosomes, thus allowing endosome-localized A2A receptor signalling in spEVs targeted T-cells. Collectively, these data support the idea that spEVs can prime T cells directly for differentiation into Tregs.


Subject(s)
Cell Differentiation , Extracellular Vesicles , Semen , T-Lymphocytes, Regulatory , Humans , Extracellular Vesicles/metabolism , Extracellular Vesicles/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Semen/metabolism , Semen/immunology , Male , Cell Proliferation , Lymphocyte Activation/immunology
8.
Clin Chim Acta ; 561: 119757, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38857670

ABSTRACT

Male infertility represents a significant global public health issue that is currently emerging as a prominent research focus. Presently, laboratories adhere to the guidelines outlined by the World Health Organization (WHO) manuals for conducting routine semen analysis to diagnose male infertility. However, the accuracy of results in predicting sperm quality and fertility is limited because some individuals with a normal semen analysis report, an unremarkable medical history, and a physical examination may still experience infertility. As a result, the importance of employing more advanced techniques to investigate sperm function and male fertility in the treatment of male infertility and/or subfertility becomes apparent. The standard test for evaluating human semen has been improved by more complex tests that look at things like reactive oxygen species (ROS) levels, total antioxidant capacity (TAC), sperm DNA fragmentation levels, DNA compaction, apoptosis, genetic testing, and the presence and location of anti-sperm antibodies. Recent discoveries of novel biomarkers have significantly enriched our understanding of male fertility. Moreover, the notable biological diversity among samples obtained from the same individual complicates the efficacy of routine semen analysis. Therefore, unraveling the molecular mechanisms involved in fertilization is pivotal in expanding our understanding of factors contributing to male infertility. By understanding how these proteins work and what role they play in sperm activity, we can look at the expression profile in men who can't have children to find diagnostic biomarkers. This review examines the various sperm and seminal plasma proteins associated with infertility, as well as proteins that are either deficient or exhibit aberrant expression, potentially contributing to male infertility causes.


Subject(s)
Biomarkers , Infertility, Male , Proteomics , Semen , Humans , Male , Infertility, Male/diagnosis , Infertility, Male/metabolism , Biomarkers/analysis , Biomarkers/metabolism , Biomarkers/blood , Proteomics/methods , Semen/metabolism , Semen/chemistry
9.
Biochem Med (Zagreb) ; 34(2): 020503, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38882582

ABSTRACT

The investigation of biomarkers is constantly evolving. New molecules and molecular assemblies, such as soluble and particulate complexes, emerged as biomarkers from basic research and investigation of different proteomes, genomes, and glycomes. Extracellular vesicles (EVs), and glycans, complex carbohydrates are ubiquitous in nature. The composition and structure of both reflect physiological state of paternal cells and are strikingly changed in diseases. The EV-associated glycans, alone or in combination with soluble glycans in related biological fluids, used as analytes, aim to capture full complex biomarker picture, enabling its use in different clinical settings. Bringing together EVs and glycans can help to extract meaningful data from their extreme and distinct heterogeneities for use in the real-time diagnostics. The glycans on the surface of EVs could mark their subpopulations and establish the glycosignature, the solubilisation signature and molecular patterns. They all contribute to a new way of looking at and looking for composite biomarkers.


Subject(s)
Biomarkers , Extracellular Vesicles , Polysaccharides , Humans , Extracellular Vesicles/metabolism , Polysaccharides/metabolism , Polysaccharides/chemistry , Biomarkers/metabolism
10.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38934412

