Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.380
Filter
1.
Heliyon ; 10(14): e34438, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39082024

ABSTRACT

Aims: To analyze the expression of mitochondrial translational initiation factor 2 (MTIF2) and the biological functions of the gene in hepatocellular carcinoma (HCC). Background: The treatment of HCC treatment and its prognostic prediction are limited by a lack of comprehensive understanding of the molecular mechanisms in HCC. OBJECTIVE: To determine the cells expressing MTIF2 in HCC and the function of the MTIF2+ cell subpopulation. Methods: Gene expression analysis on TIMER 2.0, UALCAN, and GEPIA databases was performed to measure the expression of MTIF2 in HCC tissues. Cell clustering subgroups and annotation were conducted based on the single-cell sequencing data of HCC and paracancerous tissues in the Gene Expression Omnibus (GEO) database. MTIF2 expression in different cell types was analyzed. Further, biological pathways potentially regulated by MTIF2 in each cell type were identified. In addition, protein-protein interaction (PPI) networks of MTIF2 with genes in its regulated biological pathways were developed. The cell function assay was performed to verify the effects of superoxide dismutase-2 (SOD2) and MTIF2 on HCC cells. Finally, we screened virtual drugs targeting MTIF2 and SOD2 employing database screening, molecular docking and molecular dynamics. Results: MTIF2 showed a remarkably high expression in HCC tissues. We identified a total of 10 cell types between HCC tissues and paracancerous tissues. MTIF2 expression was upregulated in epithelial cells, macrophages, and hepatocytes. More importantly, high-expressed MTIF2 in HCC tissues was mainly derived from epithelial cells and hepatocytes, in which the reactive oxygen species (ROS) pathway was significantly positively correlated with MTIF2. In the PPI network, there was a unique interaction pair between SOD2 and MTIF2 in the ROS pathway. Cell function experiments showed that overexpression of MTIF2 enhanced the proliferative and invasive capacities of HCC, which could synergize with SOD2 to co-promote the development of HCC. Finally, molecular dynamics simulations showed that DB00183 maintained a high structural stability with MTIF2 and SOD2 proteins during the simulation process. Conclusion: Our study confirmed that the high-expressed MTIF2 in HCC tissues was derived from epithelial cells and hepatocytes. MTIF2 might act on SOD2 to regulate the ROS pathway, thereby affective the progression of HCC.

2.
BMC Plant Biol ; 24(1): 716, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39060949

ABSTRACT

BACKGROUND: Superoxide dismutase (SOD) can greatly scavenge reactive oxygen species (ROS) in plants. SOD activity is highly related to plant stress tolerance that can be improved by overexpression of SOD genes. Identification of SOD activity-related loci and potential candidate genes is essential for improvement of grain quality in wheat breeding. However, the loci and candidate genes for relating SOD in wheat grains are largely unknown. In the present study, grain SOD activities of 309 recombinant inbred lines (RILs) derived from the 'Berkut' × 'Worrakatta' cross were assayed by photoreduction method with nitro-blue tetrazolium (NBT) in four environments. Quantitative trait loci (QTL) of SOD activity were identified using inclusive composite interval mapping (ICIM) with the genotypic data of 50 K single nucleotide polymorphism (SNP) array. RESULTS: Six QTL for SOD activity were mapped on chromosomes 1BL, 4DS, 5AL (2), and 5DL (2), respectively, explaining 2.2 ~ 7.4% of the phenotypic variances. Moreover, QSOD.xjau-1BL, QSOD.xjau-4DS, QSOD.xjau-5 A.1, QSOD.xjau-5 A.2, and QSOD.xjau-5DL.2 identified are likely to be new loci for SOD activity. Four candidate genes TraesCS4D01G059500, TraesCS5A01G371600, TraesCS5D01G299900, TraesCS5D01G343100LC, were identified for QSOD.xjau-4DS, QSOD.xjau-5AL.1, and QSOD.xjau-5DL.1 (2), respectively, including three SOD genes and a gene associated with SOD activity. Based on genetic effect analysis, this can be used to identify desirable alleles and excellent allele variations in wheat cultivars. CONCLUSION: These candidate genes are annotated for promoting SOD production and inhibiting the accumulation of ROS during plant growth. Therefore, lines with high SOD activity identified in this study may be preferred for future wheat breeding.


