ABSTRACT
This work employed supramolecular solvents (SUPRAS) made up of octanoic acid, ethanol, and acidified water (pH ~ 3) to extract and concentrate bioactive compounds from Eugenia pyriformis Cambess (uvaia) pulp. At first, the SUPRAS phase characterization demonstrated the spherical aggregates' formation with an internal hydrophobic structure and an external hydrophilic media. Subsequently, the simultaneous production and extraction (SUPRAS-SPE) method was employed in the solid-liquid extraction (SLE) of uvaia pulp. The extracts were evaluated through Folin-Ciocalteu reducing capacity, antioxidant activity (DPPH assay), total carotenoid content (TCC), and total flavonoid content (TFC). The results showed that reducing the ethanol concentration in the SUPRAS composition boosted the TCC extraction while increasing the ethanol presence, promoting a high TFC yield. Moreover, the SUPRAS-SPE method was compared with the ex situ method (SUPRAS-ES), where the solvent was previously produced and then applied to the SLE. Both methods were evaluated concerning their EE% and thermal degradation. The SUPRAS-SPE method increased the EE% of uvaia pulp bioactive compounds compared to the SUPRAS-SE method, providing a suitable microenvironment to extract, concentrate, and stabilize carotenoids from uvaia pulp, offering a sustainable alternative to obtain valuable compounds.
Subject(s)
Eugenia , Solvents/chemistry , Eugenia/chemistry , Antioxidants/chemistry , Carotenoids , EthanolABSTRACT
This study aimed to investigate the macronutrient and carotenoid content of red and yellow Coffea arabica var. Caturra pulp, a by-product of coffee processing in Colombia. The study employed ultra-sound-assisted extraction (UAE) to extract carotenoids, and a 23 factorial design was used to evaluate the effects of pulp color, biomass-solvent ratio, and solvent mixture composition on carotenoid content and extraction yield. The condition that provided the highest carotenoid extraction was further encapsulated by spray drying and added to a dairy product. The results showed that coffee pulp has significant dietary fiber content and high levels of carotenoids, with yellow pulp having a higher content than red pulp. Lutein isomers and lutein esters were the most abundant carotenoids found in both red and yellow coffee pulp. The highest carotenoid extraction was achieved using a 1:40 (g/mL) biomass:solvent ratio and a 20:80% v/v Ethanol:Ethyl Acetate solvent mixture for the yellow pulp. The carotenoid extract also demonstrated high encapsulation efficiency (46.57 ± 4.03%) and was found to be stable when added to a fermented milk product. This study presents an alternative solution for utilizing coffee by-products in Colombia, which could positively impact the families of over half a million Colombian coffee producers.
ABSTRACT
Ethanol (Et) has been suggested as a substitute for hexane (Hx) for use in the extraction of oils from different oleaginous matrices. In this study, Et and Hx were used to extract the residual oil present in a peanut press cake (PPC). Certain variables, such as temperature, solid/solvent ratio and the number of contact stages, in the sequential cross-current extraction process were evaluated; additionally, the effects of these variables on oils (POEt and POHx) and defatted solids (DSEt and DSHx) were explored. Hx exhibited an extraction yield of 86 ± 2% in two stages at 55 °C and a solid/solvent mass ratio of 1/4. Compared with Hx extraction, to achieve an Et extraction yield of 87 ± 4%, it was necessary to use a higher temperature (75 °C), a greater amount of solvent (solid/solvent ratio of 1/5) and a greater number of contact stages (3). POEt and POHx presented compositions in terms of fatty acids and triacylglycerols and physical properties similar to that of cold-pressed peanut oil (CPPO). POEt showed a more intense green/yellow hue and higher free acidity (1.47 ± 0.03%) than POHx and CPPO (0.82 ± 0.04 and 0.43 ± 0.02 free acidity mass %, respectively), indicating that the deacidification and bleaching steps in refining should be encumbered. DSEt and DSHx exhibited high protein contents (>45% by mass) and nitrogen solubilities (86 ± 6 and 98 ± 1%, respectively), indicating that they could be used to obtain proteins.
