Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Mar Pollut Bull ; 199: 115946, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38150974

ABSTRACT

Spatio-temporal responses of the intertidal macrobenthic community to the effects of a submarine outfall (SO) and a new sewage treatment plant (EDAR) were evaluated, analyzing changes in macrofaunal assemblages and community structure. Study was conducted in a SW Atlantic coastal area in 4 stages: BSO (Before the SO), Du (During the construction of the SO), ASO (After the SO start-up) and AEDAR (After the treatment plant start-up). Boccardia proboscidea and Brachidontes rodriguezii contributed most to the differences between all stages at the site nearest to the discharge point. Number of individuals was highest at BSO and Du. Richness and diversity were lowest at the BSO and highest at the Du. Furthermore, the richness decreased slightly, and the diversity increased at AEDAR. Evenness was highest at the BSO and AEDAR. The nestedness was the dominant process driving the differences between the BSO stage community and the rest of the stages. SO affects the composition and structure of the intertidal macrobenthic community near the outfall area, as organic matter discharge further offshore favour the development of a more diverse intertidal community, including species sensitive to organic enrichment.


Subject(s)
Mytilidae , Polychaeta , Humans , Animals , Sewage/analysis , Ecosystem , Environmental Monitoring
2.
Environ Sci Pollut Res Int ; 28(15): 18457-18470, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32623667

ABSTRACT

Eutrophication is one of the causes of the degradation of reefs worldwide. The aim of this research is to determine if sewage discharge reaches the fore reefs at northwest of Cuba using δ15N in tissues of the octocorals Eunicea flexuosa and Plexaura kuekenthali and the concentration of microbiological and physical-chemical variables. Thirteen reefs at 10-m depth were selected near river basins and far from the urban and industrial development of Havana City. Branch tips of both species were collected, the concentrations of nutrient and microorganisms in water samples were quantified, and horizontal visibility in the water (Vis) was determined. Overall, δ15N of E. flexuosa ranged from 1.5 to 6.3‰ and P. kuekenthali from 1.7 to 6.7‰. The tissue of both species was significantly enriched in 15N in reefs near polluted watersheds compared with reefs far from pollution by anthropogenic activities. The δ15N of both species showed a positive and significant correlation with the concentration of fecal and total coliform bacteria, heterotrophic bacteria, and NH4+ and a negative and significant correlation with the Vis. The δ15N of the two species and microbiological and physical-chemical variables evidenced water quality decline by sewage discharge that reached reefs near polluted watersheds.


Subject(s)
Anthozoa , Water Pollutants, Chemical , Animals , Cuba , Environmental Monitoring , Nitrogen/analysis , Nitrogen Isotopes/analysis , Water Pollutants, Chemical/analysis , Water Quality
3.
Mar Pollut Bull ; 89(1-2): 481-486, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25256296

ABSTRACT

Seagrass beds are globally declining due to human activities in coastal areas. We here aimed to identify threats from eutrophication to the valuable seagrass beds of Curaçao and Bonaire in the Caribbean, which function as nursery habitats for commercial fish species. We documented surface- and porewater nutrient concentrations, and seagrass nutrient concentrations in 6 bays varying in nutrient loads. Water measurements only provided a momentary snapshot, due to timing, tidal stage, etc., but Thalassia testudinum nutrient concentrations indicated long-term nutrient loads. Nutrient levels in most bays did not raise any concern, but high leaf % P values of Thalassia in Piscadera Bay (∼0.31%) and Spanish Water Bay (∼0.21%) showed that seagrasses may be threatened by eutrophication, due to emergency overflow of waste water and coastal housing. We thus showed that seagrasses may be threatened and measures should be taken to prevent loss of these important nursery areas due to eutrophication.


Subject(s)
Eutrophication , Hydrocharitaceae/metabolism , Water Pollutants, Chemical/metabolism , Environmental Monitoring , Geologic Sediments/chemistry , Hydrocharitaceae/growth & development , Plant Leaves/growth & development , Plant Leaves/metabolism , Water Pollutants, Chemical/analysis , West Indies
SELECTION OF CITATIONS
SEARCH DETAIL