Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.675
Filter
1.
Semin Immunol ; 73: 101887, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39357273

ABSTRACT

The sialic acid-binding immunoglobulin-like lectins (Siglecs) are a family of receptors expressed widely on cells of the hematopoietic system. Siglecs recognize terminal sialic acid residues on glycans and often initiate intracellular signaling upon ligation. Cells can express several Siglec family members concurrently with each showing differential specificities for sialic acid linkages to the underlying glycan as well as varied hydroxyl substitutions, allowing these receptors to fine tune downstream responses. Macrophages are among the many immune cells that express Siglec family members. Macrophages exhibit wide diversity in their phenotypes and functions, and this diversity is often mediated by signals from the local environment, including those from glycans. In this review, we detail the known expression of Siglecs in macrophages while focusing on their functional importance and potential clinical relevance.

2.
J Biol Chem ; : 107851, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39357825

ABSTRACT

Tripartite ATP-independent periplasmic (TRAP) transporters are analogous to ABC transporters in that they use a substrate-binding protein to scavenge metabolites (e.g., N-acetylneuraminate) and deliver them to the membrane components for import. TRAP substrate-binding proteins are thought to bind the substrate using a two-state (open and closed) induced-fit mechanism. We solved the structure of the TRAP N-acetylneuraminate substrate-binding protein from Aggregatibacter actinomycetemcomitans (AaSiaP) in both the open ligand-free and closed liganded conformations. Surprisingly, we also observed an intermediate conformation, where AaSiaP is mostly closed and is bound to a non-cognate ligand, acetate, which hints at how N-acetylneuraminate binding stabilises a fully closed state. AaSiaP preferentially binds N-acetylneuraminate (KD = 0.4 µM) compared to N-glycolylneuraminate (KD = 4.4 µM), which is explained by the closed-N-acetylneuraminate bound structure. Small-angle X-ray scattering data alongside molecular dynamics simulations suggest the AaSiaP adopts a more open state in solution than in crystal. However, the open unliganded conformation can also sample closed conformations. Molecular dynamics simulations also demonstrate the importance of water molecules for stabilising the closed conformation. Although our data is consistent with an induced fit model of binding, we suggest that the open unliganded conformation may sample multiple states capable of binding substrate. The mechanism by which the ligand is released for import remains to be determined.

3.
Glia ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39228105

ABSTRACT

Sialylation plays an important role in self-recognition, as well as keeping the complement and innate immune systems in check. It is unclear whether the reduced sialylation seen during aging and in mice heterozygous for the null mutant of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (Gne+/-), an essential enzyme for sialic acid biosynthesis, contributes to retinal inflammation and degeneration. We found a reduction of polysialic acid and trisialic acid expression in several retinal layers in Gne+/- mice at 9 months of age compared to Gne+/+ wildtype (WT) mice, which was associated with a higher microglial expression of the lysosomal marker CD68. Furthermore, the total number of rod bipolar cells was reduced in 12 months old Gne+/- mice in comparison to WT mice, demonstrating loss of these retinal interneurons. Transcriptome analysis showed up-regulation of complement, inflammation, and apoptosis-related pathways in the retinas of Gne+/- mice. Particularly, increased gene transcript levels of the complement factors C3 and C4 and the pro-inflammatory cytokine Il-1ß were observed by semi-quantitative real-time polymerase chain reaction (sqRT-PCR) in 9 months old Gne+/- mice compared to WT mice. The increased expression of CD68, loss of rod bipolar cells, and increased gene transcription of complement factor C4, were all prevented after crossing Gne+/- mice with complement factor C3-deficient animals. In conclusion, our data show that retinal hyposialylation in 9 and 12 months old Gne+/- mice was associated with complement-related inflammation and lysosomal microglia response, as well as rod bipolar cells loss, which was absent after genetic deletion of complement factor C3.