ABSTRACT
The determination of some pesticides in surface sediments can provide important information about their distribution in the water column. This work aimed to determine the distribution of the classes of pesticides along the Ondas River's hydrographic basin (ORHB), in eighteen different points, during the dry and rainy periods. The pesticides were extracted from the sediment samples by solid-liquid extraction and then analyzed using a gas chromatograph coupled to mass spectrometry. After the development and validation of the method, nineteen pesticides from the group of organochlorine, organophosphates, carbamate and thiocarbamate, pyrethroids, and strobilurins were quantified in at least one point in the two collection periods, with accuracy varying between 86 and 126%. The average concentrations were 0.020 ng g-1 (carbofuran) to 249.123 ng g-1 (dimethoate) and 0.029 ng g-1 (carbofuran and sulfotep) to 533.522 ng g-1 in the dry and rainy periods, respectively. The results showed a wide distribution of pesticide residues in the ORHB, with higher levels for dimethoate, phenitrothion, and malathion, which may be related to their agricultural use in the region. In Brazil, it does not have specific legislation for maximum permitted values of pesticides in sediment, allowing for inappropriate or prohibited use and, consequently, affecting water quality.
Subject(s)
Geologic Sediments/analysis , Organophosphates/analysis , Pesticides/analysis , Water Pollutants, Chemical/analysis , Agriculture , Brazil , Carbamates/analysis , Chemical Fractionation/methods , Environmental Monitoring/methods , Gas Chromatography-Mass Spectrometry/methods , Hydrocarbons, Chlorinated/analysis , Pesticide Residues/analysis , Pyrethrins/analysis , Rain , Strobilurins/analysis , Thiocarbamates/analysisABSTRACT
Despite the nutritional properties of alfalfa, its production is mainly for animal feed and it is undervalued as a food source. In this study, the valorization of alfalfa as a potential source of bioactive carbohydrates [inositols, α-galactooligosaccharides (α-GOS)] is presented. A Box-Behnken experimental design was used to optimize the extraction of these carbohydrates from leaves, stems, and seeds of alfalfa by solid-liquid extraction (SLE) and microwave-assisted extraction (MAE). Optimal extraction temperatures were similar for both treatments (40 °C leaves, 80 °C seeds); however, SLE required longer times (32.5 and 60 min vs. 5 min). In general, under similar extraction conditions, MAE provided higher yields of inositols (up to twice) and α-GOS (up to 7 times); hence, MAE was selected for their extraction from 13 alfalfa samples. Pinitol was the most abundant inositol of leaves and stems (24.2-31.0 mg·g-1 and 15.5-22.5 mg·g-1, respectively) while seed extracts were rich in α-GOS, mainly in stachyose (48.8-84.7 mg·g-1). In addition, inositols and α-GOS concentrations of lyophilized MAE extracts were stable for up to 26 days at 50 °C. These findings demonstrate that alfalfa is a valuable source of bioactive carbohydrates and MAE a promising alternative technique to obtain functional extracts.
ABSTRACT
Anabolic androgenic steroids (AASs) comprise a class of synthetic androgens resulting from chemical modifications of testosterone, known for their illicit consumption, which can result inextensive side effects. Extraction procedures applied to the analysis of their formulations are still limited to a few methodologies, despite the increasing numbers of confiscations of AASs. In this sense, the aims of this work were to evaluate the extraction of active ingredients from formulations of anabolic agents using solid-liquid or liquid-iquid, ultrasonic bath, ultrasonicprobe, and microwave-assisted extraction. The results indicated that the extraction procedures influenced the detected concentration of AASs, as the use of ultrasonic probe and microwave irradiation increased the overall extraction of anabolic agents compared with solid-liquid, liquid-liquid, and ultrasonic bath. Regarding oxymetholone, for instance, the microwave-assisted extraction and ultrasonic probe extracted, respectively, 37.46 ± 1.36 and 35.69 ± 0.98 mg/tablet, while solid-liquid extracted 29.63 ± 0.40 mg/tablet of the activeingredient. Therefore, alternative methods such as microwave-assisted extraction or theultrasonic probe could be used for the analysis of formulations of AASs assisting with the identification of illicit and toxic components.
