Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 114
Filter
Add more filters











Publication year range
1.
Free Radic Biol Med ; 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39341300

ABSTRACT

BACKGROUND: Numerous preclinical studies have demonstrated that prolonged exposure to propofol (A general anaesthetics) can lead to hippocampus injury in immature brains and impact long-term learning and memory functions. Neuroinflammation plays a pivotal role in the impairment of brain function associated with early exposure to anesthetic drugs. Nevertheless, the involvement of hippocampal pyroptosis and neuroinflammation mediated by the NLRP3/caspase-1 signaling cascade in propofol-induced developmental neurotoxicity remains unclear. METHODS: Postnatal day (PND) 7 SD rats, PC12 cells, and HAPI cells were used to establish propofol neurotoxicity models in vivo and in vitro, respectively. We examined the potential hippocampal injury and cognitive dysfunction caused by propofol in neonatal rats through the NLRP3/caspase-1 signaling pathway using MCC950 and VX765 to inhibit the pathway. This investigation involved assessing histological changes in the hippocampus, behavioral performance in adulthood, NLRP3-related pyroptosis indicators, and neuroinflammatory cytokines. RESULTS: Both in vivo and in vitro studies have demonstrated that exposure to propofol activates the NLRP3/caspase-1 signaling cascade in the hippocampus of PND7 rats, leading to pyroptosis, neuroinflammation, and subsequent hippocampal injury and behavioral changes in adulthood. However, MCC950 and VX765 inhibit the NLRP3/caspase-1 signaling cascade, reversing the developmental neurotoxicity of propofol. CONCLUSION: Our study findings suggest that negative regulation of NLRP3/caspase-1 activation may serve as a potential therapeutic strategy for developmental neuroinflammation induced by propofol.

2.
Front Immunol ; 15: 1449657, 2024.
Article in English | MEDLINE | ID: mdl-39286259

ABSTRACT

Maintaining peripheral immune tolerance and preventing harmful autoimmune reactions is a fundamental task of the immune system. However, these essential functions are significantly compromised during autoimmune disorders, creating a major challenge in treating these conditions. In this context, we provide an overview of research on small spleen polypeptides (SSPs) that naturally regulate peripheral immune tolerance. Alongside outlining the observed effects of SSPs, we summarize here the findings on the cellular and molecular mechanisms that underlie their regulatory impact. Specifically, SSPs have demonstrated remarkable effectiveness in halting the progression of developing or established autoimmune disorders like psoriasis or arthritis in animal models. They primarily target dendritic cells (DCs), swiftly prompting the production of extracellular ATP, which is then degraded and sensed by adenosine receptors. This process triggers the mTOR signaling cascade, similar to powerful immune triggers, but instead of a rapid and intense reaction, it leads to a moderate yet significant activation of the mTOR signaling cascade. This induces a tolerogenic state in dendritic cells, ultimately leading to the generation of Foxp3+ immunosuppressor Treg cells. In addition, SSPs may indirectly attenuate the autoimmune response by reducing extracellular ATP synthesis in non-immune cells, such as endothelial cells, when exposed to elevated levels of proinflammatory cytokines. SSPs thus have the potential to contribute to the restoration of peripheral immune tolerance and may offer valuable therapeutic benefits in treating autoimmune diseases.


Subject(s)
Immune Tolerance , Spleen , Humans , Animals , Spleen/immunology , Spleen/metabolism , Autoimmune Diseases/immunology , Autoimmune Diseases/drug therapy , Dendritic Cells/immunology , Peptides/immunology , Peptides/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , T-Lymphocytes, Regulatory/immunology
3.
Anal Chim Acta ; 1324: 343111, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39218583