Subject(s)
Quantitative Trait Loci , Superoxide Dismutase , Triticum , Triticum/genetics , Triticum/enzymology , Quantitative Trait Loci/genetics , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Chromosome Mapping , Polymorphism, Single Nucleotide , Genes, Plant , Edible Grain/genetics , Phenotype
3.
Biol Trace Elem Res ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39017978

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting the brain and spinal cord motor neurons. On 25 April 2023, the drug tofersen, an antisense oligonucleotide, received the US Food and Drug Administration approval for treating ALS in adults carrying mutations of the SOD1 gene. We aimed at assessing whether cerebrospinal fluid concentrations of selenium, an element of both toxicological and nutritional interest possibly involved in disease etiology and progression, are modified by tofersen administration. We determined concentrations of selenium species by anion exchange chromatography hyphenated to inductively coupled plasma-dynamic reaction cell-mass spectrometry and overall selenium by using inductively coupled plasma sector-field mass spectrometry, at baseline and 6 months after active tofersen treatment in ten Italian ALS patients carrying the SOD1 gene mutation. Concentrations of total selenium and many selenium species substantially increased after the intervention, particularly of inorganic (tetravalent and hexavalent) selenium and of the organic species selenomethionine and a compound co-eluting with the selenocystine standard. Overall, these findings suggest that tofersen treatment markedly alters selenium status and probably the redox status within the central nervous system, possibly due to a direct effect on neurons and/or the blood-brain barrier. Further studies are required to investigate the biological and clinical relevance of these findings and how they might relate to the pharmacological effects of the drug and to disease progression.

4.
Vavilovskii Zhurnal Genet Selektsii ; 28(4): 424-432, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39027127

ABSTRACT

Breast cancer is one of the leading causes of mortality among women. The most frequently encountered tumors are luminal tumors. Associations of polymorphisms in the hOGG1 (rs1052133), APEX1 (rs1130409), XPD (rs13181), SOD2 (rs4880), and CAT (rs1001179) genes were studied in 313 nonsmoking postmenopausal patients with luminal B subtype breast cancer. The control group consisted of 233 healthy nonsmoking postmenopausal women. Statistically significant associations of the XPD and APEX1 gene polymorphisms with the risk of developing luminal B Her2-negative subtype of breast cancer were observed in a log-additive inheritance model, while the CAT gene polymorphism showed an association in a dominant inheritance model (OR = 1.41; CI 95 %: 1.08-1.85; Padj.= 0.011; OR = 1.39; CI 95 %: 1.07-1.81; Padj = 0.013 и OR = 1.70; CI 95 %: 1.19-2.43; Padj = 0.004, respectively). In the group of elderly women (aged 60-74 years), an association of the CAT gene polymorphism with the risk of developing luminal B subtype of breast cancer was found in a log-additive inheritance model (OR = 1.87; 95 % CI: 1.22-2.85; Padj = 0.0024). Using MDR analysis, the most optimal statistically significant 3-locus model of gene-gene interactions in the development of luminal B Her2-negative subtype breast cancer was found. MDR analysis also showed a close interaction and mutual enhancement of effects between the APEX1 and SOD2 loci and the independence of the effects of these loci from the CAT locus in the formation of luminal B subtype breast cancer.

5.
Brain Res ; 1843: 149124, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39019135

ABSTRACT

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a typical neurodegenerative disorder typically characterized by inflammation activation. However, the relationship between non-canonical NF-κB (ncNF-κB) pathway activation and ALS progression is not clear. METHODS: We tested the ncNF-κB pathway in the ALS animal model including hSOD1-G93A transgenic mice and TBK1 deletion mice.We treated age-matched SOD1-G93A mice with B022 (a NIK inhibitor) to investigate the role of NIK in the ALS animal model. We also established a new mice model by crossing SOD1-G93A mice with NIK+/- mice to further evaluate the interrelationship between the NIK and the disease progression in ALS animal model. RESULTS: In this study, we found the ncNF-κB pathway was activated in SOD1-G93A animal model and TBK1 deletion model. Inhibition of NIK activity by small molecule B022 significantly improved the motor performance of the ALS animal model. However, NIK deletion enhanced the mutant SOD1 toxicity by inflammatory infiltration. CONCLUSION: TBK1 deletion and mutant SOD1 shared the common pathological feature possibly via effects on NIK activation and inhibitor of NIK could be a novel strategy for treating ALS.