4.
Angew Chem Int Ed Engl ; : e202413946, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39275883

ABSTRACT

Disrupting the conserved multivalent binding of hemagglutinin (HA) on influenza A virus (IAV) to sialic acids (SAs) on the host cell membrane offers a robust strategy to block viral attachment and infection, irrespective of antigenic evolution or drug resistance. In this study, we exploit red blood cell-derived small extracellular vesicles (RBC sEVs) as nanodecoys by harnessing their high abundance of surface-displayed SAs to interact with IAV through multivalent HA-SA interactions. This high-avidity binding inhibits viral adhesion to the cell surface, effectively preventing both attachment and infection in a dose-dependent manner. Notably, enzymatic removal of SAs from RBC sEVs significantly diminishes their anti-IAV efficacy. Our findings indicate that RBC sEVs possess intrinsic anti-IAV properties due to their native multivalent SAs and hold considerable promise as antiviral therapeutics.

5.
Int J Dev Neurosci ; 2024 Sep 22.
Article in English | MEDLINE | ID: mdl-39308139

ABSTRACT

OBJECTIVE: Evaluation of the biomarkers and their relations with sleep in attention deficit hyperactivity disorder (ADHD) is important for understanding the impairments in cognitive functioning. In this study, we aimed to investigate the brain-derived neurotrophic factor (BDNF) and sialic acid (Sia) levels, and their possible relations with chronotypes in ADHD. METHODS: The study included 100 drug-naive children with ADHD and 74 healthy children as controls. Conners' Parent Rating Scale-Revised (CPRS-R) scores were used for the severity assessment. Morningness Eveningness Questionnaire (MEQ) was used to determine the chronotypes of participants. ELISA kits were used for the assessment of BDNF and Sia plasma levels. RESULTS: Levels of BDNF and Sia were found to be statistically significantly higher in the ADHD group compared to healthy children (p < 0.001, p < 0.001, respectively). BDNF and Sia levels were found to be higher in the ADHD group with eveningness chronotype (p = 0.045, p = 0.038). The binary logistic regression model was statistically significant (p = 0.033), higher BDNF and Sia levels were assessed as predictive factors for the diagnosis of ADHD. Also, eveningness chronotype was found as a predictive factor of BDNF and Sia levels in ADHD. CONCLUSION: The results indicate that BDNF and Sia levels, which are related to cognitive functions and sleep, increase with the age of ADHD. Eveningness chronotype, connected with the severity of ADHD, is related to BDNF and Sia levels. There is a need for further studies to confirm these results.

6.
Glycobiology ; 34(10)2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39244665

ABSTRACT

Lipooligosaccharides are the most abundant cell surface glycoconjugates on the outer membrane of Gram-negative bacteria. They play important roles in host-microbe interactions. Certain Gram-negative pathogenic bacteria cap their lipooligosaccharides with the sialic acid, N-acetylneuraminic acid (Neu5Ac), to mimic host glycans that among others protects these bacteria from recognition by the hosts immune system. This process of molecular mimicry is not fully understood and remains under investigated. To explore the functional role of sialic acid-capped lipooligosaccharides at the molecular level, it is important to have tools readily available for the detection and manipulation of both Neu5Ac on glycoconjugates and the involved sialyltransferases, preferably in live bacteria. We and others have shown that the native sialyltransferases of some Gram-negative bacteria can incorporate extracellular unnatural sialic acid nucleotides onto their lipooligosaccharides. We here report on the expanded use of native bacterial sialyltransferases to incorporate neuraminic acids analogs with a reporter group into the lipooligosaccharides of a variety of Gram-negative bacteria. We show that this approach offers a quick strategy to screen bacteria for the expression of functional sialyltransferases and the ability to use exogenous CMP-Neu5Ac to decorate their glycoconjugates. For selected bacteria we also show this strategy complements two other glycoengineering techniques, Metabolic Oligosaccharide Engineering and Selective Exo-Enzymatic Labeling, and that together they provide tools to modify, label, detect and visualize sialylation of bacterial lipooligosaccharides.


