Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 205
Filter
1.
ACS Appl Mater Interfaces ; 16(32): 43016-43025, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39088740

ABSTRACT

Motile droplets using Marangoni convection are attracting attention for their potential as cell-mimicking small robots. However, the motion of droplets relative to the internal and external environments that generate Marangoni convection has not been quantitatively described. In this study, we used an aqueous two-phase system [poly(ethylene glycol) (PEG) and dextran] in an elongated chamber to generate motile dextran droplets in a constant PEG concentration gradient. We demonstrated that dextran droplets move by Marangoni convection, resulting from the PEG concentration gradient and the active transport of PEG and dextran into and out of the motile dextran droplet. Furthermore, by spontaneously incorporating long DNA into the dextran droplets, we achieved cell-like motility changes controlled by coexisting environment-sensing molecules. The DNA changes its position within the droplet and motile speed in response to external conditions. In the presence of Mg2+, the coil-globule transition of DNA inside the droplet accelerates the motile speed due to the decrease in the droplet's dynamic viscosity. Globule DNA condenses at the rear part of the droplet along the convection, while coil DNA moves away from the droplet's central axis, separating the dipole convections. These results provide a blueprint for designing autonomous small robots using phase-separated droplets, which change the mobility and molecular distribution within the droplet in reaction with the environment. It will also open unexplored areas of self-assembly mechanisms through phase separation under convections, such as intracellular phase separation.


Subject(s)
DNA , Dextrans , Polyethylene Glycols , Dextrans/chemistry , Polyethylene Glycols/chemistry , DNA/chemistry , Viscosity , Solutions
2.
ACS Nano ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39140388

ABSTRACT

Hydrogel-based depots typically tend to remain where injected and have excellent biocompatibility but are relatively poor at controlling drug release. Nanoparticles (NPs) typically have the opposite properties. The smaller the NPs are, the more likely they are to leave the site of injection. Their biocompatibility is variable depending on the material but can be poor. However, NPs can be good at controlling drug release. In these and other properties, combining NPs and hydrogels can leverage their advantages and negate their disadvantages. This review highlights the rationale for hybrid NP-hydrogel systems in drug delivery, the basic methods of producing them, and examples where combining the two systems addressed specific problems.

3.
Nanomaterials (Basel) ; 14(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38998728

ABSTRACT

The steady rheological behavior of suspensions of solid particles thickened by cellulose nanocrystals is investigated. Two different types and sizes of particles are used in the preparation of suspensions, namely, TG hollow spheres of 69 µm in Sauter mean diameter and solospheres S-32 of 14 µm in Sauter mean diameter. The nanocrystal concentration varies from 0 to 3.5 wt% and the particle concentration varies from 0 to 57.2 vol%. The influence of salt (NaCl) concentration and pH on the rheology of suspensions is also investigated. The suspensions generally exhibit shear-thinning behavior. The degree of shear-thinning is stronger in suspensions of smaller size particles. The experimental viscosity data are adequately described by a power-law model. The variations in power-law parameters (consistency index and flow behavior index) under different conditions are determined and discussed in detail.

4.
Acta Biomater ; 183: 101-110, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38834149

ABSTRACT

Controlled release of low molecular weight hydrophilic drugs, administered locally, allows maintenance of high concentrations at the target site, reduces systemic side effects, and improves patient compliance. Injectable hydrogels are commonly used as a vehicle. However, slow release of low molecular weight hydrophilic drugs is very difficult to achieve, mainly due to a rapid diffusion of the drug out of the drug delivery system. Here we present an injectable and self-healing hydrogel based entirely on the self-assembly of liposomes. Gelation of liposomes, without damaging their structural integrity, was induced by modifying the cholesterol content and surface charge. The small hydrophilic molecule, sodium fluorescein, was loaded either within the extra-liposomal space or encapsulated into the aqueous cores of the liposomes. This encapsulation strategy enabled the achievement of controlled and adjustable release profiles, dependent on the mechanical strength of the gel. The hydrogel had a high mechanical strength, minimal swelling, and slow degradation. The liposome-based hydrogel had prolonged mechanical stability in vivo with benign tissue reaction. This work presents a new class of injectable hydrogel that holds promise as a versatile drug delivery system. STATEMENT OF SIGNIFICANCE: The porous nature of hydrogels poses a challenge for delivering small hydrophilic drug, often resulting in initial burst release and shorten duration of release. This issue is particularly pronounced with physically crosslinked hydrogels, since their matrix can swell and dissipate rapidly, but even in cases where the polymers in the hydrogel are covalently cross-linked, small molecules can be rapidly released through its porous mesh. Here we present an injectable self-healing hydrogel based entirely on the self-assembly of liposomes. Small hydrophilic molecules were entrapped inside the extra-liposomal space or loaded into the aqueous cores of the liposomes, allowing controlled and tunable release profiles.