6.
Skelet Muscle ; 14(1): 17, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39044305

ABSTRACT

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is characterized by progressive motor neuron (MN) degeneration, leading to neuromuscular junction (NMJ) dismantling and severe muscle atrophy. The nuclear receptor interaction protein (NRIP) functions as a multifunctional protein. It directly interacts with calmodulin or α-actinin 2, serving as a calcium sensor for muscle contraction and maintaining sarcomere integrity. Additionally, NRIP binds with the acetylcholine receptor (AChR) for NMJ stabilization. Loss of NRIP in muscles results in progressive motor neuron degeneration with abnormal NMJ architecture, resembling ALS phenotypes. Therefore, we hypothesize that NRIP could be a therapeutic factor for ALS. METHODS: We used SOD1 G93A mice, expressing human SOD1 with the ALS-linked G93A mutation, as an ALS model. An adeno-associated virus vector encoding the human NRIP gene (AAV-NRIP) was generated and injected into the muscles of SOD1 G93A mice at 60 days of age, before disease onset. Pathological and behavioral changes were measured to evaluate the therapeutic effects of AAV-NRIP on the disease progression of SOD1 G93A mice. RESULTS: SOD1 G93A mice exhibited lower NRIP expression than wild-type mice in both the spinal cord and skeletal muscle tissues. Forced NRIP expression through AAV-NRIP intramuscular injection was observed in skeletal muscles and retrogradely transduced into the spinal cord. AAV-NRIP gene therapy enhanced movement distance and rearing frequencies in SOD1 G93A mice. Moreover, AAV-NRIP increased myofiber size and slow myosin expression, ameliorated NMJ degeneration and axon terminal denervation at NMJ, and increased the number of α-motor neurons (α-MNs) and compound muscle action potential (CMAP) in SOD1 G93A mice. CONCLUSIONS: AAV-NRIP gene therapy ameliorates muscle atrophy, motor neuron degeneration, and axon terminal denervation at NMJ, leading to increased NMJ transmission and improved motor functions in SOD1 G93A mice. Collectively, AAV-NRIP could be a potential therapeutic drug for ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Dependovirus , Disease Models, Animal , Genetic Therapy , Mice, Transgenic , Motor Neurons , Muscular Atrophy , Animals , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/therapy , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Genetic Therapy/methods , Muscular Atrophy/genetics , Muscular Atrophy/therapy , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Motor Neurons/metabolism , Motor Neurons/pathology , Dependovirus/genetics , Mice , Humans , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Neuromuscular Junction/metabolism , Neuromuscular Junction/pathology , Genetic Vectors/administration & dosage , Nerve Degeneration/genetics , Nerve Degeneration/therapy , Male , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism
7.
Front Mol Neurosci ; 17: 1408159, 2024.
Article in English | MEDLINE | ID: mdl-39050823

ABSTRACT

The pathophysiology of ALS involves many signs of a disruption in copper homeostasis, with both excess free levels and functional deficiency likely occurring simultaneously. This is crucial, as many important physiological functions are performed by cuproenzymes. While it is unsurprising that many ALS symptoms are related to signs of copper deficiency, resulting in vascular, antioxidant system and mitochondrial oxidative respiration deficiencies, there are also signs of copper toxicity such as ROS generation and enhanced protein aggregation. We discuss how copper also plays a key role in proteostasis and interacts either directly or indirectly with many of the key aggregate-prone proteins implicated in ALS, such as TDP-43, C9ORF72, SOD1 and FUS as well as the effect of their aggregation on copper homeostasis. We suggest that loss of cuproprotein function is at the core of ALS pathology, a condition that is driven by a combination of unbound copper and ROS that can either initiate and/or accelerate protein aggregation. This could trigger a positive feedback cycle whereby protein aggregates trigger the aggregation of other proteins in a chain reaction that eventually captures elements of the proteostatic mechanisms in place to counteract them. The end result is an abundance of aggregated non-functional cuproproteins and chaperones alongside depleted intracellular copper stores, resulting in a general lack of cuproenzyme function. We then discuss the possible aetiology of ALS and illustrate how strong risk factors including environmental toxins such as BMAA and heavy metals can functionally behave to promote protein aggregation and disturb copper metabolism that likely drives this vicious cycle in sporadic ALS. From this synthesis, we propose restoration of copper balance using copper delivery agents in combination with chaperones/chaperone mimetics, perhaps in conjunction with the neuroprotective amino acid serine, as a promising strategy in the treatment of this incurable disease.