Subject(s)
Lipopolysaccharides , Sialyltransferases , Sialyltransferases/metabolism , Sialyltransferases/genetics , Sialyltransferases/chemistry , Lipopolysaccharides/metabolism , Lipopolysaccharides/chemistry , Neuraminic Acids/metabolism , Neuraminic Acids/chemistry , Gram-Negative Bacteria/metabolism , N-Acetylneuraminic Acid/metabolism , N-Acetylneuraminic Acid/chemistry
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 325: 125116, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39276466

ABSTRACT

A new probe, 4-(((3',6'-bis(diethylamino)-3-oxospiro[isoindoline-1,9'-xanthen]-2-yl)imino)methyl)phenyl)boronic acid (R4B) was prepared by facile condensation of 4-formylphenylboronic acid and rhodamine B hydrazide. R4B was characterized by spectroscopic methods and single crystal X-ray diffraction. The sensor R4B solution turned pink and emitted orange fluorescence only in the presence of sialic acid but remained colorless and non-fluorescent otherwise. The sugar recognition performance was investigated via UV-vis and fluorescence spectroscopic studies. Our results revealed that R4B has good affinity and selectivity for sialic acid over common monosaccharides, with a detection limit as low as 10-7 M. Furthermore, R4B selectively inhibited growth of human colorectal adenocarcinoma HT-29 (IC50 <20 µM) without significant cytotoxicity to normal human colon fibroblasts CCD-18Co. Treatment with R4B suppressed HT-29 colony formation via mitochondrial apoptosis in a time-dependent manner. Cellular imaging studies also revealed the ability of R4B as a fluorescence dye to detect intracellular sialic acid and showed mitochondria-tracking ability in HT-29 cells. In summary, R4B is a potential theranostic for the detection of intracellular sialic acid during the early incubation period, followed by induction of cancer apoptotic cell death at a later treatment point.

8.
J Mol Biol ; : 168801, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39321866

ABSTRACT

Sialic acid esterase (SIAE) catalyzes the removal of O-acetyl groups from sialic acids found on cell surface glycoproteins to regulate cellular processes such as B cell receptor signalling and apoptosis. Loss-of-function mutations in SIAE are associated with several common autoimmune diseases including Crohn's, ulcerative colitis, and arthritis. To gain a better understanding of the function and regulation of this protein, we determined crystal structures of SIAE from three mammalian homologs, including an acetate bound structure. The structures reveal that the catalytic domain adopts the fold of the SGNH hydrolase superfamily. The active site is composed of a catalytic dyad, as opposed to the previously reported catalytic triad. Attempts to determine a substrate-bound structure yielded only the hydrolyzed product acetate in the active site. Rigid docking of complete substrates followed by molecular dynamics simulations revealed that the active site does not form specific interactions with substrates, rather it appears to be broadly specific to accept sialoglycans with diverse modifications. Based on the acetate bound structure, a catalytic mechanism is proposed. Structural mapping of disease mutations reveals that most are located on the surface of the enzyme and would only cause minor disruptions to the protein fold, suggesting that these mutations likely affect binding to other factors. These results improve our understanding of SIAE biology and may aid in the development of therapies for autoimmune diseases and cancer.

9.
Foods ; 13(18)2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39335912

ABSTRACT

Excessive inflammatory reactions are the most important pathological injury factor in acute lung injury (ALI). Our recent study found that sialic acid had an anti-colitis effect. In this study, the effect of sialic acid (SA) on acute lung inflammation was investigated. A lipopolysaccharide (LPS)-induced ALI animal model and LPS-stimulated HUVEC cell model were used to evaluate the anti-inflammatory effect of SA and study its molecular mechanisms. Compared with the LPS group, the lung index of the SA group decreased from 0.79 ± 0.05% to 0.58 ± 0.06% (LPS + 50 SA) and 0.62 ± 0.02% (LPS + 100 SA), with p < 0.01, suggesting that SA could improve the pulmonary edema of mice and alleviate LPS-induced lung injury. Transcriptome research identified 26 upregulated genes and 25 downregulated genes involved in the protection of SA against ALI. These genes are mainly related to the MAPK and NF-κB signaling pathways. Our study also proved that SA markedly downregulated the expression of inflammatory factors and blocked the JNK/p38/PPAR-γ/NF-κB pathway. Meanwhile, SA treatment also upregulated the expression of HO-1 and NQO1 in ALI mice. In vitro, SA obviously repressed the expressions of inflammatory cytokines and the JNK/p38-NF-κB/AP-1 pathway. SA also regulated the expression of oxidative stress-related genes through the Nrf2 pathway. Taken together, SA exhibits a protective role by modulating the anti-inflammatory and anti-oxidation pathways in ALI, and it may be a promising candidate for functional foods to prevent ALI.