Subject(s)
Anabolic Agents/analysis , Chemical Fractionation/methods , Testosterone Congeners/analysis , Doping in Sports , Liquid-Liquid Extraction , Microwaves , Solid Phase Extraction , Tablets , Ultrasonics/methodsABSTRACT
Lectins are carbohydrate binding proteins with many physiological and biotechnological applications. Isolation of proteins is normally time-consuming and encompasses multiple and, sometimes, complicated steps that hinder reproducibility and yield. Affinity chromatography is an efficient way to simplify and improve protein purification, however often requiring an expensive and fragile stationary phase. In this regard, automated flow-based systems minimize the time for extraction of species from solid samples without hindering the features of batch procedures. In this work, a new inexpensive affinity-based stationary phase was developed for in-line separation of jacalin, a galactose-binding lectin from jackfruit seeds. In the flow manifold, in-line extraction of proteins was also carried out with continuous monitoring using the spectrophotometric Biuret assay. For protein determination, linear response was observed from 3.0 to 15â¯gâ¯L-1. The results of the analysis of protein extracts from jackfruit seeds obtained with the herein described procedure and batch procedure agreed with 95% confidence level. Quantitative extraction of proteins from jackfruit seed powder required recirculation of extraction buffer for 15â¯min through a lab-made polymethylmethacrylate (PMMA) column containing 200â¯mg of the crude seed powder. In the chromatographic step, jacalin was isolated after 300â¯s. Therefore, three essential steps for jacalin isolation were performed in one manifold in a fast way, minimizing sample consumption and solution handling. Additionally, the versatile and multi-task developed flow manifold can be useful for routine analysis and preparative procedures, being adaptable for the extraction and separation of other species from solid matrixes with continuous monitoring of the processes.
Subject(s)
Chemical Fractionation/methods , Chromatography, Affinity/methods , Plant Lectins , Plant Proteins/isolation & purification , Artocarpus/chemistry , Plant Lectins/analysis , Plant Lectins/chemistry , Plant Lectins/isolation & purification , Plant Proteins/analysis , Plant Proteins/chemistry , Research Design , Seeds/chemistryABSTRACT
Banana has non-starch polysaccharides (NSP) in its cell wall similar to dietary fiber from cereals like oats. These NSP could be used as potential functional ingredient due to their prebiotic action and potential food immuno-modulators. However, NSP purification is limited due to high quantities of soluble sugars accumulate during banana ripening. The aim of this study was to extract soluble sugars from ripe banana (Musa cavendishii var. Nanicão) to obtain a purified NSP matrix. Two different extraction methodologies (solid-liquid extraction SLE and ultrasound-assisted extraction UAE) were tested using ethanol (99.5â¯mL/100â¯mL) as solvent. Soluble sugars were quantified by high-performance liquid chromatography (HPLC). SLE and UAE showed to be effective in extraction process of soluble sugars. Best results were obtained with SLE at sample/solvent ratio of 1:5, 65⯰C and 30â¯min of extraction time. A solid residue with NSP was obtained, that could be used as a functional ingredient.