8.
Article in English | MEDLINE | ID: mdl-39056541

ABSTRACT

OBJECTIVE: This study aimed to illustrate the copper status of diminished ovarian reserve in Chinese women, especially the effects of copper, ceruloplasmin, non-ceruloplasmin-bound copper (NCC) and CuZn superoxide dismutase (SOD1). METHODS: This case-control, cross-sectional investigation included women with diminished ovarian reserve (DOR group, n = 35) and matched normal ovarian reserve (NOR group, n = 35). The serum levels of copper, ceruloplasmin, NCC, SOD1, follicle-stimulating hormone, luteinizing hormone, estradiol, testosterone, and anti-Müllerian hormone were tested and analyzed. RESULTS: The serum copper concentrations (60.88%), NCC (54.75%) and SOD1 (54.75%) in the DOR group were significantly higher than those in the NOR group (all P < 0.001), and the concentrations of the three markers were higher in most subgroups (P < 0.001). The correlation analysis verified the correlation between copper status and impaired ovarian function. Additionally, linear regression analysis showed that NCC and SOD1 levels were negatively correlated with anti-Müllerian hormone (P < 0.05 or 0.001). CONCLUSION: Our exploration found significant increases in copper, NCC and SOD1 levels in DOR and suggests a possible link. Copper status is expected to serve as the predictive marker for DOR.

9.
Physiol Behav ; 284: 114638, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004196

ABSTRACT

Autism spectrum disorder (ASD) is a prevalent neurodevelopmental disorder characterized by repetitive behaviors and altered communication abilities. Exercise is a low-cost intervention that could improve cognitive function and improve brain plasticity mechanisms. Here, the valproic acid (VPA) model was utilized to induce ASD-like phenotypes in rodents. Animals were exercised on a treadmill and performance was evaluated on a cognitive flexibility task. Biomarkers related to exercise and plasticity regulation were quantified from the prefrontal cortex, hippocampus, and skeletal muscle. Exercised VPA animals had higher levels of hippocampal BDNF compared to sedentary VPA animals and upregulated antioxidant enzyme expression in skeletal muscle. Cognitive improvements were demonstrated in both sexes, but in different domains of cognitive flexibility. This research demonstrates the benefits of exercise and provides evidence that molecular responses to exercise occur in both the central nervous system and in the periphery. These results suggest that improving regulation of BDNF via exercise, even at low intensity, could provide better synaptic regulation and cognitive benefits for individuals with ASD.

10.
Biochem Pharmacol ; 227: 116440, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39029631

ABSTRACT

Gastric ulcer is a highly prevalent digestive tract disease across the world, which is recurrent and hard to cure, sometimes transforming into gastric cancer if left untreated, posing great threat to human health. To develop new medicines for gastric ulcer, we ran a series of screens with ethanol stress model in GES-1 cells, and we uncovered that lamivudine rescued cells from ethanol toxicity. Then, we confirmed this discovery using the well-established ethanol-induced gastric ulcer model in mice and our findings suggest that lamivudine can directly activate phosphoglycerate kinase 1 (PGK1, EC 2.7.2.3), which binds and stimulates superoxide dismutase 1 (SOD1, EC 1.15.1.1) to inhibit ferroptosis and ultimately improve gastric ulcer. Moreover, AAV-PGK1 exhibited comparable gastroprotective effects to lamivudine. The findings are expected to offer novel therapeutic strategies for gastric ulcer, encompassing both lamivudine and AAV-PGK1.