ABSTRACT

Our objective was to determine if the addition of a concentrated human recombinant transforming growth factor beta-1 (TGF) to bovine semen at the time of AI would result in increased risk of pregnancy in beef and dairy cows. Suckled beef cows (n = 1,132) in 11 herds across 2 states and lactating dairy cows (n = 2,208) in one organic-certified herd were enrolled. Beef cows received fixed-time AI (FTAI) following a 7 d CO-Synch + controlled internal drug release estrous synchronization protocol. Dairy cows were inseminated following observation of natural estrus expression. Cows received either no treatment as a control (CON) or 10 ng of TGF in 10 µL added through the cut-end of a thawed straw of semen immediately prior to AI. At the time of FTAI of beef cows, the mean ±â€…SD age was 5.0 ±â€…2.4 yr, BCS was 5.3 ±â€…0.7, and days postpartum was 78.2 ±â€…15.5 d. The overall pregnancy risk (PR) in beef cows was 55.2% to AI and 90.5% season-long. PR in beef cows was not affected (P = 0.27) by the addition of TGF (53.1% vs. 58.1%). Furthermore, there was no difference (P = 0.88) for season-long PR in beef cows that received TGF (91.2% vs. 91.5%). At the time of insemination of dairy cows, the mean ±â€…SD lactation was 3.0 ±â€…1.3 lactations, BCS was 2.9 ±â€…0.3, days in milk was 115.6 ±â€…56.6 d, and cows had received 2.4 ±â€…1.5 inseminations/cow. The overall pregnancy risk to AI in dairy cows was 23.1%. PR to AI for dairy cows was not affected (P = 0.32) by addition of TGF (22.0% vs. 23.8%). In conclusion, PR to AI was not affected by addition of TGF to thawed semen immediately prior to AI in beef or dairy cows.


Seminal plasma is the fluid portion of the ejaculate that is routinely removed or significantly diluted when preparing semen for artificial insemination. Seminal plasma has been shown to elicit changes to the tissues of the uterus at the time of insemination that improves pregnancy outcomes in rodents and swine. Here, we supplemented the molecule of seminal plasma, transforming growth factor beta-1, to semen at the time of artificial insemination in an attempt to improve pregnancy rates in beef and dairy cattle. In total, 3,340 cows were inseminated; half received no treatment, and the other half received a supplementation of transforming growth factor beta-1. We found that supplementing transforming growth factor beta-1 did not improve the pregnancy rate in beef or dairy cattle. We conclude that the pregnancy rate was not affected by the supplementation of transforming growth factor beta-1 to semen at the time of insemination. Future studies should consider the effects of transforming growth factor beta-1 on other pregnancy outcomes, such as calving rate, birth weight, and postnatal growth.


Subject(s)
Insemination, Artificial , Semen , Transforming Growth Factor beta1 , Animals , Cattle/physiology , Insemination, Artificial/veterinary , Female , Pregnancy , Transforming Growth Factor beta1/metabolism , Male , Estrus Synchronization , Lactation
11.
Prostate ; 84(12): 1128-1137, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38824441

ABSTRACT

BACKGROUND: The unmet challenge in prostate cancer (PCa) management is to discriminate it from benign prostate hyperplasia (BPH) due to the lack of specific diagnostic biomarkers. Contemporary research on potential PCa biomarkers is directed toward methylated cell-free DNA (cfDNA) from liquid biopsies since epigenetic mechanisms are strongly involved in PCa development. METHODS: In the present research, cfDNA methylation of the LGALS3 gene in blood and seminal plasma of PCa and BPH patients was assessed using pyrosequencing, as well as LGALS3 DNA methylation in tissue biopsies. Liquid biopsy samples were taken from patients with clinical suspicion of PCa, who were subsequently divided into two groups, that is, 42 with PCa and 55 with BPH, according to the histopathological analysis. RESULTS: Statistically significant higher cfDNA methylation of LGALS3 in seminal plasma of BPH than in PCa patients was detected by pyrosequencing. ROC curve analysis showed that it could distinguish PCa and BPH patients with 56.4% sensitivity and 70.4% specificity, while PSA did not differ between the two patient groups. In contrast, there was no statistically significant difference in LGALS3 cfDNA methylation in blood plasma between the two patient groups. In prostate tumor tissue, there was a statistically significant DNA hypermethylation of LGALS3 compared to surrounding nontumor tissue and BPH tissue. CONCLUSIONS: The DNA hypermethylation of the LGALS3 gene represents an event specific to PCa development. In conclusion, LGALS3 cfDNA methylation in seminal fluid discriminates early PCa and BPH presenting itself as a powerful novel PCa biomarker highly outperforming PSA.