Subject(s)
Delayed-Action Preparations , Hydrogels , Hydrophobic and Hydrophilic Interactions , Liposomes , Liposomes/chemistry , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Hydrogels/chemistry , Injections , Animals , Fluorescein/chemistry
5.
Proc Natl Acad Sci U S A ; 121(24): e2318917121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38843185

ABSTRACT

Among many unexpected phenomena of active matter is the recently observed superfluid-like thinning (viscosity drop) behavior of bacteria suspensions. Understanding this peculiar self-propelled thinning by active matter is of theoretical and practical importance. Here, we find that, although distinct in driving mechanisms, active matter and shear flows exhibit similar thinning behaviors upon the increase of self-propulsion and shear forces, respectively. Our structural characterizations reveal that they actually share the same cluster-breaking mechanism of thinning. How fast and how shattered the cluster is broken determines the (dis)continuity of the thinning. This explains why adding active particles to Newtonian fluids can cause thinning, in which rotation of active particles play a key role in breaking clusters. Our work proposes a mechanism of self-propelled thinning and further establishes the underlying connections between active matter and shear flows.

6.
Gels ; 10(5)2024 May 16.
Article in English | MEDLINE | ID: mdl-38786255

ABSTRACT

Hydraulic fracturing is vital in recovering hydrocarbons from oil and gas reservoirs. It involves injecting a fluid under high pressure into reservoir rock. A significant part of fracturing fluids is the addition of polymers that become gels or gel-like under reservoir conditions. Polymers are employed as viscosifiers and friction reducers to provide proppants in fracturing fluids as a transport medium. There are numerous systems for fracturing fluids based on macromolecules. The employment of natural and man-made linear polymers, and also, to a lesser extent, synthetic hyperbranched polymers, as additives in fracturing fluids in the past one to two decades has shown great promise in enhancing the stability of fracturing fluids under various challenging reservoir conditions. Modern innovations demonstrate the importance of developing chemical structures and properties to improve performance. Key challenges include maintaining viscosity under reservoir conditions and achieving suitable shear-thinning behavior. The physical architecture of macromolecules and novel crosslinking processes are essential in addressing these issues. The effect of macromolecule interactions on reservoir conditions is very critical in regard to efficient fluid qualities and successful fracturing operations. In future, there is the potential for ongoing studies to produce specialized macromolecular solutions for increased efficiency and sustainability in oil and gas applications.

7.
Polymers (Basel) ; 16(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732715

ABSTRACT

In the practical application of hydraulic rotating machinery, it is essential to thoroughly explore drag reduction and rheological characteristics of drag-reducing additives to optimize machinery efficiency and reduce equipment consumption. This paper combines simulation and experimental approaches to investigate the drag-reduction performance and rheological properties of drag-reducing additives. Numerical simulations are initially conducted to investigate the shear-thinning properties of drag-reducing fluid and explore variations in drag-reduction rate. Turbulent phenomena characteristics are described by analyzing turbulent statistical quantities. Subsequently, the rheological behaviors of polyethylene oxide (PEO), cetyltrimethyl ammonium chloride (CTAC), and their mixed solutions under different conditions are scrutinized using a rotational rheometer. The findings indicate that the drag reduction effect amplifies as the rheological index n and characteristic time λ decrease. The numerical simulations show a maximum drag reduction rate of 20.18%. In rheological experiments, a three-stage viscosity variation is observed in single drag-reducing additives: shear thickening, shear thinning, and eventual stabilization. Composite drag-reducing additives significantly reduce the apparent viscosity at low shear rates, thereby strengthening the shear resistance of the system.