ABSTRACT

BACKGROUND: Ultrasensitive detection is crucial for the early warning and intervention of risk factors, ultimately benefiting the environment and human health. Low levels of ochratoxin A (OTA) present a hidden yet significant threat, and rapid detection via high-performing biosensors is therefore essential. RESULTS: A cascade isothermal amplification aptasensor (CIA-aptasensor) was designed for OTA detection. On the surface of a magnetic bead probe, the OTA level was converted into positively correlated trigger cDNA through its competitive binding with OTA-Apt. The released trigger cDNA activated catalytic hairpin assembly followed by coupling with a hybridization chain reaction to achieve CIA. After adding graphene oxide and SYBR Green I, the background interference was eliminated to specifically obtain OTA-related fluorescence. The ultrasensitive limit of detection was 0.22 pg mL-1, an improvement of 1368-fold over conventional enzyme-linked aptamer sorbent assay by the same OTA-Apt, demonstrating satisfactory reliability and practicability. Thus, the CIA-aptasensor provides an enzyme- and label-free simplified homogeneous system with minimal background interference using isothermal conditions. SIGNIFICANCE: This study provides a polymerase chain reaction-like approach for enhancing the sensitivity and performance of a biosensor, which could be extended for the application of CIA and label-free signaling strategy to other risk factors.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Limit of Detection , Nucleic Acid Amplification Techniques , Ochratoxins , Ochratoxins/analysis , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Nucleic Acid Amplification Techniques/methods , Graphite/chemistry
4.
Cell Biosci ; 14(1): 105, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39164778

ABSTRACT

Stem cell-derived exosomes exert comparable therapeutic effects to those of their parental stem cells without causing immunogenic, tumorigenic, and ethical disadvantages. Their therapeutic advantages are manifested in the management of a broad spectrum of diseases, and their dosing versatility are exemplified by systemic administration and local delivery. Furthermore, the activation and regulation of various signaling cascades have provided foundation for the claimed curative effects of exosomal therapy. Unlike other relevant reviews focusing on the upstream aspects (e.g., yield, isolation, modification), and downstream aspects (e.g. phenotypic changes, tissue response, cellular behavior) of stem cell-derived exosome therapy, this unique review endeavors to focus on various affected signaling pathways. After meticulous dissection of relevant literature from the past five years, we present this comprehensive, up-to-date, disease-specific, and pathway-oriented review. Exosomes sourced from various types of stem cells can regulate major signaling pathways (e.g., the PTEN/PI3K/Akt/mTOR, NF-κB, TGF-ß, HIF-1α, Wnt, MAPK, JAK-STAT, Hippo, and Notch signaling cascades) and minor pathways during the treatment of numerous diseases encountered in orthopedic surgery, neurosurgery, cardiothoracic surgery, plastic surgery, general surgery, and other specialties. We provide a novel perspective in future exosome research through bridging the gap between signaling pathways and surgical indications when designing further preclinical studies and clinical trials.

5.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39065818

ABSTRACT

Drug-induced liver injury (DILI) represents a significant clinical challenge characterized by hepatic dysfunction following exposure to diverse medications. Methotrexate (MTX) is a cornerstone in treating various cancers and autoimmune disorders. However, the clinical utility of MTX is overshadowed by its ability to induce hepatotoxicity. The current study aims to elucidate the hepatoprotective effect of the alcoholic extract of Egyptian Araucaria heterophylla resin (AHR) on MTX-induced liver injury in rats. AHR (100 and 200 mg/kg) significantly decreased hepatic markers (AST, ALT, and ALP), accompanied by an elevation in the antioxidant's markers (SOD, HO-1, and NQO1). AHR extract also significantly inhibited the TGF-ß/NF-κB signaling pathway as well as the downstream cascade (IL-6, JAK, STAT-3, and cyclin D). The extract significantly reduced the expression of VEGF and p38 with an elevation in the BCL2 levels, in addition to a significant decrease in the IL-1ß and TNF-α levels, with a prominent effect at a high dose (200 mg/kg). Using LC-HRMS/MS analysis, a total of 43 metabolites were tentatively identified, and diterpenes were the major class. This study presents AHR as a promising hepatoprotective agent through inhibition of the TGF-ß/NF-κB and JAK/STAT3 pathways, besides its antioxidant and anti-inflammatory effects.