Subject(s)
Biomarkers, Tumor , DNA Methylation , Prostate-Specific Antigen , Prostatic Hyperplasia , Prostatic Neoplasms , Semen , Humans , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Prostatic Neoplasms/blood , Biomarkers, Tumor/genetics , Biomarkers, Tumor/blood , Aged , Prostate-Specific Antigen/blood , Prostate-Specific Antigen/genetics , Prostatic Hyperplasia/genetics , Prostatic Hyperplasia/diagnosis , Prostatic Hyperplasia/metabolism , Prostatic Hyperplasia/blood , Prostatic Hyperplasia/pathology , Semen/metabolism , Semen/chemistry , Middle Aged , Cell-Free Nucleic Acids/genetics , Cell-Free Nucleic Acids/blood , Galectin 3/genetics , Galectin 3/metabolism , Galectin 3/blood , Sensitivity and Specificity , Blood Proteins , Galectins
12.
BMC Vet Res ; 20(1): 277, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926710

ABSTRACT

AIM: The present study was performed to characterize and compare the perfusion of vaginal and uterine arteries after challenging the reproductive tract of dairy cows via natural mating, artificial insemination (AI), or intravaginal deposition (vaginal fundus) of different biological fluids or a placebo. MATERIALS AND METHODS: In a double-blind study, six German Holstein cows were administered PGF2α during dioestrus and 48 h later treated with GnRH. Intravaginal or intrauterine treatments were carried out 12 h after GnRH was administered. Animals served as their controls, using a cross-over design with an interval of 14 days between experiments. The experimental animals were allocated to receive the following treatments: natural mating (N), intrauterine artificial insemination (A), intravaginal deposition (vaginal fundus) of 6 mL raw semen (R) or 6 mL seminal plasma (S), and compared to their controls [control 1: 6 mL placebo (P: physiological saline); control 2: no treatment (C)). Corresponding time intervals were chosen for the untreated control oestrus. Blood flow volume (BFV) in the uterine (u) and vaginal (v) arteries ipsilateral to the ovary bearing the preovulatory follicle was determined using transrectal Doppler sonography. RESULTS: All animals exhibited oestrus and ovulated between 30 and 36 h after GnRH. Transient increases (P < 0.05) in vaginal blood flow occurred between 3 and 12 h following mating as well as 3 to 9 h after deposition of raw semen and seminal plasma, respectively. The most distinct increases (199%) in vBFV occurred 6 h after mating compared to values immediately before mating (= time 0 h). Neither AI nor deposition of a placebo into the vagina affected vBFV (P > 0.05). Only mating and deposition of either raw semen, seminal plasma or AI increased uBFV (P < 0.003). The greatest rise in uBFV occurred after natural mating. Maximum uBFV values were detected 9 h after mating when values were 79% greater (P < 0.05) than at 0 h. CONCLUSIONS: The natural mating, deposition of raw semen or seminal plasma and conventional AI affect vaginal and/or uterine blood flow to different degrees. The factors responsible for these alterations in blood flow and their effects on fertility remain to be clarified in future studies.


Subject(s)
Insemination, Artificial , Semen , Uterus , Vagina , Animals , Insemination, Artificial/veterinary , Insemination, Artificial/methods , Female , Semen/physiology , Cattle/physiology , Uterus/blood supply , Male , Administration, Intravaginal , Double-Blind Method , Gonadotropin-Releasing Hormone/pharmacology , Cross-Over Studies , Regional Blood Flow
13.
Imeta ; 3(2): e166, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38882497