8.
Adv Sci (Weinh) ; 11(26): e2309586, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38686448

ABSTRACT

Easy injection, long-lasting barrier, and drug loading are the critical properties of submucosal injection materials for endoscopic surgery. However, conventional injectable polymers face challenges in simultaneously attaining these properties due to the inherent conflict between injectability and in situ stability. Here, a multi-arm star polymer hydrogel (denoted as ßCP hydrogel) with long-lasting submucosal barrier (exceeding 120 min), rapid hemostasis, and sustained antibacterial properties is successfully developed by grafting poly(oligo(ethylene glycol) methyl ether methacrylate) (PEGMA) side-chains from ß-CD via atom transfer radical polymerization (ATRP). During the onset of shearing, ßCP hydrogel experiences the unwinding of polymer side-chains between neighboring star polymers, which facilitates the process of endoscopic injectability. After submucosal injection, ßCP hydrogel undergoes the winding of polymer side-chains, thereby establishing a long-lasting barrier cushion. Meanwhile, owing to its distinctive structures with a hydrophobic inner cavity and an outer layer of hydrophilic polymer side-chains, ßCP hydrogel enables simultaneous loading and on-demand release of diverse categories of drugs. This unique performance can adapt to the diverse demands during different stages of wound healing in a porcine endoscopic surgery model. These results indicate an appealing prospect for new application of star polymers as a good submucosal injection material in endoscopic treatments.


Subject(s)
Hydrogels , Polymers , Wound Healing , Animals , Wound Healing/drug effects , Swine , Hydrogels/chemistry , Polymers/chemistry , Polyethylene Glycols/chemistry , Disease Models, Animal , Methacrylates/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage
9.
Carbohydr Polym ; 336: 122128, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38670759

ABSTRACT

Traditional submucosal filling materials frequently show insufficient lifting height and duration during clinical procedures. Here, the anionic polysaccharide polymer sodium carboxymethyl starch and cationic Laponite to prepare a hydrogel with excellent shear-thinning ability through physical cross-linking, so that it can achieve continuous improvement of the mucosal cushion through endoscopic injection. The results showed that the hydrogel (56.54 kPa) had a lower injection pressure compared to MucoUp (68.56 kPa). The height of submucosal lifting height produced by hydrogel was higher than MucoUp, and the height maintenance ability after 2 h was 3.20 times that of MucoUp. At the same time, the hydrogel also showed satisfactory degradability and biosafety, completely degrading within 200 h. The hemolysis rate is as low as 0.76 %, and the cell survival rate > 80 %. Subcutaneous implantation experiments confirmed that the hydrogel showed no obvious systemic toxicity. Animal experiments clearly demonstrated the in vivo feasibility of using hydrogels for submucosal uplift. Furthermore, successful endoscopic submucosal dissection was executed on a live pig stomach, affirming the capacity of hydrogel to safely and effectively facilitate submucosal dissection and mitigate adverse events, such as bleeding. These results indicate that shear-thinning hydrogels have a wide range applications as submucosal injection materials.


Subject(s)
Hydrogels , Starch , Starch/analogs & derivatives , Animals , Hydrogels/chemistry , Hydrogels/pharmacology , Starch/chemistry , Swine , Mice , Gastric Mucosa/metabolism , Endoscopic Mucosal Resection/methods , Injections , Humans , Hemolysis/drug effects , Cell Survival/drug effects , Silicates/chemistry
10.
Int J Biol Macromol ; 264(Pt 2): 130577, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38453115

ABSTRACT

In the present work, phosphorylated cellulose (PC) gel has been produced following an environmentally benign approach using agro-based chemicals with improved yield. The PC gels produced were transparent, negatively charged with high consistency, charge content (1133.33 mmol/kg), degree of substitution (DS) of 0.183 and increased yield (>87 %). The XPS and EDS analysis confirms the covalently bonded phosphate groups at weight percent of 9.42 % and 11.01 %, respectively. The life cycle assessment (LCA) shows that PC gel production via the phosphorylation route is an ecologically favourable strategy compared with traditional TEMPO oxidation, resulting in 1.67 times lower CO2 emission. The rheological studies of PC gels show shear-thinning behaviour with improved 3D printability followed by heat-induced crosslinking of phosphate groups. The mechanistic insights for the condensation of phosphate to form a phosphoric ester group during cross-linking were evaluated through 31P solid-state NMR and XPS studies. Interestingly, the 3D-printed structures showed high structural stability under both compression and tensile load in both dry and wet conditions, with high water absorption (5408.33 %) and swelling capacity of 700 %. The structures show improved methylene blue (MB) remediation capabilities with a maximum removal efficiency of 99 % for 10-200 mg/L and more than seven times reusability. This work provides a green, facile and energy-efficient strategy for fabricating PCs with easy processability through additive manufacturing techniques for producing value-added products, opening up new avenues for high-performance applications.


