Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 939
Filter
1.
J Biomed Opt ; 30(Suppl 1): S13703, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39034959

ABSTRACT

Significance: Standardization of fluorescence molecular imaging (FMI) is critical for ensuring quality control in guiding surgical procedures. To accurately evaluate system performance, two metrics, the signal-to-noise ratio (SNR) and contrast, are widely employed. However, there is currently no consensus on how these metrics can be computed. Aim: We aim to examine the impact of SNR and contrast definitions on the performance assessment of FMI systems. Approach: We quantified the SNR and contrast of six near-infrared FMI systems by imaging a multi-parametric phantom. Based on approaches commonly used in the literature, we quantified seven SNRs and four contrast values considering different background regions and/or formulas. Then, we calculated benchmarking (BM) scores and respective rank values for each system. Results: We show that the performance assessment of an FMI system changes depending on the background locations and the applied quantification method. For a single system, the different metrics can vary up to ∼ 35 dB (SNR), ∼ 8.65 a . u . (contrast), and ∼ 0.67 a . u . (BM score). Conclusions: The definition of precise guidelines for FMI performance assessment is imperative to ensure successful clinical translation of the technology. Such guidelines can also enable quality control for the already clinically approved indocyanine green-based fluorescence image-guided surgery.


Subject(s)
Benchmarking , Molecular Imaging , Optical Imaging , Phantoms, Imaging , Signal-To-Noise Ratio , Molecular Imaging/methods , Molecular Imaging/standards , Optical Imaging/methods , Optical Imaging/standards , Image Processing, Computer-Assisted/methods
2.
Sensors (Basel) ; 24(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39001164

ABSTRACT

Hyperspectral detection of the change rate of organic matter content in agricultural remote sensing requires a high signal-to-noise ratio (SNR). However, due to the large number and efficiency limitation of the components, it is difficult to improve the SNR. This study uses high-efficiency convex grating with a diffraction efficiency exceeding 50% across the 360-850 nm range, a back-illuminated Complementary Metal Oxide Semiconductor (CMOS) detector with a 95% efficiency in peak wavelength, and silver-coated mirrors to develop an imaging spectrometer for detecting soil organic matter (SOM). The designed system meets the spectral resolution of 10 nm in the 360-850 nm range and achieves a swath of 100 km and a spatial resolution of 100 m at an orbital height of 648.2 km. This study also uses the basic structure of Offner with fewer components in the design and sets the mirrors of the Offner structure to have the same sphere, which can achieve the rapid adjustment of the co-standard. This study performs a theoretical analysis of the developed Offner imaging spectrometer based on the classical Rowland circular structure, with a 21.8 mm slit length; simulates its capacity for suppressing the +2nd-order diffraction stray light with the filter; and analyzes the imaging quality after meeting the tolerance requirements, which is combined with the surface shape characteristics of the high-efficiency grating. After this test, the grating has a diffraction efficiency above 50%, and the silver-coated mirrors have a reflection value above 95% on average. Finally, the laboratory tests show that the SNR over the waveband exceeds 300 and reaches 800 at 550 nm, which is higher than some current instruments in orbit for soil observation. The proposed imaging spectrometer has a spectral resolution of 10 nm, and its modulation transfer function (MTF) is greater than 0.23 at the Nyquist frequency, making it suitable for remote sensing observation of SOM change rate. The manufacture of such a high-efficiency broadband grating and the development of the proposed instrument with high energy transmission efficiency can provide a feasible technical solution for observing faint targets with a high SNR.

