Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Environ Res ; 255: 119175, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38768886

ABSTRACT

As a sink and a source of chemicals, house dust represents a relevant medium to assess indoor exposure to metal(loid)s via incidental ingestion or inhalation. However, nationally representative indoor data are scarce. Results from the Canadian House Dust Study (CHDS, 2007-2010; n = 1025) provide nationally representative mean, median and 95th percentile concentrations for 38 elements in typical urban house dust, along with their gastric bioaccessibility. Total concentrations (median/95th percentile) of carcinogenic metal(loid)s in Canadian house dust (µg g-1) are as follows: As (9.0/40), Be (0.4/0.9), Cd (3.5/17), Co (5.6/19), Cr (99/214), Ni (62/322) and Pb (100/760). Total As and Pb concentrations in house dust exceed residential soil guidelines for the protection of human health in about one-third of Canadian homes. Percent bioaccessibilities (median) are: Cd (65%) > Pb (63%) > Be âˆ¼ Ni (36%) > Co (35%) > As (20%) > Cr (15%). Lead, Cd and Co concentrations are significantly greater in older houses (< 1976). Data from two pilot studies (n = 66 + 51) further demonstrate the distinct geochemistry of house dust compared to soils, notably enrichment of carcinogenic metal(loid)s and their increased bioaccessibility. These results provide essential baseline values to refine risk assessment and inform on health risk at contaminated sites.


Subject(s)
Dust , Soil Pollutants , Dust/analysis , Humans , Canada , Soil Pollutants/analysis , Biological Availability , Environmental Monitoring/methods , Gastric Mucosa/metabolism , Air Pollution, Indoor/analysis , Carcinogens/analysis , Soil/chemistry , Housing , Metals/analysis
2.
Article in English | MEDLINE | ID: mdl-38691285

ABSTRACT

In the last two decades, awareness grew on the matter of the impact of environment on human health. Contaminants sorbed onto soil and settled dust can be ingested and thus represent a hazard, particularly to young children, who play on the ground and bring their hands and objects to their mouth. Metal(loid)s and polycyclic aromatic hydrocarbons (PAHs) are of concern as they are both carcinogenic to humans and ubiquitous in outdoor environments. The present study aims to assess the total and bioaccessible fractions of PAHs and metal(loid)s present in settled dust of four preschools located in industrial, urban, and suburban areas. On the one hand, children's incremental life cancer risks (ILCR) were calculated according to ingestion pathway. On the other hand, the genotoxicities of the bioaccessible dust-bonded contaminants were determined on gastric cells. PAH concentrations ranged from 50.9 to 2267.3 ng/g, and the bioaccessible fraction represented 10.7% of the total in average. Metal(loid) concentration ranged from 12,430 to 38,941 µg/g, and the mean bioaccessibility was of 40.1%. Cancer risk ranged from 2.8.105 to 8.6.105, indicating that there is a potential cancer risk for children linked to the ingestion of settled dust. The inorganic bioaccessible fraction induced little DNA (< 20%TailDNA) and chromosomal damages (30% increase in micronuclei), whereas the organic bioaccessible fraction induced higher DNA (17-63%TailDNA) and chromosomal damages (88% increase in micronuclei). Such experimental approach needs to be deepen, as a tool complementary to cancer risk calculation, since the latter only lays on a set of targeted contaminants with known toxicity values.