Subject(s)
Bioprinting , Cellulose , Cellulose/chemistry , Bioprinting/methods , Printing, Three-Dimensional , Gels , Phosphates , Tissue Scaffolds/chemistry , Tissue Engineering/methods
11.
Eur J Pharm Biopharm ; 197: 114221, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38378097

ABSTRACT

The development of PFS requires a detailed understanding of the forces occurring during the drug administration process and patient's capability. This research describes an advanced mathematic injection force model that consisting hydrodynamic force and friction force. The hydrodynamic force follows the basic law of Hagen-Poiseuille but refines the modeling approach by delving into specific properties of drug viscosity (Newtonian and Shear-thinning) and syringe shape constant, while the friction force was accounted from empty barrel injection force. Additionally, we take actual temperature of injection into consideration, providing more accurate predication. The results show that the derivation of the needle dimension constant and the rheological behavior of the protein solutions are critical parameters. Also, the counter pressure generated by the tissue has been considered in actual administration to address the issue of the inaccuracies of current injection force evaluation preformed in air, especially when the viscosity of the injected drug solution is below 9.0 cP (injecting with 1 mL L PFS staked with 29G ½ inch needle). Human factor studies on patients' capability against medication viscosity filled the gap in design space of PFS drug product and available viscosity data in very early phase.


Subject(s)
Mechanical Phenomena , Syringes , Humans , Viscosity , Injections , Pharmaceutical Preparations
12.
Elife ; 122024 Feb 26.
Article in English | MEDLINE | ID: mdl-38407149

ABSTRACT

Rapid conversion of force into a biological signal enables living cells to respond to mechanical forces in their environment. The force is believed to initially affect the plasma membrane and then alter the behavior of membrane proteins. Phospholipase D2 (PLD2) is a mechanosensitive enzyme that is regulated by a structured membrane-lipid site comprised of cholesterol and saturated ganglioside (GM1). Here we show stretch activation of TWIK-related K+ channel (TREK-1) is mechanically evoked by PLD2 and spatial patterning involving ordered GM1 and 4,5-bisphosphate (PIP2) clusters in mammalian cells. First, mechanical force deforms the ordered lipids, which disrupts the interaction of PLD2 with the GM1 lipids and allows a complex of TREK-1 and PLD2 to associate with PIP2 clusters. The association with PIP2 activates the enzyme, which produces the second messenger phosphatidic acid (PA) that gates the channel. Co-expression of catalytically inactive PLD2 inhibits TREK-1 stretch currents in a biological membrane. Cellular uptake of cholesterol inhibits TREK-1 currents in culture and depletion of cholesterol from astrocytes releases TREK-1 from GM1 lipids in mouse brain. Depletion of the PLD2 ortholog in flies results in hypersensitivity to mechanical force. We conclude PLD2 mechanosensitivity combines with TREK-1 ion permeability to elicit a mechanically evoked response.


"Ouch!": you have just stabbed your little toe on the sharp corner of a coffee table. That painful sensation stems from nerve cells converting information about external forces into electric signals the brain can interpret. Increasingly, new evidence is suggesting that this process may be starting at fat-based structures within the membrane of these cells. The cell membrane is formed of two interconnected, flexible sheets of lipids in which embedded structures or molecules are free to move. This organisation allows the membrane to physically respond to external forces and, in turn, to set in motion chains of molecular events that help fine-tune how cells relay such information to the brain. For instance, an enzyme known as PLD2 is bound to lipid rafts ­ precisely arranged, rigid fatty 'clumps' in the membrane that are partly formed of cholesterol. PLD2 has also been shown to physically interact with and then activate the ion channel TREK-1, a membrane-based protein that helps to prevent nerve cells from relaying pain signals. However, the exact mechanism underpinning these interactions is difficult to study due to the nature and size of the molecules involved. To address this question, Petersen et al. combined a technology called super-resolution imaging with a new approach that allowed them to observe how membrane lipids respond to pressure and fluid shear. The experiments showed that mechanical forces disrupt the careful arrangement of lipid rafts, causing PLD2 and TREK-1 to be released. They can then move through the surrounding membrane where they reach a switch that turns on TREK-1. Further work revealed that the levels of cholesterol available to mouse cells directly influenced how the clumps could form and bind to PLD2, and in turn, dialled up and down the protective signal mediated by TREK-1. Overall, the study by Petersen et al. shows that the membrane of nerve cells can contain cholesterol-based 'fat sensors' that help to detect external forces and participate in pain regulation. By dissecting these processes, it may be possible to better understand and treat conditions such as diabetes and lupus, which are associated with both pain sensitivity and elevated levels of cholesterol in tissues.