10.
Int J Mol Sci ; 25(18)2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39337558

ABSTRACT

Meningiomas are predominantly benign tumors, but there are also malignant forms that are associated with a poor prognosis. Like almost all tumors, meningiomas metabolize glucose as part of aerobic glycolysis (Warburg effect) for energy supply, so there are attempts to influence the prognosis of tumor diseases using a glucose-reduced diet. This altered metabolism leads to so called hallmarks of cancer, such as glycation and glycosylation. In this study, we investigated the influence of low (3 mM), normal (5.5 mM) and high glucose (15 mM) on a malignant meningioma cell line (IOMM-Lee, WHO grade 3). In addition, the influence of methylglyoxal, a by-product of glycolysis and a precursor for glycation, was investigated. Impedance-based methods (ECIS and RTCA) were used to study migration and invasion, and immunoblotting was used to analyze the expression of proteins relevant to these processes, such as focal adhesion kinase (FAK), merlin or integrin ß1. We were able to show that low glucose reduced the invasive potential of the cells, which was associated with a reduced amount of sialic acid. Under high glucose, barrier function was impaired and adhesion decreased, which correlated with a decreased expression of FAK.


Subject(s)
Cell Movement , Glucose , Meningeal Neoplasms , Meningioma , Humans , Meningioma/metabolism , Meningioma/pathology , Cell Movement/drug effects , Glucose/metabolism , Glucose/pharmacology , Cell Line, Tumor , Glycosylation , Meningeal Neoplasms/metabolism , Meningeal Neoplasms/pathology , Neoplasm Invasiveness , Pyruvaldehyde/metabolism , Pyruvaldehyde/pharmacology , Cell Adhesion/drug effects
11.
Transl Res ; 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39341359

ABSTRACT

BACKGROUND: Excessive subendothelial retention of oxidized low-density lipoprotein (oxLDL) and subsequent oxLDL engulfment by macrophages leads to the formation of foam cells and the development of atherosclerosis. Our previous study showed that the plasma level of sialic acid-binding immunoglobulin-like lectin 5 (Siglec-5) was a novel biomarker for the prognosis of atherosclerosis in diabetic patients. However, the role and underlying mechanisms of Siglec-5 in atherosclerosis have not been elucidated. METHODS: The interaction between oxLDL and Siglec-5 was detected by fluorescence colocalization and coimmunoprecipitation. The effect of oxLDL on Siglec-5 expression was detected in endothelial cells and macrophages, and the effect of Siglec-5 on oxLDL transcytosis and uptake was investigated. Siglec-5 was overexpressed in mice using recombinant adeno-associated virus vector serotype 9 (rAAV9-Siglec-5) to evaluate the effect of Siglec-5 on oxLDL uptake and atherogenesis in vivo. In addition, the effects of Siglec-5 antibodies and soluble Siglec-5 proteins on oxLDL transcytosis and uptake and their role in atherogenesis were investigated in vivo and in vitro. RESULTS: We found that oxLDL interacted with Siglec-5 and that oxLDL stimulated the expression of Siglec-5. Siglec-5 promotes the transcytosis and uptake of oxLDL, while both anti-Siglec-5 antibodies and soluble Siglec-5 protein attenuated oxLDL transcytosis and uptake. Interestingly, overexpression of Siglec-5 by recombinant adeno-associated viral vector serotype 9 (rAAV9-Siglec-5) promoted the retention of oxLDL in the aorta of C57BL/6 mice. Moreover, overexpression of Siglec-5 significantly accelerated the formation of atherosclerotic lesions in Apoe-/- mice. Moreover, both anti-Siglec-5 antibodies and soluble Siglec-5 protein significantly alleviated the retention of oxLDL in the aorta of rAAV9-Siglec-5-transfected C57BL/6 mice and the formation of atherosclerotic plaques in rAAV9-Siglec-5-transfected Apoe-/- mice. CONCLUSION: Our results suggested that Siglec-5 was a novel receptor that mediated oxLDL transcytosis and promoted the formation of foam cells. Interventions that inhibit the interaction between oxLDL and Siglec-5, including anti-Siglec-5 antibody or soluble Siglec-5 protein treatment, may provide novel therapeutic strategies in treating atherosclerosis.