11.
Article in English | MEDLINE | ID: mdl-39031345

ABSTRACT

OBJECTIVE: This study aimed to investigate the effects of six weeks of continuous training and Nutrition Bio-shield (NBS) Superfood Supplementation on the state of oxidative stress by the expression of Nrf2, NOX4, superoxide dismutase, and malondialdehyde genes in the lungs of rats after methamphetamine withdrawal. METHODS: Forty male Wistar rats were randomly divided into five groups (n = 8, per group), undergoing methamphetamine administration (six weeks, 5 mg/kg ip, and once per day) followed by a 21-day withdrawal period. The rats were supplemented NBS superfood at a dosage of 25 g/kg per day for six weeks. The training protocol was 30 minutes of daily continuous training (treadmill running), five days a week for six weeks. The regimen escalated from a pace of 3 m/min for the initial 5 minutes, to 5 m/min for the following 5 minutes, culminating at 8 m/min for the remainder of the session, all at a 0° incline. A one-way analysis of variance was performed to analyze the gene expression of Nrf2, NOX4, MDA, and SOD in the lungs tissue of rats. RESULTS: The results indicated that, in the experimental groups which underwent continuous training and NBS Superfood supplementation, the expression of the Nrf2 gene exhibited a significant elevation compared to the control group (P < 0.05), while the NOX4, MDA, and SOD genes expression exhibited a significant decline in comparison to the control group (P < 0.05). CONCLUSION: In general, both exercise interventions and NBS superfood supplementation, when employed separately or in combination after methamphetamine withdrawal, can enhance the state of oxidative stress in the lung.

12.
FASEB J ; 38(13): e23796, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38967302

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is an orphan neurodegenerative disease. Immune system dysregulation plays an essential role in ALS onset and progression. Our preclinical studies have shown that the administration of exogenous allogeneic B cells improves outcomes in murine models of skin and brain injury through a process termed pligodraxis, in which B cells adopt an immunoregulatory and neuroprotective phenotype in an injured environment. Here, we investigated the effects of B-cell therapy in the SOD1G93A mouse preclinical model of ALS and in a person living with ALS. Purified splenic mature naïve B cells from haploidentical donor mice were administered intravenously in SOD1G93A mice for a total of 10 weekly doses. For the clinical study in a person with advanced ALS, IgA gammopathy of unclear significance, and B lymphopenia, CD19+ B cells were positively selected from a healthy haploidentical donor and infused intravenously twice, at a 60-day interval. Repeated intravenous B-cell administration was safe and significantly delayed disease onset, extended survival, reduced cellular apoptosis, and decreased astrogliosis in SOD1G93A mice. Repeated B-cell infusion in a person with ALS was safe and did not appear to generate a clinically evident inflammatory response. An improvement of 5 points on the ALSFRS-R scale was observed after the first infusion. Levels of inflammatory markers showed persistent reduction post-infusion. This represents a first demonstration of the efficacy of haploidentical B-cell infusion in the SOD1G93A mouse and the safety and feasibility of using purified haploidentical B lymphocytes as a cell-based therapeutic strategy for a person with ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , B-Lymphocytes , Amyotrophic Lateral Sclerosis/therapy , Amyotrophic Lateral Sclerosis/immunology , Animals , Mice , Humans , B-Lymphocytes/immunology , Disease Models, Animal , Mice, Transgenic , Male , Female , Mice, Inbred C57BL , Immunomodulation , Middle Aged
13.
Mol Biol Rep ; 51(1): 805, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39001948

ABSTRACT

BACKGROUND: Coronary artery disease (CAD) has been linked to single nucleotide polymorphism (SNP) in superoxide dismutase 2 (SOD 2) gene. Additionally, several modifiable risk factors are also known to influence the CAD risk. AIM: To investigate the association between selected modifiable risk factors and oxidative stress markers with the SOD2 rs4880 SNP in CAD patients. METHODS: A cohort of 150 angiographically confirmed CAD patients, and 100 control subjects in the same geographic area were enrolled. SOD levels and lipid peroxidation were assessed in the blood samples using standard protocols. The genotyping of the SOD2 gene was conducted through the PCR-sequencing method. RESULTS: This study indicated that CAD patients with the rs4880 SNP having heterozygous AG and mutated homozygous GG genotypes have increased oxidative stress, decreased SOD activity, and a positive association with CAD risk (OR 2.85) in comparison with control individuals. The investigation among CAD patients was then carried out based on modifiable risk factors. The risk factors selected were clinical characteristics, physical habits, nutritional status, and body mass index. In all the cases, MDA levels showed a positive association, and SOD activity showed a negative association with the selected polymorphism. CONCLUSIONS: The study suggests that the selected modifiable risk factors have an important role in the higher oxidative stress found in patients, which may lead to SOD2 polymorphism. It also suggests that the SOD2 locus can be identified as a marker gene for CAD susceptibility.