3.
Quant Imaging Med Surg ; 14(6): 4031-4040, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38846286

ABSTRACT

Background: The rapid increase in the use of radiodiagnostic examinations in China, especially computed tomography (CT) scans, has led to these examinations being the largest artificial source of per capita effective dose (ED). This study conducted a retrospective analysis of the correlation between image quality, ED, and body composition in 540 cases that underwent thyroid, chest, or abdominal CT scans. The aim of this analysis was to evaluate the correlation between the parameters of CT scans and body composition in common positions of CT examination (thyroid, chest, and abdomen) and ultimately inform potential measures for reducing radiation exposure. Methods: This study included 540 patients admitted to Fudan University Shanghai Cancer Center from January 2015 to December 2019 who underwent both thyroid or chest or abdominal CT scan and body composition examination. Average CT values and standard deviation (SD) values were collected for the homogeneous areas of the thyroid, chest, or abdomen, and the average CT values and SD values of adjacent subcutaneous fat tissue were measured in the same region of interest (ROI). All data were measured three times, and the average was taken to calculate the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) for each area. The dose-length product (DLP) was recorded, and the ED was calculated with the following: formula ED = k × DLP. Dual-energy X-ray was used to determine body composition and obtain indicators such as percentage of spinal and thigh muscle. Pearson correlation coefficient was used to analyze the correlations between body composition indicators, height, weight, body mass index (BMI), and ED. Results: The correlation coefficients between the SNR of abdominal CT scan and weight, BMI, and body surface area (BSA) were -0.470 (P=0.001), -0.485 (P=0.001), and -0.437 (P=0.002), representing a moderate correlation strength with statistically significant differences. The correlation coefficients between the ED of chest CT scans and weight, BMI, spinal fat percentage, and BSA were 0.488 (P=0.001), 0.473 (P=0.002), 0.422 (P=0.001), and 0.461 (P=0.003), respectively, indicating a moderate correlation strength with statistical differences. There was a weak statistically significant correlation between the SNR, CNR, and ED of the other scans with each physical and body composition index (P=0.023). Conclusions: There were varying degrees of correlation between CT image quality and ED and physical and body composition indices, which may inform novel solutions for reducing radiation exposure.

4.
Front Physiol ; 15: 1394431, 2024.
Article in English | MEDLINE | ID: mdl-38854630

ABSTRACT

Objective: To evaluate the effectiveness of 3D NerveVIEW sequence with gadolinium contrast on the visualization of pelvic nerves and their branches compared to that without contrast. Methods: Participants were scanned twice using 3D NerveVIEW sequence with and without gadolinium contrast to acquire pelvic nerve images. The signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and contrast ratio of the nerves were calculated and compared to determine the quality of images. To subjectively assess, using a 3-point scale, branch nerves critical to therapeutic decision-making, including the pelvic splanchnic nerve and pelvic plexus, the superior gluteal nerve, and the pudendal nerve. Results: In the 32 eligible participants after using contrast, the CNRs of the images of nerve-to-bone and nerve-to-vessel significantly increased (p < 0.05). The CR of the images with contrast of all nerve-to-surrounding tissues (i.e., bone, muscle, blood vessels, and fat) were also found significantly higher (p < 0.05). The assessment of observers also shows higher scores for images with contrast compared to images without contrast. Conclusion: The 3D NerveVIEW sequence combined with gadolinium contrast improved vascular suppression, increased the contrast between pelvic nerves and surrounding tissue, and enhanced the visualization of nerves and their branches. This study may be helpful for the technically challenging preoperative planning of pelvic diseases surgery.

6.
ISA Trans ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38910090

ABSTRACT

Similarity-based prediction methods utilize degradation trend analysis based on degradation indicators (DIs). These methods are gaining prominence in industrial predictive maintenance because they effectively address prognostics for machines with unknown failure mechanisms. However, current studies often neglect the discrepancies in degradation trends when constructing DIs from multi-sensor data and lack automatic normalization of operating regimes during feature fusion. In this study, a feature fusion methodology based on a signal-to-noise ratio metric that leverages slow feature analysis (SFA) is proposed. This customized metric utilizes SFA to quantify degradation trend discrepancies of constructed DIs, while automatically filtering out the effects of multiple operating regimes during feature fusion. The effectiveness and superiority of the proposed method are demonstrated using publicly available aero-engine and rolling bearing datasets.