Subject(s)
Dietary Fiber/analysis , Musa/metabolism , Polysaccharides/analysis , Cell Wall/chemistry , Chromatography, High Pressure Liquid , Polysaccharides/isolation & purification , Solid Phase Extraction , Solubility , SonicationABSTRACT
The dissipation of difenoconazole and linuron using an open-field experimental approach with carrots exposed to one-, two- and fivefold the recommended dose of the pesticides was evaluated to provide safe recommendation to ensure food safety of carrots. The pesticide residue analysis was performed with solid-liquid extraction with low temperature partitioning technique (SLE/LTP) followed by gas chromatography analysis. The recovery percentages of extracts obtained from samples of carrot passed through SLE/LTP extraction and fortified with difenoconazole and linuron pesticides varied from 93.4% to 106.3% and from 95.1% to 116.6%, respectively. The limit of detection for difenoconazole was 0.02 and 0.12â¯mgâ¯kg-1 for linuron. The limit of quantification for difenoconazole was 0.05 and 0.36â¯mgâ¯kg-1 for linuron. The degradation time for fifty percent of the applied pesticide at the different doses ranged from 2.4 to 3.6 days for difenoconazole and from 7.5 to 10.5 days for linuron. At the end of the pre-harvest interval, carrots treated with fivefold the recommended dose of both pesticides were considered unfit for consumption. Despite monitoring the degradation products of the applied pesticides by gas chromatography coupled to mass spectrometer, none degradation product was identified on the carrots.
Subject(s)
Daucus carota/chemistry , Dioxolanes/chemistry , Linuron/chemistry , Triazoles/chemistry , Chromatography, Gas , Dose-Response Relationship, Drug , Food Safety , Limit of Detection , Pesticide Residues/analysis , Pesticides/chemistry , Reproducibility of ResultsABSTRACT
A highly sensitive analytical method was developed and validated, following international guidelines, for the determination of the residues of five macrocyclic lactones (MLs) (abamectin, doramectin, eprinomectin, ivermectin and moxidectin) in cheese. The extracts were concentrated by rotary-evaporation and derivatized; no clean-up was necessary. Despite matrix complexity, no significant matrix-effect was verified, and standards were prepared in solvents. Linear working ranges varied from 0.25 to 5.0⯵gâ¯L-1. Excellent limits of quantification (0.58-0.87⯵gâ¯kg-1), mean recoveries (91-103%), and repeatability and intermediate precision (<5.8%) were obtained. Twenty-two samples of bovine and non-bovine cheeses were analyzed. Twenty-one samples showed residues of at least one ML (between 0.59 and 15.3⯵gâ¯kg-1), but moxidectin was never detected; a sample of mozzarella was free of MLs. To the best of our knowledge, this is the first method describing the simultaneous evaluation of these MLs in cheese using HPLC and fluorescence detection.
Subject(s)
Cheese/analysis , Food Analysis/methods , Lactones/analysis , Lactones/isolation & purification , Limit of Detection , Macrocyclic Compounds/chemistry , Spectrometry, Fluorescence , Animals , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Cattle , Chromatography, High Pressure Liquid , Cold Temperature , Food Contamination/analysis , Lactones/chemistry , Solid Phase Extraction , Time FactorsABSTRACT
La Moringa oleífera es una planta que se utiliza como materia prima en diferentes industrias, como la alimentaria, farmacéutica y cosmética. Una de las partes aprovechables del árbol es la semilla debido a su contenido entre un 30 y 45 % de aceite. Sus propiedades terapéuticas potencian su uso en el tratamiento de más de 300 enfermedades. En esta investigación se caracterizó el aceite extraído de las semillas de Moringa oleífera de las variedades de origen cubano Supergenious, Plain y Nicaragua, a partir de extracciones sólido-líquido con hexano y etanol como disolventes y por el método de prensado mecánico de la variedad Nicaragua. A través de un diseño de experimento 2K se analizaron las variables relación soluto-disolvente, tiempo de extracción, y la granulometría seleccionándose las corridas con mayores valores de porcentaje de extracción. Los aceites correspondientes a la selección se caracterizaron fisicoquímica y fitoquímicamente y los valores se compararon con variedades de diferentes regiones reportadas en la literatura. Se demostró que el método de prensado es eficiente, económico y no influye en las propiedades del producto obtenido.