ABSTRACT

Asthenozoospermia (AZS) is a prevalent contributor to male infertility, characterized by a substantial decline in sperm motility. In recent years, large-scale studies have explored the interplay between the male reproductive system's microecology and its implications for reproductive health. Nevertheless, the direct association between seminal microecology and male infertility pathogenesis remains inconclusive. This study used 16S rDNA sequencing and multi-omics analysis to conduct a comprehensive investigation of the seminal microbial community and metabolites in AZS patients. Patients were categorized into four distinct groups: Normal, mild AZS (AZS-I), moderate AZS (AZS-II), and severe AZS (AZS-III). Microbiome differential abundance analysis revealed significant differences in microbial composition and metabolite profiles within the seminal plasma of these groups. Subsequently, patients were classified into a control group (Normal and AZS-I) and an AZS group (AZS-II and AZS-III). Correlation and cross-reference analyses identified distinct microbial genera and metabolites. Notably, the AZS group exhibited a reduced abundance of bacterial genera such as Pseudomonas, Serratia, and Methylobacterium-Methylorubrum in seminal plasma, positively correlating with core differential metabolite (hexadecanamide). Conversely, the AZS group displayed an increased abundance of bacterial genera such as Uruburuella, Vibrio, and Pseudoalteromonas, with a negative correlation with core differential metabolite (hexadecanamide). In vitro and in vivo experiments validated that hexadecanamide significantly enhanced sperm motility. Using predictive metabolite-targeting gene analysis and single-cell transcriptome sequencing, we profiled the gene expression of candidate target genes PAOX and CA2. Protein immunoblotting techniques validated the upregulation protein levels of PAOX and CA2 in sperm samples after hexadecanamide treatment, enhancing sperm motility. In conclusion, this study uncovered a significant correlation between six microbial genera in seminal plasma and the content of the metabolite hexadecanamide, which is related to AZS. Hexadecanamide notably enhances sperm motility, suggesting its potential integration into clinical strategies for managing AZS, providing a foundational framework for diagnostic and therapeutic advancements.

14.
Anim Reprod Sci ; : 107539, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38926002

ABSTRACT

The last decades of research have revealed that many other factors besides gamete genomes are able to determine the reproductive outcomes. Indeed, paternal factors have been observed to be capable of modulating multiple crucial features of the reproductive process, such as sperm physiology, the maternal environment and, even, the offspring health. These recent advances have been encompassed with the emergence of OMICS technologies, as they comprehensively characterise the molecular composition of biological systems. The present narrative review aimed to take a closer look at the potential of these technologies in the field of reproductive biology. This literature revision shows that most studies up to date have followed a non-targeted approach to screen mammalian seminal plasma (SP) and sperm metabolite composition through different metabolome platforms. These studies have proposed metabolites of multiple natures as potential in vivo fertility biomarkers. Yet, targeted approaches can be used to answer specific biological question, and their power is exemplified herein. For instance, metabolomic studies have uncovered not only that glycolysis is the main ATP energy source of pig sperm, but also that sperm metabolism can trigger DNA damage, hence compromise embryo development. In conclusion, this review shows the potential of both non-targeted and targeted metabolomics for the discovery of cell pathways that govern the reproductive process. Understanding these systems could help make progress in different areas, including livestock efficient breeding, the improvement of artificial reproductive technologies, and the development of biomarkers for infertility detection.

15.
Reprod Toxicol ; 128: 108651, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38925230

ABSTRACT

Bisphenol A (BPA) is a widespread industrial chemical, used as the key monomer of polycarbonate plastics and epoxy resins. BPA has been detected in human seminal fluid and has been correlated with changes in sperm parameters, crucial in determining male fertility. In this study, semen samples were collected from 100 patients aged 29-47 years undergoing fertility assessment between 2021 and 2023 and analyzed according to WHO guidelines. BPA levels in the seminal plasma were then measured through an enzyme-linked immunosorbent assay (ELISA) and compared to sperm quality metrics. The relative mRNA/miRNA expression of key genes associated to male reproduction, including androgen receptor, miR-34c, miR-21, miR-130a, was then quantified and compared between groups with high or low BPA content. Our results revealed that BPA levels were increased with age and were negatively correlated with sperm counts (p<0.05). The negative correlation remained significant when patients were age-matched. No other relationships between seminal BPA and motility, morphology or DNA fragmentation levels were observed. qPCR analysis showed that androgen receptor mRNA expression was significantly greater in sperm with high seminal BPA (p<0.05). Moreover, we found that the expression of miR-21 and miR-130a was also upregulated in the higher BPA group (p<0.05). These results display a relationship between BPA content in the semen and male fertility parameters, and provide insights into the molecular mechanisms through which BPA may be affecting male reproductive capability. Ultimately, this research can potentially drive changes to guidelines and exposure limits for BPA exposure.