3.
Pathogens ; 13(3)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38535560

ABSTRACT

It is controversial how useful bioassays are for identifying the in vivo toxicity of hazardous environmental exposures. In this study, fruiting bodies of forest mushrooms (n = 46), indoor mold colonies (n = 412), fungal secondary metabolites (n = 18), xenobiotic chemicals such as biocides and detergents (n = 6), and methanol extracts of indoor dusts from urban buildings (n = 26) were screened with two different bioactivity assays: boar sperm motility inhibition (BSMI) and inhibition of cell proliferation (ICP) tests. For the forest mushrooms, the toxicity testing result was positive for 100% of poisonous-classified species, 69% of non-edible-classified species, and 18% of edible-classified species. Colonies of 21 isolates of Ascomycota mold fungal species previously isolated from water-damaged buildings proved to be toxic in the tests. Out of the fungal metabolites and xenobiotic chemicals, 94% and 100% were toxic, respectively. Out of the indoor dusts from moldy-classified houses (n = 12) and from dry, mold-free houses (n = 14), 50% and 57% were toxic, respectively. The bioassay tests, however, could not differentiate the samples from indoor dusts of moldy-classified buildings from those from the mold-free buildings. Xenobiotic chemicals and indoor dusts were more toxic in the BSMI assay than in the ICP assay, whereas the opposite results were obtained with the Ascomycota mold colonies and fungal secondary metabolites. The tests recognized unknown methanol-soluble thermoresistant substances in indoor settled dusts. Toxic indoor dusts may indicate a harmful exposure, regardless of whether the toxicity is due to xenobiotic chemicals or microbial metabolites.

4.
Sci Total Environ ; 926: 172045, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38554968

ABSTRACT

Bioaccessibility of halogenated flame retardants (HFRs) and organophosphorus esters (OPEs) is necessarily investigated to provide more accurate risk assessment and information about absorption behavior of these pollutants. In this study, total and bioaccessible concentrations of HFRs (including legacy and alternative substances) and OPEs were determined in settled dust samples collected from Vietnamese e-waste and end-of-life vehicle (ELV) processing areas. Concentrations of both HFRs and OPEs were significantly higher in the e-waste dust than ELV dust. Bioavailability of HFRs and OPEs in dust was determined by using an in vitro assay with human-simulated digestive fluids, dialysis membrane, and Tenax® TA sorptive sink. Bioaccessibility of HFRs was markedly lower than that of OPEs, which could be largely due to higher hydrophobicity of HFRs compared to OPEs. Bioaccessibility of almost hydrophobic compounds were markedly lower in the e-waste dust (containing micronized plastic debris) than in the ELV dust (containing oily materials), suggesting the influence of specific dust matrices on pollutant bioaccessibility. Although the daily uptake doses of selected HFRs and OPEs from dust were markedly higher in the e-waste sites compared to the ELV sites, the direct exposure risk was not significant. Our results suggest that bioaccessibility can partly explain the differences between dust and uptake profiles, which may relate to accumulation profiles of HFRs and OPEs in human samples.


Subject(s)
Air Pollution, Indoor , Electronic Waste , Environmental Pollutants , Flame Retardants , Humans , Dust/analysis , Environmental Monitoring/methods , Flame Retardants/analysis , Vietnam , Electronic Waste/analysis , Air Pollution, Indoor/analysis , Organophosphates/analysis , Esters/analysis , China
5.
Environ Geochem Health ; 46(2): 56, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38270787

ABSTRACT

Tehran, the capital city of Iran, has been facing air pollution for several decades due to rapid urbanization, population growth, improper vehicle use, and the low quality of fuels. In this study, 31 indoor dust samples were collected passively from residential and commercial buildings located in the central and densely populated districts of the city. These samples were analyzed after preparation to measure the concentration of elements (As, Be, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Se, Sr, V, Zn). Statistical data analyses were employed to compare their relationship across various uses, variations, and for source identification. Geochemical indices of contamination factor (CF) and pollution load index (PLI) were utilized to evaluate the degree of contamination. The mean concentrations of Zn, Cu, and Pb (938, 206, and 176 µg g-1, respectively) are 6, 5, and 3 times higher than their mean values in worldwide urban soils. Additionally, Cd, Mo, and Ni showed concentrations about 1.5 times higher, while As, Co, Cr, Mn, and Sr fell within the range of reference soils. Be, V, and Sb displayed remarkably lower mean values. Building use did not significantly influence element levels in indoor deposited dust except for Pb and Zn. A comparison of indoor concentrations with previously published data for outdoor dusts revealed higher enrichments of Mo, Cu, Pb, and Ni, while As, Cd, and Zn showed lower enrichments in street dust samples. The order of CF values indicated Hg > Zn > Cd > Pb > Cu > As > Ni > Cr > Co > V. For Hg, Zn, Pb, Cd, and Cu, all or almost all samples exhibited very high contamination. PLI values were consistently higher than 1, indicating contamination in all samples. Multivariate statistical analysis and Tehran's specific geological location suggested that mafic-intermediate volcanic rocks are primary sources for Cr, Cu, Fe, and Ni (PC1). As, Pb, and V (PC2) were attributed to fossil fuel combustion in vehicles and residential buildings. Pb is a legacy metal remaining from the use of leaded gasoline, which was phased out in the 1990s. Zn (PC3) is derived from vehicle tires.