Moringa oleífera is a plant that is used as raw material in various industries, including those related to the field of chemistry such as food, pharmaceuticals and cosmetics. One of the usable parts of the tree is the seed because the content between 30 and 45% oil. They enhance its therapeutic use in the treatment of more than 300 diseases. In this research the oil extracted from the seeds of Moringa oleífera varieties of Cuban origin Supergenious, Plain and Nicaragua is characterized from solid-liquid extraction with hexane and ethanol as solvents and by the method of mechanical pressing of the species Nicaragua . Through a design of experiment 2K solute-solvent variable ratio, extraction time were analyzed, and the grain size selected runs with values greater percentage of oil extracted. Oils corresponding to the selection were characterized physic-chemical and phytochemically and were compared with varieties from different regions reported in the literature. It was shown that the pressing method is efficient, economical and has no influence on the product properties obtained.
ABSTRACT
Introducción: la Annona muricata L. (guanábana) se emplea en la etnomedicina para el tratamiento de diferentes enfermedades. Se han determinado la presencia de flavonoides en las hojas, los cuales poseen propiedades antidiabéticas, antioxidantes y antiinflamatorias. Objetivo: evaluar la influencia de parámetros operacionales de extracción en la obtención de flavonoides a partir de las hojas de A. muricata. Métodos: se emplearon hojas secas, previamente molidas como material vegetal y etanol como disolvente. La evaluación de las variables de operación se realizó a partir de un diseño experimental de superficie respuesta compuesto central rotacional 23 con puntos estrellas, seleccionándose los intervalos entre 50 y 70 mL/g para la relación material vegetal-volumen de disolvente, entre 40 y 80 por ciento la concentración de etanol y entre 2 y 3 h el tiempo de extracción. Se determinó la presencia de flavonoides y quercetina en los extractos obtenidos. La cuantificación de flavonoides totales se realizó por un método colorimétrico a 430 nm, expresado como quercetina. Para la mejor condición experimental se realizaron experimentos por triplicado y se comparó con el valor predicho por el diseño encontrándose una buena correlación entre ambos. Resultados: la condición óptima en la extracción de flavonoides totales se obtuvo a una concentración de etanol de un 96 por ciento, una relación de 70 ml/g y un tiempo de 1,6 h. Las variables significativas resultaron los efectos cuadráticos de la relación material vegetal-volumen de disolvente y la concentración de etanol. Conclusiones: se seleccionaron las mejores condiciones de extracción en la obtención de un extracto a partir de hojas de guanábana con presencia de flavonoides, a partir de las cuales se alcanzó un rendimiento del proceso de extracción de 87 por ciento(AU)
Introduction: Annona muricata L. (soursop) is used in ethnomedicine for the treatment of various diseases. Leaves of this species have been found to contain flavonoids, which are compounds with antidiabetic, antioxidant and anti-inflammatory properties. Objective: evaluate the influence of operational parameters on the extraction of flavonoids from A. muricata leaves. Methods: dry ground leaves were used as plant material and ethanol as solvent. Evaluation of the operational variables was based on a 23 experimental rotatable response surface central composite design with star points, selecting the intervals between 50 and 70 ml/g for the plant material / solvent volume ratio, 40 percent to 80 percent for ethanol concentration and 2 to 3 h for extraction time. Flavonoids and quercetin were found in the extracts obtained. Total flavonoids were quantified using a colorimetric method at 430 nm, expressed as quercetin. Experiments were conducted in triplicate to determine the best experimental condition. Comparison with the design value predicted showed a good correlation between the two. Results: the optimal condition for extraction of total flavonoids was reached at an ethanol concentration of 96 percent, a 70 ml/g ratio and a time of 1.6 h. The variables found to be significant were the quadratic effects of the plant material / solvent volume ratio and ethanol concentration. Conclusions: a selection was made of the best conditions to obtain an extract from soursop leaves containing flavonoids, in which an extraction output of 87 percent was achieved in the extraction process(AU)
Subject(s)
Humans , Plant Preparations/therapeutic use , Annona , Phytochemicals , Anti-Inflammatory Agents/therapeutic use , Antioxidants/therapeutic use , FlavonoidsABSTRACT