7.
Sensors (Basel) ; 24(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38894072

ABSTRACT

The large amount of sampled data in coherent phase-sensitive optical time-domain reflectometry (Φ-OTDR) brings heavy data transmission, processing, and storage burdens. By using the comparator combined with undersampling, we achieve simultaneous reduction of sampling rate and sampling resolution in hardware, thus greatly decreasing the sampled data volume. But this way will inevitably cause the deterioration of detection signal-to-noise ratio (SNR) due to the quantization noise's dramatic increase. To address this problem, denoising the demodulated phase signals using compressed sensing, which exploits the sparsity of spectrally sparse vibration, is proposed, thereby effectively enhancing the detection SNR. In experiments, the comparator with a sampling parameter of 62.5 MS/s and 1 bit successfully captures the 80 MHz beat signal, where the sampled data volume per second is only 7.45 MB. Then, when the piezoelectric transducer's driving voltage is 1 Vpp, 300 mVpp, and 100 mVpp respectively, the SNRs of the reconstructed 200 Hz sinusoidal signals are respectively enhanced by 23.7 dB, 26.1 dB, and 28.7 dB by using compressed sensing. Moreover, multi-frequency vibrations can also be accurately reconstructed with a high SNR. Therefore, the proposed technique can effectively enhance the system's performance while greatly reducing its hardware burden.

8.
ACS Appl Mater Interfaces ; 16(27): 35400-35409, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38917455

ABSTRACT

A series of dual-band photomultiplication (PM)-type organic photodetectors (OPDs) were fabricated by employing a donor(s)/acceptor (100:1, wt/wt) mixed layer and an ultrathin Y6 layer as the active layers, as well as by using PNDIT-F3N as an interfacial layer near the indium tin oxide (ITO) electrode. The dual-band PM-type OPDs exhibit the response range of 330-650 nm under forward bias and the response range of 650-850 nm under reverse bias. The tunable spectral response range of dual-band PM-type OPDs under forward or reverse bias can be explained well from the trapped electron distribution near the electrodes. The dark current density (JD) of the dual-band PM-type OPDs can be efficiently suppressed by employing PNDIT-F3N as the anode interfacial layer and the special active layers with hole-only transport characteristics. The light current density (JL) of the dual-band PM-type OPDs can be slightly increased by incorporating wide-bandgap polymer P-TPDs with relatively large hole mobility (µh) in the active layers. The signal-to-noise ratios of the optimized dual-band PM-type OPDs reach 100,980 under -50 V bias and white light illumination with an intensity of 1.0 mW·cm-2, benefiting from the ultralow JD by employing wide-bandgap PNDIT-F3N as the anode interfacial buffer layer and the increased JL by incorporating appropriate P-TPD in the active layers.

9.
Sensors (Basel) ; 24(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38794013

ABSTRACT

In many areas of engineering, the design of a new system usually involves estimating performance-related parameters from early stages of the project to determine whether a given solution will be compliant with the defined requirements. This aspect is particularly relevant during the design of satellite payloads, where the target environment is not easily accessible in most cases. In the context of Earth observation sensors, this problem has been typically solved with the help of a set of complex pseudo-empirical models and/or expensive laboratory equipment. This paper describes a more practical approach: the illumination conditions measured by an in-orbit payload are recreated on ground with the help of a replica of the same payload so the performance of another Earth observation sensor in development can be evaluated. The proposed method is specially relevant in the context of small satellites, as the possibility of having extra units devoted to these tasks becomes greater as costs are reduced. The results obtained using this method in an actual space mission are presented in this paper, giving valuable information that will help in further stages of the project.

10.
Psychometrika ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806853

ABSTRACT

Mediation analysis plays an important role in understanding causal processes in social and behavioral sciences. While path analysis with composite scores was criticized to yield biased parameter estimates when variables contain measurement errors, recent literature has pointed out that the population values of parameters of latent-variable models are determined by the subjectively assigned scales of the latent variables. Thus, conclusions in existing studies comparing structural equation modeling (SEM) and path analysis with weighted composites (PAWC) on the accuracy and precision of the estimates of the indirect effect in mediation analysis have little validity. Instead of comparing the size on estimates of the indirect effect between SEM and PAWC, this article compares parameter estimates by signal-to-noise ratio (SNR), which does not depend on the metrics of the latent variables once the anchors of the latent variables are determined. Results show that PAWC yields greater SNR than SEM in estimating and testing the indirect effect even when measurement errors exist. In particular, path analysis via factor scores almost always yields greater SNRs than SEM. Mediation analysis with equally weighted composites (EWCs) also more likely yields greater SNRs than SEM. Consequently, PAWC is statistically more efficient and more powerful than SEM in conducting mediation analysis in empirical research. The article also further studies conditions that cause SEM to have smaller SNRs, and results indicate that the advantage of PAWC becomes more obvious when there is a strong relationship between the predictor and the mediator, whereas the size of the prediction error in the mediator adversely affects the performance of the PAWC methodology. Results of a real-data example also support the conclusions.