6.
Chemosphere ; 363: 142826, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39002651

ABSTRACT

Numerous nano-dimensioned materials have been generated as a result of several advancements in nanoscale science such as metallic nanoparticles (mNPs) which have aided in the advancement of related research. As a result, several significant nanoscale materials are being produced commercially. It is expected that in the future, products that are nanoscale, like mNPs, will be useful in daily life. Despite certain benefits, widespread use of metallic nanoparticles and nanotechnology has negative effects and puts human health at risk because of their continual accumulation in closed biological systems, along with their complex and diverse migratory and transformation pathways. Once within the human body, nanoparticles (NPs) disrupt the body's natural biological processes and trigger inflammatory responses. These NPs can also affect the immune system by activating separate pathways that either function independently or interact with one another. Cytotoxic effects, inflammatory response, genetic material damage, and mitochondrial dysfunction are among the consequences of mNPs. Oxidative stress and reactive oxygen species (ROS) generation caused by mNPs depend upon a multitude of factors that allow NPs to get inside cells and interact with biological macromolecules and cell organelles. This review focuses on how mNPs cause inflammation and oxidative stress, as well as disrupt cellular signaling pathways that support these effects. In addition, possibilities and problems to be reduced are addressed to improve future research on the creation of safer and more environmentally friendly metal-based nanoparticles for commercial acceptance and sustainable use in medicine and drug delivery.


Subject(s)
Inflammation , Metal Nanoparticles , Oxidative Stress , Reactive Oxygen Species , Humans , Metal Nanoparticles/toxicity , Metal Nanoparticles/chemistry , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Animals , Nanoparticles/toxicity , Nanoparticles/chemistry , Signal Transduction/drug effects
7.
J Mol Biol ; 436(14): 168642, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38848866

ABSTRACT

The heat shock response (HSR) is a gene regulatory program controlling expression of molecular chaperones implicated in aging, cancer, and neurodegenerative disease. Long presumed to be activated by toxic protein aggregates, recent work suggests a new functional paradigm for the HSR in yeast. Rather than toxic aggregates, adaptive biomolecular condensates comprised of orphan ribosomal proteins (oRP) and stress granule components have been shown to be physiological chaperone clients. By titrating away the chaperones Sis1 and Hsp70 from the transcription factor Hsf1, these condensates activate the HSR. Upon release from Hsp70, Hsf1 forms spatially distinct transcriptional condensates that drive high expression of HSR genes. In this manner, the negative feedback loop controlling HSR activity - in which Hsf1 induces Hsp70 expression and Hsp70 represses Hsf1 activity - is embedded in the biophysics of the system. By analogy to phosphorylation cascades that transmit information via the dynamic activity of kinases, we propose that the HSR is organized as a condensate cascade that transmits information via the localized activity of molecular chaperones.


Subject(s)
Heat-Shock Response , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , HSP70 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , Molecular Chaperones/metabolism , Molecular Chaperones/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Biomolecular Condensates/metabolism , Ribosomal Proteins/metabolism , Ribosomal Proteins/genetics , Heat Shock Transcription Factors/metabolism , Heat Shock Transcription Factors/genetics , Phosphorylation
8.
Cell Commun Signal ; 22(1): 281, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773618