Um dos principais setores do sistema agroindustrial brasileiro é composto pelo processamento de oleaginosas. Sua importância não se deve apenas ao seu produto principal, o óleo, mas também à fração desengordurada, composta por proteínas. Tradicionalmente, hexano é o solvente empregado na extração de óleos vegetais e, por esta razão, os objetivos principais deste trabalho foram estudar a viabilidade de substituição deste solvente por solventes alcoólicos na extração do óleo de farelo de arroz e, neste sentido, avaliar o impacto desta mudança nas características do óleo e da fração proteica. Foram realizados experimentos de extração sólido-líquido na condição de equilíbrio com a finalidade de avaliar a influência das variáveis de processo, tipo de solvente (etanol ou isopropanol), teor de água no solvente (0, 6 ou 12%) e temperatura (50 a 80 °C), na extração do óleo de farelo de arroz. Através dos experimentos de extração foi possível caracterizar os extratos obtidos e o farelo desengordurado em termos de rendimento de extração de compostos lipídicos, proteicos e minoritários, além da caracterização da fração proteica presente no rafinado, em termos de solubilidade e análise térmica. De maneira geral, os resultados mostraram influência da água no solvente no sentido da supressão da extração de óleo e, por outro lado, observou-se que o aumento da temperatura favoreceu o processo de extração lipídica. No caso do conteúdo proteico presente no extrato, observou-se que a hidratação do solvente e a temperatura favoreceram a extração de proteínas. A elevação da temperatura de processo favoreceu também, a extração de γ-orizanol, porém o aumento da água no solvente diminuiu a extração deste composto minoritário. A água também exerceu forte influência na quantidade de acilgliceróis e ácidos graxos livres transferidos para o extrato, porém, para o teor de fosfolipídeos, essa influência foi menor. As condições de processo não afetaram significativamente a composição do óleo, que se mostrou típica de óleo de farelo de arroz. Com relação à fração proteica, a solubilidade e propriedades térmicas, que definem o grau de desnaturação proteica, sofreram forte influência do grau de hidratação do solvente e da temperatura de processo, uma vez que à medida que a quantidade de água no solvente e a temperatura foram aumentados, notou-se uma diminuição no índice de solubilidade de nitrogênio. A partir dos resultados obtidos pode-se inferir que a extração de óleo de farelo de arroz com solventes alternativos, etanol e isopropanol, é possível, porém, as condições de processo devem ser muito bem avaliadas de maneira que este seja viável e os produtos oriundos, tanto o óleo de farelo de arroz quanto a fração proteica, possuam qualidade adequada para serem destinados à fins alimentícios.
One of the main areas of the Brazilian agroindustrial system is composed by the processing of oilseeds. Its importance is not only due to its main product, the oil, but also to the defatted fraction, composed of proteins. The hexane is the solvent traditionally used in vegetable oils extraction and, for that matter, the main objectives of this paper were to study the feasibility of substitution of t his solvent for alcoholic solvents on the rice bran oil extraction and also evaluate the impact of this change on the oil characteristics and the protein fraction. Some solid-liquid extraction experiments on balance condition were made to evaluate the variables on the process, such as the solvent type (ethanol or isopropanol), solvent water content (0, 6 or 12%) and temperature (50 to 80 °C) in the rice bran oil extraction. This way, the results show water influence on the solvent suppressing the oil extraction, and, on the other hand, the temperature increase benefits the process. Through extraction experiments, it was possible to characterize the obtained extracts and the defatted bran in terms of lipid, protein and minorities compound extraction, besides the characterization of the protein fraction present on the raffinated in terms of solubility and thermal analysis. In general, the results showed the water solvent influence in order to suppress the oil extraction and, on the other hand, it has been observed that the temperature increase benefited the lipid extraction process. Related to the protein content present in the extract, it was observed that the solvent hydration and temperature benefited the protein extraction. The temperature increase on the process also benefited the the γ-oryzanol extraction, however, the water solvent increase decreased the extraction of this minority compound. The water also has a strong influence on the amount of acylglycerol and free fatty acid transferred to the extract, however, for the phospholipids content, there is a decreasing influence. The process conditions did not have a significant affection on the oil composition, which is typical on rice bran oil. Regarding the protein fraction, solubility and thermal properties, which define the protein denaturing degree, there was a strong influence of the solvent hydration degree and the processing temperature, once the amount of water in the solvent and temperature are increased, it was noticed the decrease on the nitrogen solubility index. Based on the results it is possible to infer that the rice bran oil extraction with alternative solvents, ethanol and isopropanol, is possible, however, the process conditions must be well evaluated in order to be viable and the originated products, as well the rice bran oil as the protein fraction, have the proper quality for food purposes.