11.
Ultramicroscopy ; 263: 113997, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38820993

ABSTRACT

High-resolution electron microscopy is a well-suited tool for characterizing the nanoscale structure of materials. However, the interaction of the sample and the high-energy electrons of the beam can often have a detrimental impact on the sample structure. This effect can only be alleviated by decreasing the number of electrons to which the sample is exposed but will come at the cost of a decreased signal-to-noise ratio in the resulting image. Images with low signal to noise ratios are often challenging to interpret as parts of the sample with a low interaction with the electron beam are reproduced with very low contrast. Here we suggest simple measures as alternatives to the conventional signal-to-noise ratio and investigate how these can be used to predict the interpretability of the electron microscopy images. We test the models on a sample consisting of gold nanoparticles supported on a cerium dioxide substrate. The models are evaluated based on series of images acquired at varying electron dose.

12.
Quant Imaging Med Surg ; 14(5): 3655-3664, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38720833

ABSTRACT

Background: Although previous studies have shown that the injection of contrast agents can improve image quality, the specific impact of this on T2-weighted fat-suppressed (T2 FS) and diffusion-weighted imaging (DWI) sequences in the diagnosis of breast cancer remains incompletely understood. In particular, there is insufficient research on how contrast agents affect the signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and apparent diffusion coefficient (ADC) values within these sequences, and how these changes influence the diagnosis of benign and malignant breast tumors. Methods: Breast magnetic resonance images (MRI) were obtained from 178 consecutive patients on a 3T scanner. The SNR and CNR of lesions on T2 FS sequence were calculated before and after contrast agent injection and compared. Differences between pre- and post-contrast ADC in identifying different tumor types were compared using the Kruskal-Wallis H-test and the paired comparison test. The accuracy of ADC values between pre- and post-contrast in distinguishing benign and malignant breast masses was assessed using receiver operating characteristic (ROC) curves. Results: The SNR and CNR of T2 FS sequence increased after contrast injection, and especially for invasive cancer and benign tumor, the increase was significant. For DWI, there was a slight increase or decrease of ADC values after contrast injection, but the ADC values before and after contrast had a similar effect in identifying different types of tumors. In the ROC curve analysis for assessing benign and malignant breast tumors, the area under the curve (AUC) before and after contrast showed similar results. Conclusions: Contrast agent injection can improve the SNR and CNR of T2 FS sequence, thus providing higher quality images for the diagnosis of breast lesions. Furthermore, injection of contrast agent had little effect on the ability of ADC values to identify different types of lesions and both ADC values before and after the contrast agent were able to distinguish between benign and malignant tumors with almost the same accuracy.

13.
NMR Biomed ; : e5168, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38716493

ABSTRACT

The increasing signal-to-noise ratio (SNR) is the main reason to use ultrahigh field MRI. Here, we investigate the dependence of the SNR on the magnetic field strength, especially for small animal applications, where small surface coils are used and coil noise cannot be ignored. Measurements were performed at five field strengths from 3 to 14.1 T, using 2.2-cm surface coils with an identical coil design for transmit and receive on two water samples with and without salt. SNR was measured in a series of spoiled gradient echo images with varying flip angle and corrected for saturation based on a series of flip angle and T1 measurements. Furthermore, the noise figure of the receive chain was determined and eliminated to remove instrument dependence. Finally, the coil sensitivity was determined based on the principle of reciprocity to obtain a measure for ultimate SNR. Before coil sensitivity correction, the SNR increase in nonconductive samples is highly supralinear with B0 1.6-2.7, depending on distance to the coil, while in the conductive sample, the growth is smaller, being around linear close to the surface coil and increasing up to a B0 2.0 dependence when moving away from the coil. After sensitivity correction, the SNR increase is independent of loading with B0 2.1. This study confirms the supralinear increase of SNR with increasing field strengths. Compared with most human measurements with larger coil sizes, smaller surface coils, as mainly used in animal studies, have a higher contribution of coil noise and thus a different behavior of SNR at high fields.