Subject(s)
Dust , Mercury , Iran , Cadmium , Lead , Soil
6.
Environ Res ; 242: 117805, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38042518

ABSTRACT

The present study involved monitoring the distribution of two widely consumed parabens (methyl paraben (MeP) and butyl paraben (BuP)) and their transformation products in indoor dust from different categories of settlement (urban, semi-urban, rural, and tribal homes). The results revealed a prevalent occurrence of parabens in all the settlement categories. A non-normal distribution pattern for MeP and BuP levels across the sampling sites was noted. While comparing the residence time of parabens in dust samples, it was found that the half-lives of the analytes were greater in the dust from urban (MeP t1/2: 47.510 h; BuP t1/2: 22.354 h) and rural (MeP t1/2: 27.725 h and BuP t1/2: 31.500 h) areas. The presence of paraben metabolites, such as hydroxy methylparaben (OH-MeP), para hydroxy benzoic acid (p-HBA), and benzoic acid (BA) in dust samples supports their transformation within indoor spaces. The average daily intake of parabens through dust ingestion and dermal absorption by children was higher than adults. BuP was the prime contributor (>85%) to the total estradiol equivalency quotient (tEEQ) in all the settlement categories.


Subject(s)
Dust , Parabens , Adult , Child , Humans , Parabens/analysis , Benzoic Acid , Environmental Exposure/analysis
7.
Chemosphere ; 349: 140994, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38141675

ABSTRACT

Phthalates (PAEs) are a group of typical semivolatile organic compounds that are widely present in indoor environments with multiple phases. Indoor air, airborne particle and settled dust are considered to be typical indicators of PAE contamination as well as media of human exposure, and the interactions between them are complex. Among various phthalate compounds, di 2-ethylhexyl phthalate (DEHP) was identified as the predominant individual phthalate in settled dust. The existing DEHP contamination assessment requires multiphase sampling or solving the dynamic mass transfer models with multiple partial differential equations, which are both complicated and time-consuming. This study investigated the influence of the indoor source loading rate, surface type, particle size and cleaning frequency on the partitioning between the settled dust-phase, airborne particle-phase and gas-phase. The concentration correlations of DEHP between multiphases were consequently derived, which balance accuracy and complexity well. By comparison with field sampling data in the literatures, the rationality and accuracy of the concentration correlations were validated. Based on the concentration correlations, a new method of directly using dust-phase concentration to estimate the non-dietary exposure to DEHP was proposed. The results indicated that ingestion of settled dust contributes the most to non-dietary exposure. Special attention should be given to infants and toddlers, who suffer the highest daily exposure to DEHP among all age groups. This study provides a new and efficient solution for estimating indoor DEHP pollution loads conveniently and rapidly, offering valuable insights for future research in this field.


Subject(s)
Air Pollution, Indoor , Diethylhexyl Phthalate , Phthalic Acids , Infant , Humans , Diethylhexyl Phthalate/analysis , Dust , Phthalic Acids/analysis , Environmental Exposure/analysis
8.
Environ Pollut ; 336: 122372, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37598934