Subject(s)
G(M1) Ganglioside , Signal Transduction , Animals , Mice , Second Messenger Systems , Cell Membrane , Cholesterol , Mammals
13.
J Mech Behav Biomed Mater ; 152: 106448, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38335649

ABSTRACT

Shear-thinning materials have held considerable promise as embolic agents due to their capability of transition between solid and liquid state. In this study, a laponite nanoclay (NC)/alginate gel embolic agent was developed, characterized, and studied for transcatheter based minimally invasive procedures. Both NC and alginate are biocompatible and FDA-approved. Due to electrostatic interactions, the NC/alginate gels exhibit shear-thinning properties that are desirable for transcatheter delivery. The unique shear-thinning nature of the NC/alginate gel allows it to function as a fluid-like substance during transcatheter delivery and as a solid-like embolic agent once deployed. To ensure optimal performance and safety in clinical applications, the rheological characteristics were thoroughly investigated to optimize the mechanical properties of the NC/alginate gel, including storage modulus, yield stress/strain, and thixotropy. To improve physicians' experience and enhance the predictability of gel delivery, a combination of experimental and theoretical approaches was used to assess the injection force required for successful delivery of the gel through clinically employed catheters. Overall, NC/alginate gel exhibited excellent stability and tunable injectability by optimizing the composition of each component. These findings highlight the gel's potential as a robust embolic agent for a wide range of minimally invasive procedures.


Subject(s)
Alginates , Gastropoda , Animals , Catheters , Gels , Minimally Invasive Surgical Procedures
14.
Proc Natl Acad Sci U S A ; 121(10): e2317832121, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38412136

ABSTRACT

Non-Newtonian fluids can be used for the protection of flexible laminates. Understanding the coupling between the flow of the protecting fluid and the deformation of the protected solids is necessary in order to optimize this functionality. We present a scaling analysis of the problem based on a single coupling variable, the effective width of a squeeze flow between flat rigid plates, and predict that impact protection for laminates is optimized by using shear-thinning, and not shear-thickening, fluids. The prediction is verified experimentally by measuring the velocity and pressure in impact experiments. Our scaling analysis should be generically applicable for non-Newtonian fluid-solid interactions in diverse applications.

15.
Adv Mater ; 36(13): e2307356, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38124527

ABSTRACT

Shear-thinning hydrogels represent an important class of injectable soft materials that are often used in a wide range of biomedical applications. Creation of new shear-thinning materials often requires that factors such as viscosity, injection rate/force, and needle gauge be evaluated to achieve efficient delivery, while simultaneously protecting potentially sensitive cargo. Here, a new approach to establishing shear-thinning hydrogels is reported where a host-guest cross-linked network initially remains soluble in deionized water but is kinetically trapped as a viscous hydrogel once exposed to saltwater. The shear-thinning properties of the hydrogel is then "switched on" in response to heating or exposure to visible light. These hydrogels consist of polynorbornene-based bottlebrush copolymers with porphyrin- and oligoviologen-containing side chains that are cross-linked through the reversible formation of ß-cyclodextrin-adamantane inclusion complexes. The resultant viscous hydrogels display broad adhesive properties across polar and nonpolar substrates, mimicking that of natural mucous and thus making it easier to distribute onto a wide range of surfaces. Additional control over the hydrogel's mechanical properties (storage/loss moduli) and performance (adhesion) is achieved post-injection using a low-energy (blue light) photoinduced electron-transfer process. This work envisions these injectable copolymers and multimodal hydrogels can serve as versatile next-generation biomaterials capable of light-based mechanical manipulation post-injection.