ABSTRACT

BACKGROUND: Restoring impaired peripheral immune tolerance is the primary challenge in treating autoimmune diseases. Our previous research demonstrated the effectiveness of small spleen peptides (SSPs), a fraction of low molecular weight proteins, in inhibiting the progression of psoriatic arthritis, even in the presence of high levels of the proinflammatory cytokine TNFα in the bloodstream. When specifically targeting dendritic cells (DCs), SSPs transform them into tolerogenic cells, which efficiently induce the development of regulatory Foxp3+ Treg cells. In this study, we provide further insights into the mechanism of action of SSPs. RESULTS: We found that SSPs stimulate the activation of the mTOR signaling pathway in dendritic cells, albeit in a different manner than the classical immunogenic stimulus LPS. While LPS-induced activation is rapid, strong, and sustained, the activity induced by SSPs is delayed, less intense, yet still significant. These distinct patterns of activation, as measured by phosphorylation of key components of the pathway are also observed in response to other immunogenic and tolerogenic stimuli such as GM-CSF + IL-4 or IL-10 and TGFß. The disparity in mTOR activation between immunogenic and tolerogenic stimuli is quantitative rather than qualitative. In both cases, mTOR activation primarily occurs through the PI3K/Akt signaling axis and involves ERK and GSK3ß kinases, with minimal involvement of AMPK or NF-kB pathways. Furthermore, in the case of SSPs, mTOR activation seems to involve adenosine receptors. Additionally, we observed that DCs treated with SSPs exhibit an energy metabolism with high plasticity, which is typical of tolerogenic cells rather than immunogenic cells. CONCLUSION: Hence, the decision whether dendritic cells enter an inflammatory or tolerogenic state seems to rely on varying activation thresholds and kinetics of the mTOR signaling pathway.


Subject(s)
Dendritic Cells , Immune Tolerance , Signal Transduction , TOR Serine-Threonine Kinases , Dendritic Cells/immunology , Dendritic Cells/metabolism , Dendritic Cells/drug effects , TOR Serine-Threonine Kinases/metabolism , Signal Transduction/drug effects , Animals , Mice , Inflammation/metabolism , Kinetics , Lipopolysaccharides/pharmacology
9.
J Cancer ; 15(4): 1041-1052, 2024.
Article in English | MEDLINE | ID: mdl-38230224

ABSTRACT

Background: Dopamine receptors have been reported to be involved in pain, while the exact effects and mechanism in bone cancer pain have not been fully explored. Methods: Bone cancer pain model was created by implanting walker 256 mammary gland carcinoma into right tibia bone cavity. Primary cultured spinal neurons were used for in vitro evaluation. FLIPR, western-blot, immunofluorescence, and Co-IP were used to detect cell signaling pathway. Results: Our results indicated that spinal dopamine D1 receptor (D1DR) and spinal dopamine D2 receptor (D2DR) could form heteromers in TCI rats, and antagonizing spinal D1DR and D2DR reduced heteromers formation and alleviated TCI-induced bone cancer pain. Further results indicated that D1DR or D2DR antagonist induced antinociception in TCI rats could be reversed by D1DR, D2DR, and D1/D2DR heteromer agonists. And Gq, IP3, and PLC inhibitors also attenuated TCI-induced bone cancer pain. In vitro results indicated that D1DR or D2DR antagonist decreased the Ca2+ oscillations upregulated by D1DR, D2DR, and D1/D2DR heteromer agonists in activated primary cultured spinal neurons. Moreover, inhibition of D1/D2DR heteromers induced antinociception in TCI rats was partially mediated by the CaMKII and MAPKs pathway. In addition, a natural compound levo-Corydalmine (l-CDL), could inhibit D1/D2DR heteromers and attenuate bone cancer pain. Results: Inhibition of spinal D1/D2DR heteromers via l-CDL decreases excitability in spinal neurons, which might present new therapeutic strategy for bone cancer pain.