ABSTRACT

Settled dust can function as a pollutant sink for compounds, such as polycyclic aromatic hydrocarbons (PAHs) and metal(loid)s (MMs), which may lead to health issues. Thus, dust represents a hazard specifically for young children, because of their vulnerability and hand-to-mouth behavior favoring dust ingestion. The aim of the present study was to explore the influence of the season and the microenvironment on the concentrations of 15 PAHs and 17 MMs in indoor and outdoor settled dust in three preschools (suburban, urban, and industrial). Second, the potential sources and health risks among children associated with dust PAHs and MMs were assessed. Third, domestic factors (risk perception, knowledge and parental style) were described to explore protective parental behaviors toward dust hazards. The suburban preschool had the lowest concentrations of dust PAHs and MMs, while the industrial and urban preschools had higher but similar concentrations. Seasonal tendencies were not clearly observed. Indoor dusts reflected the outdoor environment, even if specific indoor sources were noted. Source analysis indicated mainly vehicular emissions, material release, and pyrogenic or industrial sources. The non-cancer health risks were non-existent, but potential cancer health risks (between 1.10-6 and 1.10-4) occurred at all sampling locations. Notably, the highest cancer risk was observed in a playground area (>1.10-4) and material release should be further addressed. Whereas we assessed higher risk indoors, parents perceived a higher risk in the open-air environment and at the preschool than at home. They also perceived a lower risk for their own children, revealing an optimism bias, which reduces parental anxiety.

9.
Article in English | MEDLINE | ID: mdl-37239629

ABSTRACT

Although cleaning tasks are frequently performed in daycare, no study has focused on exposures in daycares in relation to respiratory health. The CRESPI cohort is an epidemiological study among workers (n~320) and children (n~540) attending daycares. The purpose is to examine the impact of daycare exposures to disinfectants and cleaning products (DCP) on the respiratory health of workers and children. A sample of 108 randomly selected daycares in the region of Paris has been visited to collect settled dust to analyze semi-volatile organic compounds and microbiota, as well as sample indoor air to analyze aldehydes and volatile organic compounds. Innovative tools (smartphone applications) are used to scan DCP barcodes in daycare and inform their use; a database then matches the barcodes with the products' compositions. At baseline, workers/parents completed a standardized questionnaire, collecting information on DCP used at home, respiratory health, and potential confounders. Follow-up regarding children's respiratory health (monthly report through a smartphone application and biannual questionnaires) is ongoing until the end of 2023. Associations between DCP exposures and the respiratory health of workers/children will be evaluated. By identifying specific environments or DCP substances associated with the adverse respiratory health of workers and children, this longitudinal study will contribute to the improvement of preventive measures.


Subject(s)
Disinfectants , Occupational Exposure , Volatile Organic Compounds , Humans , Child , Disinfectants/analysis , Occupational Exposure/analysis , Volatile Organic Compounds/analysis , Longitudinal Studies , Dust
10.
Environ Geochem Health ; 45(5): 1711-1722, 2023 May.
Article in English | MEDLINE | ID: mdl-35622306

ABSTRACT

Comprehensive studies on emerging contaminants like volatile methyl siloxanes in settled dust from different micro-environments are still limited. In this study, concentrations and distribution of cyclic volatile methyl siloxanes (CVMSs) including D3, D4, D5, and D6 were examined in indoor dust samples collected from various micro-environments in northern and central Vietnam. Concentrations of total CVMSs in the dust samples ranged from 86.0 to 5890 (median 755) ng/g and decreased in the order: waste processing workshops (median 1560; range 329-5890) > common houses (650; 115-1680) > university classrooms (480; 86.0-1540) > vehicle repair shops (295; 126-1950) ng/g. This observation suggests that informal waste processing activities are sources of CVMSs. Among the studied CVMSs, D5 was the most predominant compound (41 ± 14%), followed by D6 (26 ± 13%), D4 (23 ± 12%), and D3 (11 ± 11%). Moderate positive correlations between D3/D4, D4/D5, and D5/D6 were found. Median daily intake doses of D3, D4, D5, and D6 through dust ingestion were 0.016, 0.051, 0.11, and 0.054 ng/kg/d, respectively, which were comparable to water consumption and markedly lower than the air inhalation pathway.