16.
Adv Funct Mater ; 33(31)2023 Aug 01.
Article in English | MEDLINE | ID: mdl-38107427

ABSTRACT

Nanoparticle (NP) supra-assembly offers unique opportunities to tune macroscopic hydrogels' mechanical strength, material degradation, and drug delivery properties. Here, synthetic, reactive oxygen species (ROS)-responsive NPs are physically crosslinked with hyaluronic acid (HA) through guest-host chemistry to create shear-thinning NP/HA hydrogels. A library of triblock copolymers composed of poly(propylene sulfide)-bl-poly(N,N-dimethylacrylamide)-bl-poly(N,N-dimethylacrylamide-co-N-(1-adamantyl)acrylamide) are synthesized with varied triblock architectures and adamantane grafting densities and then self-assembled into NPs displaying adamantane on their corona. Self-assembled NPs are mixed with ß-cyclodextrin grafted HA to yield eighteen NP/HA hydrogel formulations. The NP/HA hydrogel platform demonstrates superior mechanical strength to HA-only hydrogels, susceptibility to oxidative/enzymatic degradation, and inherent cell-protective, antioxidant function. The performance of NP/HA hydrogels is shown to be affected by triblock architecture, guest/host grafting densities, and HA composition. In particular, the length of the hydrophilic second block and adamantane grafting density of self-assembled NPs significantly impacts hydrogel mechanical properties and shear-thinning behavior, while ROS-reactivity of poly(propylene sulfide) protects cells from cytotoxic ROS and reduces oxidative degradation of HA compared to HA-only hydrogels. This work provides insight into polymer structure-function considerations for designing hybrid NP/HA hydrogels and identifies antioxidant, shear-thinning hydrogels as promising injectable delivery platforms for small molecule drugs and therapeutic cells.

17.
Article in English | MEDLINE | ID: mdl-37922211

ABSTRACT

Iatrogenic ulcers resulting from endoscopic submucosal dissection surgery remain a significant clinical concern due to the risk of uncontrolled bleeding. Herein, we have developed an injectable shear-thinning hydrogel cross-linked through electrostatic interactions and hydrogen bonding. The hydrogel underwent comprehensive characterization, focusing on rheological behavior, injectability, microstructure, film-forming capability, adhesion, swelling behavior, degradation kinetics, antibacterial efficacy, hemostatic performance, and biocompatibility. The incorporation of poly(vinyl alcohol) notably enhanced the internal structural stability and injection pressure, while the Laponite content influenced self-healing ability, modulus, and viscosity. Additionally, the hydrogel exhibited pH sensitivity, appropriate degradation, and swelling rates and displayed favorable film-forming and adhesion properties. Notably, it demonstrated excellent resistance against Escherichia coli and Staphylococcus aureus, highlighting its potential to create an optimal wound environment. In vivo studies further confirmed the hydrogel's exceptional hemostatic performance, positioning it as an optimal material for endoscopic submucosal dissection (ESD) surgery. Moreover, cell experiments and hemolysis tests revealed high biocompatibility, supporting their potential to facilitate the healing of iatrogenic ulcers post-ESD surgery. In conclusion, our hydrogels hold great promise as endoscopic treatment materials for ESD-induced ulcers given their outstanding properties.

18.
Biomimetics (Basel) ; 8(7)2023 Nov 12.
Article in English | MEDLINE | ID: mdl-37999183

ABSTRACT

The occurrence of leakage from anastomotic sites is a significant issue given its potential undesirable complications. The management of anastomotic leakage after gastrointestinal surgery is particularly crucial because it is directly associated with mortality and morbidity in patients. If adhesive materials could be used to support suturing in surgical procedures, many complications caused by leakage from the anastomosis sites could be prevented. In this study, we have developed self-healing, shear-thinning, tissue-adhesive, carbon-black-containing, gallic acid-conjugated chitosan (CB/Chi-gallol) hydrogels as sealing materials to be used with suturing. The addition of CB into Chi-gallol solution resulted in the formation of a crosslinked hydrogel with instantaneous solidification. In addition, these CB/Chi-gallol hydrogels showed enhancement of the elastic modulus (G') values with increased CB concentration. Furthermore, these hydrogels exhibited excellent self-healing, shear-thinning, and tissue-adhesive properties. Notably, the hydrogels successfully sealed the incision site with suturing, resulting in a significant increase in the bursting pressure. The proposed self-healing and adhesive hydrogels are potentially useful in versatile biomedical applications, particularly as suture support materials for surgical procedures.