10.
FASEB J ; 37(12): e23295, 2023 12.
Article in English | MEDLINE | ID: mdl-37984844

ABSTRACT

C-natriuretic peptide (CNP) is the central regulator of oocyte meiosis progression, thus coordinating synchronization of oocyte nuclear-cytoplasmic maturation. However, whether CNP can independently regulate cytoplasmic maturation has been long overlooked. Mitochondrial DNA (mtDNA) accumulation is the hallmark event of cytoplasmic maturation, but the mechanism underlying oocyte mtDNA replication remains largely elusive. Herein, we report that CNP can directly stimulate oocyte mtDNA replication at GV stage, and deficiency of follicular CNP may contribute largely to lower mtDNA copy number in in vitro matured oocytes. The mechanistic study showed that cAMP-PKA-CREB1 signaling cascade underlies the regulatory role of CNP in stimulating mtDNA replication and upregulating related genes. Of interest, we also report that CNP-NPR2 signaling is inhibited in aging follicles, and this inhibition is implicated in lower mtDNA copy number in oocytes from aging females. Together, our study provides the first direct functional link between follicular CNP and oocyte mtDNA replication, and identifies its involvement in aging-associated mtDNA loss in oocytes. These findings, not only update the current knowledge of the functions of CNP in coordinating oocyte maturation but also present a promising strategy for improving in vitro fertilization outcomes of aging females.


Subject(s)
DNA, Mitochondrial , In Vitro Oocyte Maturation Techniques , Female , Humans , DNA, Mitochondrial/genetics , Natriuretic Peptide, C-Type/genetics , Natriuretic Peptide, C-Type/pharmacology , Oocytes/physiology , Meiosis , Natriuretic Peptides/genetics , Vasodilator Agents
11.
Pestic Biochem Physiol ; 196: 105637, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37945236

ABSTRACT

Bifenthrin is one of the widely used synthetic pyrethroid insecticides, employed for various purposes worldwide. As lipophilic pyrethroids can easily bind to soil particles, which is why their residues are detected in various environments. Consequently, the toxicity of bifenthrin to non-target organisms can be regarded as an environmental concern. The toxic effects of bifenthrin have been studied in various animal models and cell lines; however, its toxic effects on cattle remain unclear. In particular, gaining insights into the toxic effects of bifenthrin on the mammary lactation system is crucial for the dairy industry. Therefore, we proceeded to investigate the toxic effects of bifenthrin on the bovine mammary epithelial cells (MAC-T cells). We established that bifenthrin inhibited cell proliferation and triggered apoptosis in MAC-T cells. Additionally, bifenthrin induced mitochondrial dysfunction and altered inflammatory gene expression by disrupting mitochondrial membrane potential (MMP) and generating excessive reactive oxygen species (ROS). We also demonstrated that bifenthrin disrupted both cytosolic and mitochondrial calcium ion homeostasis. Furthermore, bifenthrin altered mitogen-activated protein kinase (MAPK) signaling cascades and downregulated casein-related genes. Collectively, we confirmed the multiple toxic effects of bifenthrin on MAC-T cells, which could potentially reduce milk yield and quality.


Subject(s)
Calcium , Pyrethrins , Female , Cattle , Animals , Reactive Oxygen Species/metabolism , Calcium/metabolism , Epithelial Cells , Pyrethrins/pharmacology , Homeostasis , Apoptosis
12.
J Ginseng Res ; 47(4): 561-571, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37397414

ABSTRACT

Background: Escalating evidence shows that ginseng possesses an antiaging potential with cognitive enhancing activity. As mountain cultivated ginseng (MCG) is cultivated without agricultural chemicals, MCG has emerged as a popular herb medicine. However, little is known about the MCG-mediated pharmacological mechanism on brain aging. Methods: As we demonstrated that glutathione peroxidase (GPx) is important for enhancing memory function in the animal model of aging, we investigated the role of MCG as a GPx inducer using GPx-1 (a major type of GPx) knockout (KO) mice. We assessed whether MCG modulates redox and cholinergic parameters, and memory function in aged GPx-1 knockout KOmice. Results: Redox burden of aged GPx-1 KO mice was more evident than that of aged wild-type (WT) mice. Alteration of Nrf2 DNA binding activity appeared to be more evident than that of NFκB DNA binding activity in aged GPx-1 KO mice. Alteration in choline acetyltransferase (ChAT) activity was more evident than that in acetylcholine esterase activity. MCG significantly attenuated reductions in Nrf2 system and ChAT level. MCG significantly enhanced the co-localization of Nrf2-immunoreactivity and ChAT-immunoreactivity in the same cell population. Nrf2 inhibitor brusatol significantly counteracted MCG-mediated up-regulation in ChAT level and ChAT inhibition (by k252a) significantly reduced ERK phosphorylation by MCG, suggesting that MCG might require signal cascade of Nrf2/ChAT/ERK to enhance cognition. Conclusion: GPx-1 depletion might be a prerequisite for cognitive impairment in aged animals. MCG-mediated cognition enhancement might be associated with the activations of Nrf2, ChAT, and ERK signaling cascade.