Subject(s)
Air Pollution, Indoor , Environmental Monitoring , Siloxanes , Humans , Air Pollution, Indoor/statistics & numerical data , Dust/analysis , Siloxanes/analysis , Vietnam , Air Pollutants
11.
Environ Sci Pollut Res Int ; 30(7): 17926-17941, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36205862

ABSTRACT

The identification of sources that produce particulate atmospheric matter (PM) can be of paramount importance for the reduction of air pollution and the development of environmental policies. In order to identify the environmental impact resulting from industrial metallurgical activities in the Metropolitan Region of Vitória, ES, Brazil, it was investigated the contribution to PM that result from industrial activities and from local natural sources. For this purpose, analytical techniques were used to identify the apportionment of sources that contribute to the formation of insoluble settled dust collected at two points near the city of Vitória. Samples of soil, iron ore, limestone, coal, iron ore pellets, sinter, coke, slag, environmental samples of settled dust, and samples representative of the actual flows of materials used in an integrated steel mill were analyzed. Physicochemical characterizations, based on X-ray diffraction and 57Fe Mössbauer spectroscopy of ferruginous compounds found in sources and receptor samples, revealed the presence of highly crystallized hematite and low crystallized hematite. The latter is primarily found in soil samples, while well-crystallized hematite is found in natural samples from iron ores or after thermo-chemical processes applied during the industrial transformation of raw materials, as it happens during the production of pellets. Ferrous crystallographic forms α-FeOOH and Fe5HO8·4H2O, observed in environmental and soil samples, were also found in samples from industrial sources. Source apportionment of carbon based on the IMPROVE_A protocol for thermal/optical carbon analysis showed the participation of the elementary carbon fractions, separating contributions originated from coke and coal sources in the environmental samples. These results allowed a significant reduction of collinearity between source profiles in the application of the chemical mass balance receptor model "EPA-CMB8.2" receptor model. Consequently, it was possible to distinguish sources that process mainly ferrous and carbonaceous materials, identifying the contribution of different sources to the settled dust collected.


Subject(s)
Air Pollutants , Coke , Dust/analysis , Air Pollutants/analysis , Coke/analysis , Particulate Matter/analysis , Soil/chemistry , Coal/analysis , Iron/chemistry , Carbon/analysis , Environmental Monitoring/methods , Vehicle Emissions/analysis
12.
Environ Sci Pollut Res Int ; 30(1): 2061-2074, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35927405

ABSTRACT

Settled dust samples from Vietnamese end-of-life vehicle (ELV) processing, urban, and rural areas were analyzed for polybrominated diphenyl ethers (PBDEs) and other current-use brominated flame retardants (BFRs). PBDE levels found in dust samples collected from ELV workshops (median 390; range 120-520 ng/g) and nearby living areas (110; 36-650 ng/g) were generally higher than those in common house dust (25-170 ng/g). BDE-209 was the most predominant congener detected in almost all the samples, indicating extensive application of products containing deca-BDE mixtures. The dust samples from ELV workplaces showed a more abundance of lower brominated congeners (e.g., tetra- to hexa-BDEs) that may originate from car interior materials treated by penta-BDE formulations. Concentrations of other BFRs decreased in the order urban > rural > ELV dust, reflecting the current use of these compounds in new consumer products. Decabromodiphenyl ethane (DBDPE) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE) were the major alternative BFRs. Daily intake doses and hazard indexes of PBDEs and some other BFRs through dust ingestion were estimated and showed acceptable levels of risk. However, more comprehensive risk assessment considering multiple exposure pathways should be performed, especially for ELV workers and children in the ELV processing and urban areas.


Subject(s)
Environmental Exposure , Flame Retardants , Child , Humans , Environmental Exposure/analysis , Environmental Monitoring , Dust/analysis , Flame Retardants/analysis , Halogenated Diphenyl Ethers/analysis , Vietnam , Risk Assessment
13.
Environ Pollut ; 310: 119809, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35931384