16.
Biol Trace Elem Res ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38922543

ABSTRACT

The effects of important nutrients such as calcium (Ca), copper (Cu), iron (Fe), magnesium (Mg), selenium (Se), and zinc (Zn) have been investigated in relation to male fertility due to their roles in proper spermatogenesis, sperm maturation, motility, and optimal sperm function. An imbalance between these elements has been associated with several pathologic conditions and male reproductive issues. The purpose of this study was to determine the essential trace and electrolytes elements, such as Ca, Cu, Fe, Mg, Se, and Zn, in human biological samples (blood, serum, and semen) from patients with male infertility. This study used correlational analysis to determine the potential associations between these elements and male fertility. Imbalances in these elements have been linked to various pathological conditions and male reproductive issues. One hundred eighty referent male adults and two hundred twenty-nine patients diagnosed with subtypes of infertility were included in the study, divided into two age groups. Acid digestion was controlled using a microwave oven, and the essential trace elements and electrolytes in the oxidized biological samples were determined using atomic absorption spectrometry. Certified reference materials of blood and serum were used to validate the accuracy of the methodology. The results showed that the concentrations of Ca, Cu, Fe, Mg, Se, and Zn in the blood, serum, and seminal plasma of male adults in all age groups were higher than those in patients with different infertility phenotypes. Essential element deficiency in all biological fluid samples may significantly negatively affect human reproductive health and lead to male infertility. Through a multidimensional approach, our study sought to unravel the intricate biochemical signatures associated with OAT, providing insights that may shape the landscape of diagnostic and therapeutic strategies for male reproductive health.

17.
Article in English | MEDLINE | ID: mdl-38765530

ABSTRACT

Objective: Seminal cryopreservation causes significant damage to the sperm; therefore, different methods of cryopreservation have been studied. The aim of the study was to compare the effects of density gradient processing and washing/centrifugation with seminal plasma removal for cryopreservation in semen parameters. Methods: Seminal samples of 26 normozoospermic patients were divided into 3 parts: with seminal plasma; after washing/centrifugation; and after selection through density gradient. The samples were cryopreserved for at least two weeks. Motility, sperm count, morphology and viability were evaluated before cryopreservation and after thawing. Results: Density gradient processing selected motile and viable sperm with normal morphology in fresh samples (p<0.05). Cryopreservation negatively affected all sperm parameters regardless of the processing performed, and even if the sperm recovery was lower in the density gradient after the thawing, progressive motility, total motility, viability and morphology remained higher (p<0.05). Conclusion: Cryopreservation significantly compromises sperm parameters (motility, morphology, viability). In normozoospermic patients, the density gradients select better quality spermatozoa compared to other processing methods; this benefit was kept after thawing.


Subject(s)
Cryopreservation , Semen Preservation , Adult , Humans , Male , Cryopreservation/methods , Semen , Semen Analysis , Semen Preservation/methods , Sperm Motility , Time Factors
18.
Am J Reprod Immunol ; 91(5): e13865, 2024 May.
Article in English | MEDLINE | ID: mdl-38775338

ABSTRACT

INTRODUCTION: Seminal plasma hypersensitivity (SPH) is a rare and often misdiagnosed condition characterized by local and/or systemic reactions to seminal plasma proteins following exposure to semen. We aimed to summarize key symptomatology, diagnostic features, and management options for SPH. METHODS: The databases PubMed, EMBASE, Web of Science, Google Scholar, and Cochrane Review were searched with key words "seminal plasma hypersensitivity" and "seminal fluid allergy" through September 2023. Exclusion criteria included non-English articles, in vitro studies, publication before 1990, duplicates, and articles with no clinical relevance to SPH in women. RESULTS: The search yielded 53 articles for review. Of these, 60.5% described systemic SPH and 39.5% described localized. CONCLUSION: Diagnosis of SPH relies on a thorough patient history and confirmatory skin prick testing. The use of IgE assays is controversial and less accurate for cases of localized SPH. Knowledge of disease immunopathology, systemic versus localized symptom presentation, patient preference, and desire to conceive should guide management options. Artificial insemination has the potential for severe adverse reactions in systemic SPH so necessitates extra procedural precautions. SPH does not appear to impair fertility. Additional research on specific allergens implicated in SPH can aid in the development of more targeted immunotherapy approaches with improved safety and efficacy.