Subject(s)
Coronary Artery Disease , Genetic Predisposition to Disease , Oxidative Stress , Polymorphism, Single Nucleotide , Superoxide Dismutase , Humans , Superoxide Dismutase/genetics , Oxidative Stress/genetics , Coronary Artery Disease/genetics , Polymorphism, Single Nucleotide/genetics , Female , Male , Middle Aged , Risk Factors , Biomarkers/blood , Case-Control Studies , Aged , Genotype , Lipid Peroxidation/genetics , Genetic Association Studies
14.
Angew Chem Int Ed Engl ; : e202409343, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012328

ABSTRACT

We present here the most active synthetic Ni superoxide dismutase (NiSOD) mimic reported to date. Reactive oxygen species are aggressive compounds, which concentrations are tightly regulated in vivo. Among them, the superoxide anion, O2⸱-, is controlled by superoxide dismutases. Capitalizing on the versatility of the Amino-Terminal CuII- and NiII-binding (ATCUN) peptide motif, we introduced positive charges around the NiII center to favor the interaction with the superoxide radical anion. At physiological pH, the pentapeptide H-Cys-His-Cys-Arg-Arg-NH2 coordinates NiII after the deprotonation of one thiol, two amides, and either the second thiol or the N-terminal ammonium, leading to an equilibrium between the two N3S1 and N2S2 coordination modes. Under catalytic conditions, a kcat value of 8.6(4) x 106 L.mol-1.s-1 was measured. Within the first second, the catalyst remained undegraded with quantitative consumption of O2⸱- (completed up to 37 catalytic cycles). An extra arginine (Arg) was introduced at the peptide C-terminus to increase the global charge of the NiII complex from +1 to + 2. This had no effect on the catalytic performance, highlighting the critical role of charge distribution in space as a determining factor influencing the reactivity.

15.
Arch Toxicol ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012504

ABSTRACT

Skeletal fluorosis is a chronic metabolic bone disease caused by long-term excessive fluoride intake. Abnormal differentiation of osteoblasts plays an important role in disease progression. Research on the mechanism of fluoride-mediated bone differentiation is necessary for the prevention and treatment of skeletal fluorosis. In the present study, a rat model of fluorosis was established by exposing it to drinking water containing 50 mg/L F-. We found that fluoride promoted Runt-related transcription factor 2 (RUNX2) as well as superoxide dismutase 2 (SOD2) and sirtuin 3 (SIRT3) expression in osteoblasts of rat bone tissue. In vitro, we also found that 4 mg/L sodium fluoride promoted osteogenesis-related indicators as well as SOD2 and SIRT3 expression in MG-63 and Saos-2 cells. In addition, we unexpectedly discovered that fluoride suppressed the levels of reactive oxygen species (ROS) and mitochondrial reactive oxygen species (mtROS) in osteoblasts. When SOD2 or SIRT3 was inhibited in MG-63 cells, fluoride-decreased ROS and mtROS were alleviated, which in turn inhibited fluoride-promoted osteogenic differentiation. In conclusion, our results suggest that SIRT3/SOD2 mediates fluoride-promoted osteoblastic differentiation by down-regulating reactive oxygen species.

16.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(6): 1059-1069, 2024 Jun 20.
Article in Chinese | MEDLINE | ID: mdl-38977335