ABSTRACT

Information about the co-occurrence of halogenated flame retardants (HFRs) and organophosphate esters (OPEs) in the environment of informal waste processing areas is still limited, especially in emerging and developing countries. In this study, OPEs and HFRs including polybrominated diphenyl ethers (PBDEs), novel brominated flame retardants (NBFRs), and chlorinated flame retardants (CFRs) were determined in settled dust from Vietnamese e-waste recycling (WR) and vehicle processing (VP) workshops. Pollutant concentrations decreased in the order: OPEs (median 1500; range 230-410,000 ng/g) ≈ PBDEs (1200; 58-250,000) > NBFRs (140; not detected - 250,000) > CFRs (13; 0.39-2200). HFR and OPE levels in the WR workshops for e-waste and obsolete plastic were significantly higher than in the VP workshops. Decabromodiphenyl ether and decabromodiphenyl ethane are major HFRs, accounting for 60 ± 26% and 25 ± 29% of total HFRs, respectively. Triphenyl phosphate, tris(2-chloroisopropyl) phosphate, and tris(1,3-dichloroisopropyl) phosphate dominated the OPE profiles, accounting for 30 ± 25%, 25 ± 16%, and 24 ± 18% of total OPEs, respectively. The OPE profiles differed between WR and VP dust samples, implying different usage patterns of these substances in polymer materials for electric/electronic appliance and automotive industries. Human health risk related to dust-bound HFRs and OPEs in the study areas was low.


Subject(s)
Electronic Waste , Flame Retardants , Humans , Dust , Environmental Monitoring , Esters , Halogenated Diphenyl Ethers , Organophosphates , Risk Assessment , Vietnam
14.
Atmos Pollut Res ; 13(8): 101511, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35880204

ABSTRACT

This study aimed to investigate the potential contamination of SARS-CoV-2 in indoor settled dust and surfaces of Amir Al-Muminin hospital in Maragheh, Iran. Samples were taken from surfaces and settled dust using a passive approach and particulate matter (PM) using an active approach from different hospital wards. SARS-CoV-2 was detected in 15% of settled dust samples (N = 4/26) and 10% of surface samples (3/30). SARS-CoV-2 has been detected in 13.8% and 9.1% of the dust samples collected at a distance of fewer than 1 m and more than 3 m from the patient bed, respectively. SARS-CoV-2 was found in 11% of surface samples from low-touch surfaces and 8% from high touch surfaces. The relationship between PM2.5, PM10, humidity, temperature, and positive samples of SARS-CoV-2 was investigated. A positive correlation was observed between relative humidity, PM2.5, and positive SARS-CoV-2 samples. Principal component analysis (PCA) suggested positive correlation between positive SARS-CoV-2 samples, relative humidity, and PM2.5. Risk assessment results indicated that the annual mean infection risk of SARS-CoV-2 for hospital staff with illness and death was 2.6 × 10-2 and 7.7 × 10-4 per person per year. Current findings will help reduce the permanence of viral particles in the COVID 19 tragedy and future similar pandemics e.g., novel influenza viruses.

15.
Environ Sci Technol ; 56(12): 8373-8383, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35635317

ABSTRACT

Indoor semivolatile organic compounds (SVOCs), present in the air, airborne particles, settled dust, and other indoor surfaces, can enter the human body through several pathways. Knowing the partitioning between gaseous and particulate phases is important in identifying specific pathway contributions and thereby accurately assessing human exposure. Numerous studies have developed equilibrium equations to predict airborne particle/gas (P/G) partitioning in air (KP) and dust/gas (D/G) partitioning in settled dust (KD). The assumption that P/G and D/G equilibria are instantaneous for airborne and settled dust phases, commonly adopted by current indoor fate models, is not likely valid for compounds with high octanol-air partition coefficients (KOA). Here, we develop steady-state based equations to predict KP and KD in the indoor environment. Results show that these equations perform well and are verified by worldwide monitoring data. It is suggested that instantaneous steady state could work for P/G and D/G partitioning of SVOCs in indoor environments, and the equilibrium is just a special case of the steady state when log KOA < 11.38 for P/G partitioning and log KOA < 10.38 for D/G partitioning. These newly developed equations and methods provide a tool for more accurate assessment for human exposure to SVOCs in the indoor environment.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Phthalic Acids , Volatile Organic Compounds , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Dust/analysis , Gases , Humans
16.
Environ Sci Technol ; 56(9): 5489-5496, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35442662