14.
Sensors (Basel) ; 24(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38732829

ABSTRACT

In 3D microsphere tracking, unlike in-plane motion that can be measured directly by a microscope, axial displacements are resolved by optical interference or a diffraction model. As a result, the axial results are affected by the environmental noise. The immunity to environmental noise increases with measurement accuracy and the signal-to-noise ratio (SNR). In compound digital holography microscopy (CDHM)-based measurements, precise identification of the tracking marker is critical to ensuring measurement precision. The reconstruction centering method (RCM) was proposed to suppress the drawbacks caused by installation errors and, at the same time, improve the correct identification of the tracking marker. The reconstructed center is considered to be the center of the microsphere, rather than the center of imaging in conventional digital holographic microscopy. This method was verified by simulation of rays tracing through microspheres and axial moving experiments. The axial displacements of silica microspheres with diameters of 5 µm and 10 µm were tested by CDHM in combination with the RCM. As a result, the SNR of the proposed method was improved by around 30%. In addition, the method was successfully applied to axial displacement measurements of overlapped microspheres with a resolution of 2 nm.

15.
Sensors (Basel) ; 24(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38732838

ABSTRACT

Currently, the visual detection of a target's shock flow field through background schlieren technology is a novel detection system. However, there are very few studies on the long-distance background schlieren imaging mechanism and its application in system design in the field of target detection. This paper proposes a design optimization method for space-based BOS detection system metrics. By establishing sensitivity evaluation models and image signal-to-noise ratio evaluation models for BOS detection systems, the influence of the different flight parameters and key parameters of BOS systems (detection spectral bands and spatial resolution) on target detection efficiency is explored. Furthermore, an optimization method based on the image signal-to-noise ratio of the BOS system and the overall metrics for specific scenarios are provided. The simulation results demonstrate that under satellite background images and speckle background images, the system metrics can detect and identify the schlieren of high-speed targets, with better applicability to disordered and complex real background images. This research contributes to advancing the development of high-speed target detection technology based on BOS.

16.
J Imaging ; 10(5)2024 May 09.
Article in English | MEDLINE | ID: mdl-38786569

ABSTRACT

Image quality assessment of magnetic resonance imaging (MRI) data is an important factor not only for conventional diagnosis and protocol optimization but also for fairness, trustworthiness, and robustness of artificial intelligence (AI) applications, especially on large heterogeneous datasets. Information on image quality in multi-centric studies is important to complement the contribution profile from each data node along with quantity information, especially when large variability is expected, and certain acceptance criteria apply. The main goal of this work was to present a tool enabling users to assess image quality based on both subjective criteria as well as objective image quality metrics used to support the decision on image quality based on evidence. The evaluation can be performed on both conventional and dynamic MRI acquisition protocols, while the latter is also checked longitudinally across dynamic series. The assessment provides an overall image quality score and information on the types of artifacts and degrading factors as well as a number of objective metrics for automated evaluation across series (BRISQUE score, Total Variation, PSNR, SSIM, FSIM, MS-SSIM). Moreover, the user can define specific regions of interest (ROIs) to calculate the regional signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR), thus individualizing the quality output to specific use cases, such as tissue-specific contrast or regional noise quantification.