ABSTRACT

OBJECTIVE: To investigate the cell membrane-penetrating capacity of human cell-penetrating peptide hPP10 carrying human antioxidant protein Cu-Zn superoxide dismutase (Cu, Zn-SOD) and assess the antioxidant and anti-inflammatory activity of these fusion proteins. METHODS: The fusion protein hPP10-Cu, Zn-SOD was obtained by genetic engineering and identified by Western blotting. The membrane-penetrating ability of the fusion protein was evaluated by immunofluorescence assay, fluorescence colocalization assay and Western blotting, its SOD enzyme activity was detected using a commercial kit, and its effect on cell viability was assessed with MTT assay. In a HEK293 cell model of H2O2-induced oxidative stress, the effect of hPP10-Cu, Zn-SOD on cell apoptosis was analyzed with flow cytometry and RT-qPCR, and its antioxidant effect was assessed using reactive oxygen species (ROS) assay; its anti-inflammatory effect was evaluated in mouse model of TPA-induced ear inflammation by detecting expression of the inflammatory factors using RT-qPCR, Western blotting and immunohistochemistry. RESULTS: The fusion protein hPP10-Cu, Zn-SOD was successfully obtained. Immunofluorescence assay confirmed obvious membrane penetration of this fusion protein in HEK293 cells, localized both in the cell membrane and the cell nuclei after cell entry. hPP10-Cu, Zn-SOD at the concentration of 5 µmol/L exhibited strong antioxidant activity with minimal impact on cell viability at the concentration up to 10 µmol/L. The fusion protein obviously inhibited apoptosis and decreased intracellular ROS level in the oxidative stress cell model and significantly reduced mRNA and protein expression of the inflammatory factors in the mouse model of ear inflammation. CONCLUSION: The fusion protein hPP10-Cu, Zn-SOD capable of penetrating the cell membrane possesses strong antioxidant and anti-inflammatory activities with only minimal cytotoxicity, demonstrating the value of hPP10 as an efficient drug delivery vector and the potential of hPP10-Cu, Zn-SOD in the development of skincare products.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Apoptosis , Cell-Penetrating Peptides , Oxidative Stress , Superoxide Dismutase , Humans , Mice , Antioxidants/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , HEK293 Cells , Oxidative Stress/drug effects , Cell-Penetrating Peptides/pharmacology , Apoptosis/drug effects , Superoxide Dismutase/metabolism , Reactive Oxygen Species/metabolism , Cell Membrane/metabolism , Cell Survival/drug effects , Recombinant Fusion Proteins/pharmacology , Inflammation/metabolism , Hydrogen Peroxide
17.
Cell Rep ; 43(7): 114477, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38985676

ABSTRACT

Despite the success of programmed cell death 1 (PD-1)/programmed death ligand 1 (PD-L1) inhibition in tumor therapy, many patients do not benefit. This failure may be attributed to the intrinsic functions of PD-L1. We perform a genome-wide CRISPR synthetic lethality screen to systematically explore the intrinsic functions of PD-L1 in head and neck squamous cell carcinoma (HNSCC) cells, identifying ferroptosis-related genes as essential for the viability of PD-L1-deficient cells. Genetic and pharmacological induction of ferroptosis accelerates cell death in PD-L1 knockout cells, which are also more susceptible to immunogenic ferroptosis. Mechanistically, nuclear PD-L1 transcriptionally activates SOD2 to maintain redox homeostasis. Lower reactive oxygen species (ROS) and ferroptosis are observed in patients with HNSCC who have higher PD-L1 expression. Our study illustrates that PD-L1 confers ferroptosis resistance in HNSCC cells by activating the SOD2-mediated antioxidant pathway, suggesting that targeting the intrinsic functions of PD-L1 could enhance therapeutic efficacy.


Subject(s)
B7-H1 Antigen , Ferroptosis , Reactive Oxygen Species , Humans , Ferroptosis/genetics , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Cell Line, Tumor , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism , Superoxide Dismutase/genetics , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Animals , Synthetic Lethal Mutations , Mice , CRISPR-Cas Systems/genetics , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/metabolism
18.
Mol Neurobiol ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39060907