ABSTRACT

Settled dust is an important medium for semivolatile organic compound (SVOC) transport indoors. Understanding the mechanism of interaction between SVOCs and settled dust can greatly improve the exposure assessment. This study develops an analytical model to elucidate the mechanism of direct contact between SVOC sources and settled dust. The model incorporates the adsorption of SVOCs onto indoor surfaces, which was ignored in previous numerical models. Based on this model, a hybrid optimization method is applied to determine the key parameters of SVOC transport, i.e., the diffusion coefficient in the dust, the dust-air partition coefficient, and the chamber surface-air partition coefficient. Experiments of direct contact between SVOC source materials containing organophosphorus flame retardants (OPFRs) and settled dust were conducted in chambers. The key parameters were determined by performing curve fitting using data collected from the OPFR chamber tests and from the literature on phthalates. The reliability and robustness of the model and measurement method are demonstrated by the high fitting accuracy and sensitivity analysis. The obtained key parameters are more accurate than those from correlations in prior studies. Further analysis indicates that dust-air partition coefficient plays an important role and the adsorption effect on surfaces cannot be neglected for SVOC transport.


Subject(s)
Air Pollution, Indoor , Flame Retardants , Volatile Organic Compounds , Air Pollution, Indoor/analysis , Dust/analysis , Flame Retardants/analysis , Reproducibility of Results
17.
Environ Sci Pollut Res Int ; 29(34): 52302-52316, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35258734

ABSTRACT

An analytical method for detecting flame retardants was slightly modified and optimized for the simultaneous determination of 11 organophosphate esters (OPEs) and 26 polyfluoralkyl substances (PFASs) contained in dust. All the analytes were determined in HPLC/MS-MS, and OPEs were also analyzed in GC/MS, and the results were compared. The study was conducted through the investigation of the Standard Reference Material SRM 2585 of the National Institute of Standard and Technology (NIST). The results were compared with the available reference mass fraction reported in the NIST certificate. The mass fraction obtained for the other OPEs and PFASs was compared to available data in the literature. After verifying the reliability of the results, the method was applied to environmental samples of settled dust, collected in four workplaces, where OPE and PFAS content is expected to be higher than in house dust: a mechanical workshop, an electronic repair center, a disassembly site, and a shredding site of two electronic waste recycling plants. By analyzing both PFASs and OPEs in the same samples, the present work demonstrated that the selected working places were more polluted in OPEs than houses; on the contrary, PFAS content in house dust proved to be more than ten times higher than that in workplaces. Additional research is necessary to confirm these data. Nevertheless, because this preliminary study showed not negligible concentrations of OPEs in some workplaces and of PFASs in houses, their monitoring should be extended to other domestic and selected working sites.


Subject(s)
Flame Retardants , Fluorocarbons , China , Dust/analysis , Environmental Monitoring , Esters/analysis , Flame Retardants/analysis , Organophosphates/analysis , Reproducibility of Results , Workplace
18.
Ecotoxicol Environ Saf ; 223: 112573, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34340152

ABSTRACT

The occurrence and distribution of polycyclic aromatic hydrocarbons (PAHs) in a city of Central China were determined in the settled dust and its extracted water phase from different land use types and bus stops in Nanchang City. The physicochemical properties of its water extracted dissolved organic matter (WEOM) were characterized to investigate the effect of fluorescence organic matter on the dust-water partitioning coefficients (Kd) using three-dimensional excitation-emission matrix fluorescence spectroscopy combined parallel factor analysis. Results showed that the range of ∑PAHs in settled dust and the extracted water phase was 0.05-15.92 µg·g-1 and 2-211 ng·L-1, respectively. These PAHs mostly came from the combustion of biomass. The risk assessment showed that PAHs in dust had no obvious health risk (less than the magnitude of 10-6). Additionally, the high molecular weight (HMW) PAHs and the low molecular weight (LMW) PAHs were preferentially adsorbed by dust and the dissolved portion, respectively. It was confirmed by the relatively high logKd values of 4.23 for the HMW-PAHs. Pearson correlation analysis suggested that the higher concentration of dissolved organic carbon and humic-like substance were in favor of PAHs in dust released into waters. This study can provide information on pollution control when considering the impact of fluorescent organic matter on the fate and transport of PAHs.