19.
ACS Appl Bio Mater ; 6(11): 4867-4876, 2023 11 20.
Article in English | MEDLINE | ID: mdl-37816154

ABSTRACT

Wound dressings play a crucial role in facilitating optimal wound healing and protecting against microbial infections. However, existing commercial options often fall short in addressing chronic infections due to antibiotic resistance and the limited spectrum of activity against both Gram-positive and Gram-negative bacteria frequently encountered at wound sites. Additionally, complex fabrication processes and cumbersome administration strategies pose challenges for cost-effective wound dressing development. Consequently, there is a pressing need to explore easily engineered biocompatible biomaterials as alternative solutions to combat these challenging wound infections. In this study, we present the development of an anti-infective hydrogel, P-BAC (polymeric bactericidal hydrogel), which exhibits simple administration and promotes efficient wound healing. P-BAC is synthesized via a one-step fabrication method that involves the noncovalent cross-linking of poly(vinyl alcohol), N-(2-hydroxypropyl)-3-trimethylammonium chitosan chloride-AgCl nanocomposite, and proline. Remarkably, P-BAC demonstrates broad-spectrum antibacterial activity against both planktonic and stationary cells of clinically isolated Gram-positive and Gram-negative bacteria, resulting in a significant reduction of bacterial load (5-7 log reduction). Moreover, P-BAC exhibits excellent efficacy in eradicating bacterial cells within biofilm matrices (>95% reduction). In vivo experiments reveal that P-BAC accelerates wound healing by stimulating rapid collagen deposition at the wound site and effectively inactivates ∼95% of Pseudomonas aeruginosa cells. Importantly, the shear-thinning property of P-BAC simplifies the administration process, enhancing its practicality and usability. Taken together, our findings demonstrate the potential of this easily administrable hydrogel as a versatile solution for effective wound healing with potent anti-infective properties. The developed hydrogel holds promise for applications in diverse healthcare settings, addressing the critical need for improved wound dressing materials.


Subject(s)
Anti-Bacterial Agents , Hydrogels , Hydrogels/pharmacology , Hydrogels/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Gram-Negative Bacteria , Gram-Positive Bacteria , Wound Healing
20.
Pharmaceutics ; 15(10)2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37896185

ABSTRACT

Aiming at developing a dermal formulation against melanoma, the synthesized imidazo-pyrazoles 2-phenyl-2,3-dihydro-1H-imidazo[1,2-b]pyrazole-7-carboxylic acid (3-methoxy-4-phenoxy-benzylidene)-hydrazide (4G) and 2-phenyl-2,3-dihydro-1H-imidazo[1,2-b]pyrazole-7-carboxylic acid (4-benzyloxy-3-methoxy-benzylidene)-hydrazide (4I) were screened on patient-isolated melanoma cells (MEOV NT) and on Vemurafenib (PLX4032)-resistant (MEOV PLX-R) ones. Since 4I on MEOV PLX-R cells was 1.4-fold more effective than PLX, a hydrogel formulation containing 4I (R4HG-4I) was prepared in parallel with an empty R4-based hydrogel (R4HG) using a synthesized antibacterial resin (R4) as gelling agent. Thanks to its high hydrophilicity, porosity (85%), and excellent swelling capability (552%), R4 allowed to achieve R4HG and R4HG-4I with high equilibrium degree of swelling (EDS) and equilibrium water content (EWC). Chemometric-assisted ATR-FTIR analyses confirmed the chemical structure of swollen and fully dried (R4HG-D and R4HG-4I-D) hydrogels. The morphology of R4HG-D and R4HG-4I-D was examined by optical microscopy and SEM, while UV-vis analyses were carried out to obtain the drug loading (DL%) and the encapsulation efficiency (EE%) of R4HG-4I. Potentiometric titrations were performed to determine the equivalents of NH3+ in both R4HG and R4HG-4I. The swelling and water release profiles of both materials and related kinetics were assessed by equilibrium swelling rate and water loss studies, respectively, while their biodegradability over time was assessed by in vitro degradation experiments determining their mass loss. Rheological experiments established that both R4HG and R4HG-4I are shear-thinning Bingham pseudoplastic fluids with low yield stress, thus assuring easy spreadability in a future topical application. Release studies evidenced a sustained and quantitative release of 4I governed mainly by diffusion. Upon favorable results from further experiments in a more realistic 3D model of melanoma, R4HG-4I could represent a starting point to develop new topical therapeutic options to adjuvate the treatments of melanoma cells also when resistant to currently available drugs.

SELECTION OF CITATIONS
SEARCH DETAIL