Subject(s)
/adverse effects , Ethanol/adverse effects , Solvents/analysis , Plant Oils/isolation & purification , Food Composition , Chemical Phenomena/methodsABSTRACT
O emprego de solventes no processo de obtenção de óleos de sementes oleaginosas é um processo amplamente empregado, sendo o hexano o solvente tradicionalmente adotado. O objetivo principal desta dissertação de mestrado foi avaliar a viabilidade da substituição do hexano por etanol no processo de extração de óleo de soja. [...] Assim, os resultados mostraram que o aumento do teor de água no etanol suprimiu fortemente a extração de óleo enquanto que a elevação da temperatura favoreceu a extração. Já a proteína exibiu um comportamento contrário ao óleo, sendo que o aumento da hidratação do solvente elevou a extração destes compostos e o aumento da temperatura diminuiu o teor de proteínas na fase extrato. Quanto à hidratação da fase extrato, pôde-se notar que esta foi independente da temperatura e que existe um equilíbrio entre a umidade do sólido e o nível de hidratação do etanol. A elevação da temperatura também aumentou a extração de ácidos graxos livres e a avaliação do perfil químico e da composição em AGL dos óleos obtidos via etanol mostrou que estes apresentaram composição típica de óleo de soja, independente da condição adotada. A qualidade da fração proteica resultante da extração do óleo, avaliada na forma de solubilidade de nitrogênio e análise térmica (DSC), mostrou que a proteína também foi fortemente influenciada pela presença da água no solvente e pelo aumento da temperatura, apresentando menores valores de solubilidade conforme o aumento do teor de água no etanol e da temperatura do processo. Diante dos resultados, pode-se inferir que é viável tecnicamente a utilização de etanol no processo de extração de óleo de soja, no entanto as condições de hidratação do solvente e temperatura devem ser consideradas devido à influência destas sobre as características da fração proteica do farelo desengordurado
The use of solvents in the extraction of oil from oilseeds is a widely employed process and the hexane is the solvent traditionally adopted. The aim of this work was to evaluate the feasibility of replacing hexane by ethanol in the soybean oil extraction process. [...] Then, the results showed that increasing in water content of ethanol suppresses strongly the extraction of oil while the increase of temperature increases the extraction. About protein, it exhibits an opposite behavior to the oil, with the rise in water content of the solvent increasing the extraction of such compounds and the rise of temperature decreases in the protein content of extract phase. Regarding the hydration of the extract phase, it can be seen that this is temperature independent and that there is equilibrium between the solid matrix and the moisture level of the solvent ethanol. The increase in temperature also increases the extraction of free fatty acids and the evaluation of the chemical profile and composition in FFA of oils obtained via ethanol showed that they had typical composition of soybean oil, regardless the condition adopted. The quality of the protein fraction resulting from oil extraction evaluated as nitrogen solubility and thermal analysis (DSC) showed that the protein is also strongly influenced by the presence of water in the solvent and by increasing the temperature, with lower values of solubility with increasing water content in the ethanol and the process temperature. From the results, it can be inferred that it is technically feasible to use ethanol in the soybean oil extraction process, however hydration conditions of the solvent and temperature must be considered due to the influence of these on the protein fraction characteristics of the defatted meal