Subject(s)
Polycyclic Aromatic Hydrocarbons , China , Cities , Dust/analysis , Environmental Monitoring , Polycyclic Aromatic Hydrocarbons/analysis , Risk Assessment , Water
19.
Sci Total Environ ; 788: 147821, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34029822

ABSTRACT

Concentrations of 34 unsubstituted and methylated polycyclic aromatic hydrocarbons (PAHs and Me-PAHs) and AhR-mediated activities in settled dust samples were determined by a combination of gas chromatography-mass spectrometry and an in vitro reporter gene assay (PAH-CALUX). The levels of Σ34PAHs and bioassay-derived benzo[a]pyrene equivalents (CALUX BaP-EQs) were significantly higher in workplace dust from informal end-of-life vehicle dismantling workshops than in common house dust and road dust. In all the samples, the theoretical BaP-EQs of PAHs (calculated using PAH-CALUX relative potencies) accounted for 28 ± 19% of the CALUX BaP-EQs, suggesting significant contribution of aryl hydrocarbon receptor (AhR) agonists and/or mixture effects. Interestingly, the bioassay-derived BaP-EQs in these samples were significantly correlated with not only unsubstituted PAHs with known carcinogenic potencies but also many Me-PAHs, which should be included in future monitoring and toxicity tests. The bioassay responses of many sample extracts were substantially reduced but not suppressed with sulfuric acid treatment, indicating contribution of persistent AhR agonists. Cancer risk assessment based on the CALUX BaP-EQs has revealed unacceptable level of risk in many cases. The application of bioassay-derived BaP-EQs may reduce underestimation in environmental management and risk evaluation regarding PAHs and their derivatives (notably Me-PAHs), suggesting a consideration of using in vitro toxic activity instead of conventional chemical-specific approach in such assessment practices.


Subject(s)
Neoplasms , Polycyclic Aromatic Hydrocarbons , Dust/analysis , Environmental Monitoring , Genes, Reporter , Humans , Polycyclic Aromatic Hydrocarbons/analysis , Risk Assessment
20.
Environ Sci Pollut Res Int ; 28(33): 45474-45485, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33866505

ABSTRACT

Atmospheric settled dust study was conducted with the purpose of to determine the source of heavy metal elements (As, Co, Cr, Cu, Ni, Pb, and Zn) in airborne dust from Ulaanbaatar using the multivariate analysis and spatial distribution mapping by geographic information system (GIS) with the systematic grid. A total of 57 dust samples were collected from the impervious surfaces at 2-4 m above the ground in January of 2020. The mean concentrations of heavy metals were increasing order of Co-10.4 ± 1.3 mg/kg > As-16.5 ± 5.9 mg/kg > Ni-21.3 ± 3.3 mg/kg > Pb-51.7 ± 26.4 mg/kg > Cu-65.5 ± 23.6 mg/kg > Cr-70.2 ± 18.7 mg/kg > Zn-571.3 ± 422.8 mg/kg. In terms of multivariate analysis, we used Pearson's correlation, principal component analysis (PCA), and hierarchical cluster analysis (CA). Three principal components, which are eigenvalues higher than 1, were determined accounting for 70.5% of the total variance by PCA. As a result, PC1 38.5% (As, Cr, Cu, and Ni), PC2 17.3% (Pb and Zn), and PC3 14.7% (Co and Pb) are attributable to coal combustion, vehicle exhaust emission, and resuspension of soil particles, respectively. The results of correlation analysis and CA were fairly in agreement with PCA. The spatial distribution maps of heavy metals were revealed in the downtown in which 40 covered sampling sites with about 700m intervals. In the spatial distribution mappings, generally, the southern part of the mapping area was higher concentrations of heavy metals. An increment of heavy metals concentration was presented for As, Cr, Co, and Ni with their similar trend in the southwestern part of the mapping. Besides, another trend for the distribution of the high concentrations of Cu and Zn was observed in the south and southeast parts. In terms of Pb, it had no noticeable pattern of distribution; however, a high spot was presented in the southwest part of the map.


Subject(s)
Dust , Metals, Heavy , China , Dust/analysis , Environmental Monitoring , Metals, Heavy/analysis , Mongolia , Risk Assessment , Soil
SELECTION OF CITATIONS
SEARCH DETAIL