17.
J Imaging ; 10(5)2024 May 20.
Article in English | MEDLINE | ID: mdl-38786578

ABSTRACT

Vector quantization (VQ) is a block coding method that is famous for its high compression ratio and simple encoder and decoder implementation. Linde-Buzo-Gray (LBG) is a renowned technique for VQ that uses a clustering-based approach for finding the optimum codebook. Numerous algorithms, such as Particle Swarm Optimization (PSO), the Cuckoo search algorithm (CS), bat algorithm, and firefly algorithm (FA), are used for codebook design. These algorithms are primarily focused on improving the image quality in terms of the PSNR and SSIM but use exhaustive searching to find the optimum codebook, which causes the computational time to be very high. In our study, our algorithm enhances LBG by minimizing the computational complexity by reducing the total number of comparisons among the codebook and training vectors using a match function. The input image is taken as a training vector at the encoder side, which is initialized with the random selection of the vectors from the input image. Rescaling using bilinear interpolation through the nearest neighborhood method is performed to reduce the comparison of the codebook with the training vector. The compressed image is first downsized by the encoder, which is then upscaled at the decoder side during decompression. Based on the results, it is demonstrated that the proposed method reduces the computational complexity by 50.2% compared to LBG and above 97% compared to the other LBG-based algorithms. Moreover, a 20% reduction in the memory size is also obtained, with no significant loss in the image quality compared to the LBG algorithm.

18.
Adv Sci (Weinh) ; 11(26): e2400261, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38659228

ABSTRACT

Metamaterials hold significant promise for enhancing the imaging capabilities of magnetic resonance imaging (MRI) machines as an additive technology, due to their unique ability to enhance local magnetic fields. However, despite their potential, the metamaterials reported in the context of MRI applications have often been impractical. This impracticality arises from their predominantly flat configurations and their susceptibility to shifts in resonance frequencies, preventing them from realizing their optimal performance. Here, a computational method for designing wearable and tunable metamaterials via freeform auxetics is introduced. The proposed computational-design tools yield an approach to solving the complex circle packing problems in an interactive and efficient manner, thus facilitating the development of deployable metamaterials configured in freeform shapes. With such tools, the developed metamaterials may readily conform to a patient's knee, ankle, head, or any part of the body in need of imaging, and while ensuring an optimal resonance frequency, thereby paving the way for the widespread adoption of metamaterials in clinical MRI applications.

19.
Sci Rep ; 14(1): 7777, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38565939

ABSTRACT

Low-energy and efficient coal gangue sorting is crucial for environmental protection. Multispectral imaging (MSI) has emerged as a promising technology in this domain. This work addresses the challenge of low resolution and poor recognition performance in underground MSI equipment. We propose an attention-based multi-level residual network (ANIMR) within a super-resolution reconstruction model (ANIMR-GAN) inspired by CycleGAN. This model incorporates improvements to the discriminator and loss function. We trained the model on 600 coal and gangue MSI samples and validated it on an independent set of 120 samples. The ANIMR-GAN, combined with a random forest classifier, achieved a maximum accuracy of 97.78% and an average accuracy of 93.72%. Furthermore, the study identifies the 959.37 nm band as optimal for coal and gangue classification. Compared to existing super-resolution methods, ANIMR-GAN offers advantages, paving the way for intelligent and efficient coal gangue sorting, ultimately promoting advancements in sustainable mineral processing.

20.
J Biophotonics ; 17(6): e202300465, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38622811

ABSTRACT

Photoacoustic (PA) imaging is hybrid imaging modality with good optical contrast and spatial resolution. Portable, cost-effective, smaller footprint light emitting diodes (LEDs) are rapidly becoming important PA optical sources. However, the key challenge faced by the LED-based systems is the low light fluence that is generally compensated by high frame averaging, consequently reducing acquisition frame-rate. In this study, we present a simple deep learning U-Net framework that enhances the signal-to-noise ratio (SNR) and contrast of PA image obtained by averaging low number of frames. The SNR increased by approximately four-fold for both in-class in vitro phantoms (4.39 ± 2.55) and out-of-class in vivo models (4.27 ± 0.87). We also demonstrate the noise invariancy of the network and discuss the downsides (blurry outcome and failure to reduce the salt & pepper noise). Overall, the developed U-Net framework can provide a real-time image enhancement platform for clinically translatable low-cost and low-energy light source-based PA imaging systems.


Subject(s)
Image Processing, Computer-Assisted , Phantoms, Imaging , Photoacoustic Techniques , Signal-To-Noise Ratio , Photoacoustic Techniques/methods , Image Processing, Computer-Assisted/methods , Time Factors , Animals , Mice , Deep Learning , Light
SELECTION OF CITATIONS
SEARCH DETAIL