12.
Int J Mol Sci ; 25(17)2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39273582

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) is considered a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor of high importance, but due to its non-ubiquitous expression, studies of other proteins that may participate in virus internalisation have been undertaken. To date, many alternative receptors have been discovered. Their functioning may provide an explanation for some of the events observed in severe COVID-19 that cannot be directly explained by the model in which ACE2 constitutes the central point of infection. Diabetes mellitus type 2 (T2D) can induce severe COVID-19 development. Although many mechanisms associated with ACE2 can lead to increased SARS-CoV-2 virulence in diabetes, proteins such as basigin (CD147), glucose-regulated protein 78 kDa (GRP78), cluster of differentiation 4 (CD4), transferrin receptor (TfR), integrins α5ß1/αvß3, or ACE2 co-receptors neuropilin 2 (NRP2), vimentin, and even syalilated gangliosides may also be responsible for worsening the COVID-19 course. On the other hand, some others may play protective roles. Understanding how diabetes-associated mechanisms can induce severe COVID-19 via modification of virus receptor functioning needs further extensive studies.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Diabetes Mellitus, Type 2 , Endoplasmic Reticulum Chaperone BiP , SARS-CoV-2 , COVID-19/metabolism , COVID-19/virology , COVID-19/complications , Humans , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Angiotensin-Converting Enzyme 2/metabolism , Endoplasmic Reticulum Chaperone BiP/metabolism , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/virology , Virus Internalization , Receptors, Virus/metabolism
13.
mSphere ; : e0062924, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39320067

ABSTRACT

Serotype 3 (T3) strains of mammalian orthoreovirus (reovirus) spread to the central nervous system to infect the brain and cause lethal encephalitis in newborn mice. Although reovirus targets several regions in the brain, susceptibility to infection is not uniformly distributed. The neuronal subtypes and anatomic sites targeted throughout the brain are not precisely known. Reovirus binds several attachment factors and entry receptors, including sialic acid (SA)-containing glycans and paired immunoglobulin-like receptor B (PirB). While these receptors are not required for infection of some types of neurons, reovirus engagement of these receptors can influence neuronal infection in certain contexts. To identify patterns of T3 neurotropism, we used microbial identification after passive tissue clearance and hybridization chain reaction to stain reovirus-infected cells throughout intact, optically transparent brains of newborn mice. Three-dimensional reconstructions revealed in detail the sites targeted by reovirus throughout the brain volume, including dense infection of the midbrain and hindbrain. Using reovirus mutants incapable of binding SA and mice lacking PirB expression, we found that neither SA nor PirB is required for the infection of various brain regions. However, SA may confer minor differences in infection that vary by region. Collectively, these studies indicate that many regions in the brain of newborn mice are susceptible to reovirus and that patterns of reovirus infection are not dependent on reovirus receptors SA and PirB.IMPORTANCENeurotropic viruses invade the central nervous system (CNS) and target various cell types to cause disease manifestations, such as meningitis, myelitis, or encephalitis. Infections of the CNS are often difficult to treat and can lead to lasting sequelae or death. Mammalian orthoreovirus (reovirus) causes age-dependent lethal encephalitis in many young mammals. Reovirus infects neurons in several different regions of the brain. However, the complete pattern of CNS infection is not understood. We found that reovirus targets almost all regions of the brain and that patterns of tropism are not dependent on receptors sialic acid and paired immunoglobulin-like receptor B. These studies confirm that two known reovirus receptors do not completely explain the cell types infected in brain tissue and establish strategies that can be used to understand complete patterns of viral tropism in an intact brain.

14.
Cancers (Basel) ; 16(17)2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39272811

ABSTRACT

Prostate cancer is a lethal solid malignancy and a leading cause of cancer-related deaths in males worldwide. Treatments, including radical prostatectomy, radiotherapy, and hormone therapy, are available and have improved patient survival; however, recurrence remains a huge clinical challenge. Enzalutamide is a second-generation androgen receptor antagonist that is used to treat castrate-resistant prostate cancer. Among patients who initially respond to enzalutamide, virtually all acquire secondary resistance, and an improved understanding of the mechanisms involved is urgently needed. Aberrant glycosylation, and, in particular, alterations to sialylated glycans, have been reported as mediators of therapy resistance in cancer, but a link between tumour-associated glycans and resistance to therapy in prostate cancer has not yet been investigated. Here, using cell line models, we show that prostate cancer cells with acquired resistance to enzalutamide therapy have an upregulation of the sialyltransferase ST6 beta-galactoside alpha-2,6-sialyltransferase 1 (ST6GAL1) and increased levels of α2,6-sialylated N-glycans. Furthermore, using the sialyltransferase inhibitor P-SiaFNEtoc, we discover that acquired resistance to enzalutamide can be partially reversed by combining enzalutamide therapy with sialic acid blockade. Our findings identify a potential role for ST6GAL1-mediated aberrant sialylation in acquired resistance to enzalutamide therapy for prostate cancer and suggest that sialic acid blockade in combination with enzalutamide may represent a novel therapeutic approach in patients with advanced disease. Our study also highlights the potential to bridge the fields of cancer biology and glycobiology to develop novel combination therapies for prostate cancer.

16.
J Anat ; 2024 Sep 08.
Article in English | MEDLINE | ID: mdl-39245632

ABSTRACT

The alveolar surface of the lung is lined by an epithelium consisting of type I (AECI) and type II alveolar epithelial cells (AECII). This epithelium is covered by a liquid alveolar lining layer (ALL). Besides intra-alveolar surfactant, ALL also contains the alveolar epithelial glycocalyx on the apical side of AECI and AECII. To better understand the alveolar epithelial glycocalyx, its ultrastructural visualization by transmission electron microscopy is required. The aim of this study was to systematically re-evaluate routine cytochemical methods for visualization of the alveolar epithelial glycocalyx and specifically its glycan components. For this purpose, we used chemical fixation by vascular perfusion with aldehydes as a common routine approach in mice. After fixation, staining is needed for glycocalyx visualization. Cytochemical staining agents such as alcian blue, ruthenium red, and lanthanum nitrate were compared. In addition, SNL (Sambucus nigra lectin) and UEA1 (Ulex europaeus agglutinin I) were used for sialic acid and fucose-specific labeling. Alcian blue showed the strongest staining, with cloud-like structures, whereas ruthenium red appeared as thread-like structures. On the other hand, lanthanum nitrate did not stain the alveolar epithelial glycocalyx. For specific sialic acid and fucose labeling, both lectins presented a specific signal. In conclusion, these methods can be used routinely for assessing ultrastructural changes of the alveolar epithelial glycocalyx in experimental in vivo models under different physiological and pathological conditions. In addition, cytochemical staining by tissue massage and post-embedding lectin labeling after vascular perfusion support 3R (reduction, refinement, replacement) principles of animal welfare.

17.
J Biol Chem ; 300(9): 107671, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39128726

ABSTRACT

Sialidases (or neuraminidases) catalyze the hydrolysis of sialic acid (Sia)-containing molecules, mostly the removal of the terminal Sia on glycans (desialylation) of either glycoproteins or glycolipids. Therefore, sialidases can modulate the functionality of the target glycoprotein or glycolipid and are involved in various biological pathways in health and disease. In mammalian cells, there are four kinds of sialidase, which are Neu1, Neu2, Neu3, and Neu4, based on their subcellular locations and substrate specificities. Neu1 is the lysosomal sialidase, Neu2 is the cytosolic sialidase, Neu3 is the plasma membrane-associated sialidase, and Neu4 is found in the lysosome, mitochondria, and endoplasmic reticulum. In addition to specific subcellular locations, sialidases can translocate to different subcellular localizations within particular cell conditions and stimuli, thereby participating in different cellular functions depending on their loci. Lysosomal sialidase Neu1 can translocate to the cell surface upon cell activation in several cell types, including immune cells, platelets, endothelial cells, and epithelial cells, where it desialylates receptors and thus impacts receptor activation and signaling. On the other hand, cells secrete sialidases upon activation. Secreted sialidases can serve as extracellular sialidases and cause the desialylation of both extracellular glycoproteins or glycolipids and cell surface glycoproteins or glycolipids on their own and other cells, thus playing roles in various biological pathways as well. This review discusses the recent advances and understanding of sialidase translocation in different cells and secretion from different cells under different conditions and their involvement in physiological and pathological pathways.

18.
Glycobiology ; 34(10)2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39173029

ABSTRACT

Human sialic acid-binding immunoglobulin-like lectins (Siglecs) are expressed on subsets of immune cells. Siglec-8 is an immune inhibitory Siglec on eosinophils and mast cells, which are effectors in allergic disorders including eosinophilic esophagitis. Inhibition occurs when Siglec-8 is crosslinked by multivalent Siglec ligands in target tissues. Previously we discovered a high-affinity Siglec-8 sialoglycan ligand on human airways composed of terminally sialylated keratan sulfate chains carried on a single protein, DMBT1. Here we extend that approach to another allergic inflammatory target tissue, human esophagus. Lectin overlay histochemistry revealed that Siglec-8 ligands are expressed predominantly by esophageal submucosal glands, and are densely packed in submucosal ducts leading to the lumen. Expression is tissue-specific; esophageal glands express Siglec-8 ligand whereas nearby gastric glands do not. Extraction and resolution by gel electrophoresis revealed a single predominant human esophageal Siglec-8 ligand migrating at >2 MDa. Purification by size exclusion and affinity chromatography, followed by proteomic mass spectrometry, revealed the protein carrier to be MUC5B. Whereas all human esophageal submucosal cells express MUC5B, only a portion convert it to Siglec-8 ligand by adding terminally sialylated keratan sulfate chains. We refer to this as MUC5B S8L. Material from the esophageal lumen of live subjects revealed MUC5B S8L species ranging from ~1-4 MDa. We conclude that MUC5B in the human esophagus is a protein canvas on which Siglec-8 binding sialylated keratan sulfate chains are post-translationally added. These data expand understanding of Siglec-8 ligands and may help us understand their roles in allergic immune regulation.


Subject(s)
Esophagus , Keratan Sulfate , Lectins , Mucin-5B , Humans , Ligands , Mucin-5B/metabolism , Mucin-5B/genetics , Lectins/metabolism , Lectins/chemistry , Keratan Sulfate/metabolism , Keratan Sulfate/chemistry , Esophagus/metabolism , Antigens, CD/metabolism , Antigens, CD/chemistry , Antigens, CD/genetics , Antigens, Differentiation, B-Lymphocyte
19.
Microbiol Spectr ; 12(9): e0099724, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39105587

ABSTRACT

We previously reported that a linear cationic 12-amino acid cell-penetrating peptide (CPP) was bactericidal for Neisseria gonorrhoeae. In this study, our objectives were to determine the effect of cyclization of the linear CPP on its antibacterial activity for N. gonorrhoeae and cytotoxicity for human cells. We compared the bactericidal effect of 4-hour treatment with the linear CPP to that of CPPs cyclized by a thioether or a disulfide bond on human challenge and multi-drug resistant (MDR) strains of N. gonorrhoeae grown in cell culture media with 10% fetal bovine serum (FBS). The effect of lipooligosaccharide (LOS) sialylation on bactericidal activity was analyzed. We determined the ability of the CPPs to treat human cells infected in vitro with N. gonorrhoeae, to reduce the inflammatory response of human monocytic cells to gonococci, to kill strains of three commensal Neisseria species, and to inhibit gonococcal biofilms. The cyclized CPPs killed 100% of gonococci from all strains at 100 µM and >90% at 20 µM and were more potent than the linear form. The thioether-linked but not the disulfide-linked CPP was less cytotoxic for human cervical cells compared to the linear CPP. LOS sialylation had minimal effect on bactericidal activity. In treating infected human cells, the thioether-linked CPP at 20 µM killed >60% of extra- and intracellular bacteria and reduced TNF-α expression by THP-1 cells. The potency of the CPPs for the pathogenic and the commensal Neisseria was similar. The thioether-linked CPP partially eradicated gonococcal biofilms. Future studies will focus on determining efficacy in the female mouse model of gonorrhea.IMPORTANCENeisseria gonorrhoeae remains a major cause of sexually transmitted infections with 82 million cases worldwide in 2020, and 710,151 confirmed cases in the US in 2021, up 25% from 2017. N. gonorrhoeae can infect multiple tissues including the urethra, cervix, rectum, pharynx, and conjunctiva. The most serious sequelae are suffered by infected women as gonococci ascend to the upper reproductive tract and cause pelvic inflammatory disease, chronic pelvic pain, and infertility in 10%-20% of women. Control of gonococcal infection is widely recognized as increasingly challenging due to the lack of any vaccine. N. gonorrhoeae has quickly developed resistance to all but one class of antibiotics and the emergence of multidrug-resistant strains could result in untreatable infections. As such, gonorrhea is classified by the Center for Disease Control (CDC) as an urgent public health threat. The research presented herein on new therapeutics for gonorrhea has identified a cyclic cell-penetrating peptide (CPP) as a potent molecule targeting N. gonorrhoeae.


Subject(s)
Anti-Bacterial Agents , Cell-Penetrating Peptides , Gonorrhea , Neisseria gonorrhoeae , Neisseria gonorrhoeae/drug effects , Humans , Gonorrhea/drug therapy , Gonorrhea/microbiology , Cell-Penetrating Peptides/pharmacology , Cell-Penetrating Peptides/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Animals , Mice , Female , Biofilms/drug effects , Microbial Sensitivity Tests , Cyclization , Lipopolysaccharides/metabolism , Arginine/pharmacology , Arginine/chemistry
20.
J Biol Chem ; 300(9): 107697, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39173950

ABSTRACT

To elucidate the dynamic evolution of cancer cell characteristics within the tumor microenvironment (TME), we developed an integrative approach combining single-cell tracking, cell fate simulation, and 3D TME modeling. We began our investigation by analyzing the spatiotemporal behavior of individual cancer cells in cultured pancreatic (MiaPaCa2) and cervical (HeLa) cancer cell lines, with a focus on the α2-6 sialic acid (α2-6Sia) modification on glycans, which is associated with cell stemness. Our findings revealed that MiaPaCa2 cells exhibited significantly higher levels of α2-6Sia modification, correlating with enhanced reproductive capabilities, whereas HeLa cells showed less prevalence of this modification. To accommodate the in vivo variability of α2-6Sia levels, we employed a cell fate simulation algorithm that digitally generates cell populations based on our observed data while varying the level of sialylation, thereby simulating cell growth patterns. Subsequently, we performed a 3D TME simulation with these deduced cell populations, considering the microenvironment that could impact cancer cell growth. Immune cell landscape information derived from 193 cervical and 172 pancreatic cancer cases was used to estimate the degree of the positive or negative impact. Our analysis suggests that the deduced cells generated based on the characteristics of MiaPaCa2 cells are less influenced by the immune cell landscape within the TME compared to those of HeLa cells, highlighting that the fate of cancer cells is shaped by both the surrounding immune landscape and the intrinsic characteristics of the cancer cells.

SELECTION OF CITATIONS
SEARCH DETAIL