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with an unknown pathogenesis. It has been reported that mutations in the gene for Cu/Zn superoxide dismutase (SOD1) cause familial ALS. Mutant SOD1 undergoes aggregation and forms amyloid more easily, and SOD1-immunopositive inclusions have been observed in the spinal cords of ALS patients. Because of this, SOD1 aggregation is thought to be related to the pathogenesis of ALS. Some core regions of amyloid have been identified, but the issue of whether these regions form aggregates in living cells remains unclear, and the mechanism responsible for intracellular SOD1 aggregation also remains unclear. The findings reported in this study indicate that the aggregation of the ALS-linked mutant SOD1-EGFP was significantly enhanced when the BioID2 gene was fused to the N-terminus of the mutant SOD1-EGFP plasmid for cellular expression. Expression of a series of BioID2-(C-terminal deletion peptides of SOD1)-EGFP permitted us to identify 1-35 as a minimal N-terminal sequence and Ile35 as an essential amino acid residue that contributes to the intracellular aggregation of SOD1. The findings also showed that an additional substitution of Ile35 with Ser into the ALS mutant SOD1 resulted in the significant suppression of aggregate formation. The fact that no Ile35 mutations have been reported to date in ALS patients indicates that all ALS mutant SOD1s contain Ile35. Taken together, we propose that Ile35 plays a pivotal role in the aggregation of the ALS-linked SOD1 and that this study will contribute to our understanding of the mechanism responsible for SOD1 aggregation.

19.
Article in English | MEDLINE | ID: mdl-38932488

ABSTRACT

Background: Despite recognition of the importance of genetic factors in the pathogenesis of MND and the increasing availability of genetic testing, testing practice remains highly variable. With the arrival of gene-targeted therapies there is a growing need to promptly identify actionable genetic results and patient death before receipt of results raises ethical dilemmas and limits access to novel therapies. Objective: To identify pathogenic mutations within a London tertiary MND center and their correlation with family history. To record waiting times for genetic results and deaths prior to receipt of results. Methods: In this series of 100 cases, genetic testing was offered to all patients with an MND diagnosis from the tertiary clinic. Data on demographics, disease progression and a detailed family history were taken. Time to receipt of genetic results and patient deaths prior to this were recorded.  Results: Of the 97 patients who accepted testing a genetic cause was identified in 10%, including seven C9orf72 and two positive SOD1 cases. Only three patients with positive genetic findings had a family history of MND, although alternative neurological diagnoses and symptoms in the family were frequently reported. 14% of patients who underwent testing were deceased by the time results were received, including one actionable SOD1 case.  Conclusions: Genetic testing should be made available to all patients who receive an MND diagnosis as family history alone is inadequate to identify potential familial cases. Time to receipt of results remains a significant issue due to the limited life expectancy following diagnosis.

20.
J Neurochem ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38934222

ABSTRACT

Deregulated cyclin-dependent kinase 5 (Cdk5) activity closely correlates with hyperphosphorylated tau, a common pathology found in neurodegenerative diseases. Previous postmortem studies had revealed increased Cdk5 immunoreactivity in amyotrophic lateral sclerosis (ALS); hence, we investigated the effects of Cdk5 inhibition on ALS model mice and neurons in this study. For the in vitro study, motor neuron cell lines with wild-type superoxide dismutase 1 (SOD1) or SOD1G93A and primary neuronal cultures from SOD1G93A transgenic (TG) mice or non-TG mice were compared for the expression of proteins involved in tau pathology, neuroinflammation, apoptosis, and neuritic outgrowth by applying Cdk5-small interfering RNA or Cdk5-short hairpin RNA (shRNA). For the in vivo study, SOD1G93A mice and non-TG mice were intrathecally injected with adeno-associated virus 9 (AAV9)-scramble (SCR)-shRNA or AAV9-Cdk5-shRNA at the age of 5 weeks. Weight and motor function were measured three times per week from 60 days of age, longevity was evaluated, and the tissues were collected from 90-day-old or 120-day-old mice. Neurons with SOD1G93A showed increased phosphorylated tau, attenuated neuritic growth, mislocalization of SOD1, and enhanced neuroinflammation and apoptosis, all of which were reversed by Cdk5 inhibition. Weights did not show significant differences among non-TG and SOD1G93A mice with or without Cdk5 silencing. SOD1G93A mice treated with AAV9-Cdk5-shRNA showed significantly delayed disease onset, delayed rotarod failure, and prolonged survival compared with those treated with AAV9-SCR-shRNA. The brain and spinal cord of SOD1G93A mice intrathecally injected with AAV9-Cdk5-shRNA exhibited suppressed tau pathology, neuroinflammation, apoptosis, and an increased number of motor neurons compared to those of SOD1G93A mice injected with AAV9-SCR-shRNA. Cdk5 inhibition could be an important mechanism in the development of a new therapeutic strategy for ALS.

SELECTION OF CITATIONS
SEARCH DETAIL