13.
J Anim Physiol Anim Nutr (Berl) ; 107(6): 1402-1418, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37391879

ABSTRACT

Zinc (Zn) plays a critical role in the growth of livestock, which depends on cell proliferation. In addition to modifying the growth associated with its effects on food intake, mitogenic hormones, signal transduction and gene transcription, Zn also regulates body weight gain through mediating cell proliferation. Zn deficiency in animals leads to growth inhibition, along with an arrest of cell cycle progression at G0/G1 and S phase due to depression in the expression of cyclin D/E and DNA synthesis. Therefore, in the present study, the interplay between Zn and cell proliferation and implications for the growth of livestock were reviewed, in which Zn regulates cell proliferation in several ways, especially cell cycle progression at the G0/G1 phase DNA synthesis and mitosis. During the cell cycle, the Zn transporters and major Zn binding proteins such as metallothioneins are altered with the requirements of cellular Zn level and nuclear translocation of Zn. In addition, calcium signaling, MAPK pathway and PI3K/Akt cascades are also involved in the process of Zn-interfering cell proliferation. The evidence collected over the last decade highlights the necessity of Zn for normal cell proliferation, which suggests Zn supplementation should be considered for the growth and health of poultry.


Subject(s)
Livestock , Zinc , Animals , Zinc/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Cell Proliferation , DNA
14.
Genomics ; 115(5): 110675, 2023 09.
Article in English | MEDLINE | ID: mdl-37390936

ABSTRACT

Mango (Mangifera indica L.) is a widely appreciated tropical fruit for its rich color and nutrition. However, knowledge on the molecular basis of color variation is limited. Here, we studied HY3 (yellowish-white pulp) and YX4 (yellow pulp), reaped with 24 h gap from the standard harvesting time. The carotenoids and total flavonoids increased with the advance of harvest time (YX4 > HY34). Transcriptome sequencing showed that higher expressions of the core carotenoid biosynthesis genes and flavonoid biosynthesis genes are correlated to their respective contents. The endogenous indole-3-acetic acid and jasmonic acid contents decreased but abscisic acid and ethylene contents increased with an increase in harvesting time (YX4 > HY34). Similar trends were observed for the corresponding genes. Our results indicate that the color differences are related to carotenoid and flavonoid contents, which in turn are influenced by phytohormone accumulation and signaling.


Subject(s)
Mangifera , Mangifera/genetics , Mangifera/metabolism , Flavonoids/metabolism , Transcriptome , Plant Growth Regulators/metabolism , Carotenoids/metabolism , Metabolome , Fruit/genetics , Fruit/metabolism , Gene Expression Regulation, Plant
15.
Adv Cancer Res ; 159: 113-143, 2023.
Article in English | MEDLINE | ID: mdl-37268394