Subject(s)
Hypersensitivity , Semen , Humans , Male , Allergens/immunology , Hypersensitivity/diagnosis , Hypersensitivity/therapy , Hypersensitivity/immunology , Immunoglobulin E/immunology , Immunoglobulin E/blood , Insemination, Artificial , Semen/immunology , Seminal Plasma Proteins/immunology , Skin Tests , Female
19.
Mol Hum Reprod ; 30(5)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38733619

ABSTRACT

Studies in humans and animals suggest that seminal plasma, the acellular seminal fluid component, stimulates the endometrium to promote immune tolerance and facilitate implantation. We designed a randomized, double-blinded, placebo-controlled trial to investigate changes in the endometrial transcriptomic profile after vaginal application of seminal plasma. The study participants were randomized into two groups. Five women received a vaginal application of seminal plasma, and four received a placebo application with saline solution. The application was performed 2 days after HCG-triggered ovulation in an unstimulated cycle. After 5-8 days, an endometrial biopsy was collected to analyze differences in the endometrial transcriptomic profile using microarray analyses. A differential gene expression analysis and a gene set analysis were performed. The gene set enrichment analysis showed a positive enrichment of pathways associated with the immune response, cell viability, proliferation, and cellular movement. Moreover, pathways involved in implantation, embryo development, oocyte maturation, and angiogenesis were positively enriched. The differential gene expression analysis, after adjusting for multiple testing, showed no significantly differentially expressed genes between the two groups. A comparative analysis was also performed with similar studies conducted in other animals or in vitro using human endometrial cells. The comparative analysis showed that the effect of seminal plasma effect on the endometrium is similar in pigs, mice, and in vitro human endometrial cells. The present study provides evidence that seminal plasma might impact the endometrium during the implantation window, with potential to affect endometrial receptivity and embryo development.


Subject(s)
Endometrium , Semen , Transcriptome , Humans , Endometrium/metabolism , Semen/metabolism , Female , Adult , Animals , Embryo Implantation/genetics , Embryo Implantation/physiology , Double-Blind Method , Male , Administration, Intravaginal , Mice , Gene Expression Profiling , Swine
20.
Ecotoxicol Environ Saf ; 279: 116472, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38761496

ABSTRACT

Exposure to metals/metalloids is reported to potentially influence semen quality. While most studies have focused on single metal impacts, the link between exposure to multiple metals and semen quality has remained less explored. The study aimed to investigate the effects of both individual and mixed metal/metalloid exposure on semen quality. A total of 330 men were recruited from three reproductive centers in eastern China. Seminal plasma levels of 25 metals/metalloids and sperm parameters were determined. We used the Generalized Linear Model (GLM) and Restricted Cubic Spline (RCS) to assess the relationships between single metals/metalloids and semen quality. The weighted quantile sum (WQS) models were then applied to evaluate the combined effect of all these metals/metalloids. We observed positive associations of exposure to lithium (Li), zinc (Zn), and magnesium (Mg) with an increased risk of below reference values for progressive motility and total motility using a logistic regression model (P < 0.05). Additionally, our results also revealed a significant inverse relationship between aluminum (Al) and both sperm concentration and count, while cobalt (Co) demonstrated a positive association with sperm concentration (P < 0.05). Notably, the WQS model indicated a significant positive association between exposure to metal/metalloid mixtures and the risk of abnormal progressive motility (OR: 1.57; 95%CI: 1.10, 2.24) and abnormal total motility (OR: 1.53; 95%CI: 1.06, 2.19), with this association primarily driven by Li, Mg, and Zn. In summary, our findings indicate that exposure to metal/metalloid mixtures might have an adverse effect on semen quality.


Subject(s)
Metalloids , Metals , Semen Analysis , Semen , Male , Semen/drug effects , Semen/chemistry , Metalloids/analysis , Cross-Sectional Studies , Humans , Adult , Metals/analysis , Metals/blood , China , Environmental Pollutants/blood , Sperm Motility/drug effects , Sperm Count , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL