Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 29(60): e202302176, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37518768

ABSTRACT

Analyses of the Cambridge Structural Database and theoretical calculations (PBE0-D3/def2-TZVP level, atoms-in-molecules, natural bond orbital studies) prove the formation of net attractive noncovalent interactions between group 5 elements and electron-rich atoms (neutral or anionic). These kinds of bonding are markedly different from coordination bonds formed by the same elements and possess the distinctive features of σ-hole interactions. The term erythronium bond is proposed to denote these bonds. X-ray structures of vanadate-dependent bromoperoxidases show that these interactions are present also in biological systems.

2.
Chemistry ; 28(67): e202201838, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-35968660

ABSTRACT

The synthesis and characterisation of a library of acyclic antimony(III) and bismuth(III) triaryl pnictogen bonding (PnB) receptor systems are reported. In the first-generation receptor series, quantitative 1 H NMR chloride titration experiments in THF solvent media reveal halide anion binding potency is intimately correlated with both the electronic-withdrawing nature of the aryl- substituent and the polarisability of the PnB donor. Further extensive anion binding investigations with the most potent Sb- and Bi-based PnB receptors: 1⋅Sb2CF3 and 1⋅Bi2CF3 , reveal novel selectivity profiles, both displaying Cl- selectivity relative to the heavier halides and, impressively, to a range of highly basic oxoanions. The synthesis and preliminary chloride anion binding studies of a series of novel tripodal tris-proto-triazole triaryl Sb(III) and Bi(III) mixed PnB-HB receptor systems are also described. Whereas parent triphenyl Sb(III) and Bi(III) compounds are incapable of binding Cl- in THF solvent media, the PnB-triazole HB host systems exhibit notable halide affinity.


Subject(s)
Antimony , Bismuth , Antimony/chemistry , Bismuth/chemistry , Chlorides , Anions/chemistry , Halogens/chemistry , Triazoles/chemistry , Solvents
3.
Chembiochem ; 23(2): e202100498, 2022 01 19.
Article in English | MEDLINE | ID: mdl-34693623

ABSTRACT

The importance of selenium-centered noncovalent chalcogen bonds represented as Se⋅⋅⋅A (A=O/S) has been explored for short directional contacts in small molecules and proteins. In addition, S⋅⋅⋅O centered contacts have been analyzed. Computational analyses involving the quantitative assessment of the associated energetics, the molecular electrostatic potentials (MEP), and electron density derived topological parameters, namely, quantum theory of atom in molecules (QTAIM) analyses, and NBO (natural bond orbital) based calculations, have been performed to unequivocally establish the strength, stability, and attractive role of chalcogen bonds in the solid-state. This investigation has been performed in molecules from both the Cambridge Structural Database (CSD) and Protein Data Bank (PDB). Thus futuristic materials may be designed keeping in mind the significance of these interactions, including their relevance in biology.


Subject(s)
Chalcogens/chemistry , Databases, Protein , Proteins/chemistry , Crystallography, X-Ray , Quantum Theory
4.
Chemistry ; 27(59): 14600-14604, 2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34520586

ABSTRACT

A series of novel heteroditopic halogen bonding (XB) receptor functionalised silica based materials, containing mono- and bis-iodotriazole benzo-15-crown-5 groups are investigated for the cooperative binding and extraction of sodium halide ion-pair species from aqueous solution. Characterisation of the XB materials by CHN elemental analysis, 13 C CP/MAS NMR and ATR-FTIR spectroscopies confirms and quantifies the successful incorporation of the ion-pair receptor frameworks to the silica material. ICP-MS solid-liquid extraction studies demonstrate the bidentate XB functionalised material is capable of NaI extraction from water. Importantly, cooperative XB-mediated sodium halide ion-pair binding is determined to be crucial to the material's extraction capabilities, impressively demonstrating a two-fold enhancement in sodium iodide extraction efficiency relative to a heteroditopic hydrogen bonding receptor functionalised silica material analogue.


Subject(s)
Halogens , Sodium Iodide , Anions , Hydrogen Bonding , Ions
5.
Crystals (Basel) ; 9(10)2019 Oct.
Article in English | MEDLINE | ID: mdl-32219003

ABSTRACT

Rigid and directional arylethynyl scaffolds have been widely successful across diverse areas of chemistry. Utilizing this platform, we present three new structures of a dicationic 1,3-bis(4-ethynyl-3-iodopyridinium)-benzene halogen bonding receptor with tetrafluoroborate, nitrate, and hydrogen sulfate. Structural analysis focuses on receptor conformation, anion shape, solvation, and long range packing of these systems. Coupled with our previously reported structures, we conclude that anions can be classified as building units within this family of halogen bonding receptors. Two kinds of antiparallel dimers are observed for these dicationic receptors. An off-centered species is most frequent, present among geometrically diverse anions, and assorted receptor conformations. In contrast, the centered antiparallel dimers are observed with receptors adopting a bidentate conformation in the solid-state. While anions support the solid-state formation of dimers, the molecular geometry and characteristics (planarity, rigidity, and directionality) of arylethynyl systems increases the likelihood of dimer formation by limiting efficient packing arrangements. The significantly larger cation may have considerable influence on the solid-state packing, as similar cationic arylethynyl systems also display these dimers, suggesting.

6.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 75(Pt 1): 34-38, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-32830775

ABSTRACT

Organic selenocyanates R-Se-CN can act as an amphoteric chalcogen bond (ChB) donor (through the Se atom) and acceptor (through the N atom lone pair). Co-crystallization of tri-substituted 1,3,5-tris(selenocyanatomethyl)-2,4,6-trimethylbenzene (1) is investigated with different ditopic Lewis bases acting as chalcogen bond (ChB) acceptors to investigate the outcome of the competition, as ChB acceptor, between the nitrogen lone pair of the SeCN group and other Lewis bases involving pyridinyl or carbonyl functions. In the presence of tetramethylpyrazine (TMP), benzoquinone (BQ) and para-dinitrobenzene (pDNB) as ditopic Lewis bases, a recurrent oligomeric motif stabilized by six ChB interactions is observed, involving six SeCN groups and the ChB acceptor sites of TMP, BQ and pDNB in the 2:1 adducts (1)2·TMP, (1)2·BQ and (1)2·pDNB.

7.
SAR QSAR Environ Res ; 29(1): 21-42, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29254381

ABSTRACT

Nowadays, as computing has become much more available, a fresh momentum has been observed in the field of re-visioning and re-parameterizing the usual tools, as well as estimating for the incorporation of new qualitative capabilities, aimed at making more accurate and reliable predictions in drug discovery processes. Inspired by the success of modelling the electrostatic part of the halogen bonding (XB) by means of the distributed multipole expansion, a study is presented which attempts to extend this approach to a tougher case of σ-hole interaction: sulphur-based chalcogen bonding. To that end, 11 anisotropic models have been derived and tested for their performance in the reproduction of reference ab initio molecular electrostatic potential. A careful examination resulted in three models which have been selected for further examination as a part of the molecular mechanics force field (GAFF). The combined force field was used to estimate inter- and intra-molecular interactions for the molecular systems, capable of differentiating the binding from the σ-hole and other directions. The anisotropic models proposed were generally able to correct the wrong predictions of the sulphur models based only on isotropic charges and, thus, are a promising direction for further development of the refined electrostatics force fields.


Subject(s)
Drug Discovery , Models, Molecular , Quantitative Structure-Activity Relationship , Sulfur/chemistry , Static Electricity
8.
Chemphyschem ; 16(3): 676-81, 2015 Feb 23.
Article in English | MEDLINE | ID: mdl-25521341

ABSTRACT

Chemical binding in crystalline ammonium chloride, a simple inorganic salt with an unexpectedly complex bonding pattern, was studied by using a topological analysis of electron density function derived from high-resolution X-ray diffraction. Supported by periodic quantum chemical calculations, it provided experimental evidence for weak σ-hole bonds (1.5 kcal mol(-1) ) that involve ammonium cations in a crystal. Our results show this type of supramolecular interaction to be more numerous than has been found to date by using gas-phase calculations or statistical analysis of CSD.

SELECTION OF CITATIONS
SEARCH DETAIL