ABSTRACT

Pancreatic Ductal Adenocarcinoma (PDAC), commonly called pancreatic cancer, is aggressive cancer usually detected at a late stage, limiting treatment options with modest clinical responses. It is projected that by 2030, PDAC will be the second most common cause of cancer-related mortality in the United States. Drug resistance in PDAC is common and significantly affects patients' overall survival (OS). Oncogenic KRAS mutations are nearly uniform in PDAC, affecting over 90% of patients. However, effective drugs directed to target prevalent KRAS mutants in pancreatic cancer are not in clinical practice. Accordingly, efforts are continued on identifying alternative druggable target(s) or approaches to improve patient outcomes with PDAC. In most PDAC cases, the KRAS mutations turn-on the RAF-MEK-MAPK pathways, leading to pancreatic tumorigenesis. The MAPK signaling cascade (MAP4K→MAP3K→MAP2K→MAPK) plays a central role in the pancreatic cancer tumor microenvironment (TME) and chemotherapy resistance. The immunosuppressive pancreatic cancer TME is another unfavorable factor affecting the therapeutic efficacy of chemotherapy and immunotherapy. The immune checkpoint proteins (ICPs), including CTLA-4, PD-1, PD-L1, and PD-L2, are critical players in T cell dysfunction and pancreatic tumor cell growth. Here, we review the activation of MAPKs, a molecular trait of KRAS mutations and their impact on pancreatic cancer TME, chemoresistance, and expression of ICPs that could influence the clinical outcomes in PDAC patients. Therefore, understanding the interplay between MAPK pathways and TME could help to design rational therapy combining immunotherapy and MAPK inhibitors for pancreatic cancer treatment.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Proto-Oncogene Proteins p21(ras)/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Immunotherapy , Mitogen-Activated Protein Kinases/metabolism , Tumor Microenvironment , Pancreatic Neoplasms
16.
Environ Int ; 176: 107973, 2023 06.
Article in English | MEDLINE | ID: mdl-37196567

ABSTRACT

Thiabendazole, a benzimidazole fungicide, is widely used to prevent yield loss in agricultural land by inhibiting plant diseases derived from fungi. As thiabendazole has a stable benzimidazole ring structure, it remains in the environment for an extended period, and its toxic effects on non-target organisms have been reported, indicating the possibility that it could threaten public health. However, little research has been conducted to elucidate the comprehensive mechanisms of its developmental toxicity. Therefore, we used zebrafish, a representative toxicological model that can predict toxicity in aquatic organisms and mammals, to demonstrate the developmental toxicity of thiabendazole. Various morphological malformations were observed, including decreased body length, eye size, and increased heart and yolk sac edema. Apoptosis, reactive oxygen species (ROS) production, and inflammatory response were also triggered by thiabendazole exposure in zebrafish larvae. Furthermore, PI3K/Akt and MAPK signaling pathways important for appropriate organogenesis were significantly changed by thiabendazole. These results led to toxicity in various organs and a reduction in the expression of related genes, including cardiovascular toxicity, neurotoxicity, and hepatic and pancreatic toxicity, which were detected in flk1:eGFP, olig2:dsRED, and L-fabp:dsRed;elastase:GFP transgenic zebrafish models, respectively. Overall, this study partly determined the developmental toxicity of thiabendazole in zebrafish and provided evidence of the environmental hazards of this fungicide.


Subject(s)
Fungicides, Industrial , Water Pollutants, Chemical , Animals , Zebrafish/metabolism , Thiabendazole/toxicity , Thiabendazole/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Fungicides, Industrial/toxicity , Embryo, Nonmammalian , Oxidative Stress , Apoptosis , Water Pollutants, Chemical/metabolism , Mammals/metabolism
18.
Food Chem Toxicol ; 176: 113775, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37037409

ABSTRACT

Acrylamide (ACR), a potential neurotoxin, is generated from the Maillard reaction between reducing sugars and free amino acids during food processing. Our work focuses on clarifying the role of the leucine-rich repeat kinase 2 (LRRK2) and nuclear factor of activated T cells, cytoplasmic 2 (NFATc2) in the polarization of BV2 cells to the M1 proinflammatory type induced by ACR. Specifically, ACR promoted the phosphorylation of LRRK2 and NFATc2 in BV2 microglia. Furthermore, selectively phosphorylated LRRK2 by ACR induced nuclear translocation of NFATc2 to trigger a neuroinflammatory cascade. Knock-down of LRRK2 by silencing significantly diminished ACR-induced microglial neurotoxic effect with the decline of IL-1ß, IL-6, and iNOS levels and the decrease of NFATc2 expression in BV2 cells. After pretreated with Toll-Like Receptor 2 (TLR2) and TLR4 inhibitors separately, both the activation of LRRK2 and the release of pro-inflammatory factors were inhibited in BV2 cells. Gallic acid (GA) is ubiquitous in most parts of the medicinal plant. GA alleviated the increased CD11b expression, IL-6 and iNOS levels induced by ACR in BV2 microglia. In conclusion, this study shows that ACR leads to the cascade activation of LRRK2-NFATc2 mediated by TLR2 and TLR4 to induce microglial toxicity.


Subject(s)
Microglia , Toll-Like Receptor 2 , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , NFATC Transcription Factors/genetics , NFATC Transcription Factors/metabolism , Acrylamide/metabolism , Toll-Like Receptor 4/metabolism , Interleukin-6/metabolism , Cell Line , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , NF-kappa B/metabolism
19.
Front Plant Sci ; 14: 1092013, 2023.
Article in English | MEDLINE | ID: mdl-36968377

ABSTRACT

Since chitooligosaccharides (COs) are water-soluble, biodegradable and nontoxic compounds, their application may be considered as a promising plant-protecting agent. However, the molecular and cellular modes of action of COs are not yet understood. In this study, transcriptional changes in pea roots treated with COs were investigated via RNA sequencing. Pea roots treated with the deacetylated CO8-DA at low concentration (10-5 М) were harvested 24 h after treatment and their expression profiles were compared against medium-treated control plants. We observed 886 differentially expressed genes (fold change ≥ 1; p-value < 0.05) 24 h after treatment with CO8-DA. Gene Ontology term over-representation analysis allowed us to identify the molecular functions of the genes activated in response to CO8-DA treatment and their relation to biological processes. Our findings suggest that calcium signaling regulators and MAPK cascade play a key role in pea plant responses to treatment. Here we found two MAPKKKs, the PsMAPKKK5 and PsMAPKKK20, which might function redundantly in the CO8-DA-activated signaling pathway. In accordance with this suggestion, we showed that PsMAPKKK knockdown decreases resistance to pathogenic Fusarium culmorum fungi. Therefore, analysis showed that typical regulators of intracellular signal transduction pathways involved in triggering of plant responses via CERK1 receptors to chitin/COs in Arabidopsis and rice may also be recruited in legume pea plants.

20.
Biomedicines ; 11(3)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36979867

ABSTRACT

Most of the current assays directed at the investigation of HIV reactivation are based on cultures of infected cells such as Peripheral Blood Mononuclear Cells (PBMCs) or isolated CD4+ T cells, stimulated in vitro with different activator molecules. The culture media in these in vitro tests lack many age- and donor-specific immunomodulatory components normally found within the autologous plasma. This triggered our interest in understanding the impact that different matrices and cell types have on T cell transcriptional profiles following in vitro culture and stimulation. METHODS: Unstimulated or stimulated CD4+ T cells of three young adults with perinatal HIV-infection were isolated from PBMCs before or after culture in RPMI medium or autologous plasma. Transcriptomes were sequenced using Oxford Nanopore technologies. RESULTS: Transcriptional profiles revealed the activation of similar pathways upon stimulation in both media with a higher magnitude of TCR cascade activation in CD4+ lymphocytes cultured in RPMI. CONCLUSIONS: These results suggest that for studies aiming at quantifying the magnitude of biological mechanisms under T cell activation, the autologous plasma could better approximate the in vivo environment. Conversely, if the study aims at defining qualitative aspects, then RPMI culture could provide more evident results.

SELECTION OF CITATIONS
SEARCH DETAIL