ABSTRACT
Understanding the strength behavior and leaching characteristics of mining tailings stabilized with alkali-activated cements in the short, medium, and long term is crucial for the feasibility of material applications. In this context, this study assessed the stabilization/solidification of iron ore tailings (IOT) using alkali-activated binder (AAB) composed of sugarcane bagasse ash and eggshell lime at curing times of 7, 28, 60, 90, 180, and 365 days. Additionally, leaching tests were conducted, along with the examination of possible changes in the chemical and mineralogical composition resulting from exposure to acidic environments. Tests included unconfined compression strength (UCS), leaching, X-ray diffraction, and Fourier-transform infrared spectroscopy for the IOT-AAB mixtures. The highest increase in UCS was observed between 7 and 60 days, reaching 6.47 MPa, with minimal variation thereafter. The AAB-bonded IOT exhibited no metal toxicity over time. Elements Ba, Mn, Pb, and Zn present in IOT and ash were encapsulated in the cemented matrix, with complete encapsulation of all metals observed from 90 days of curing time. The mineralogy of the stabilized/solidified tailings showed no changes resulting from leaching tests. Characteristic bands associated with the presence of N-A-S-H gel were identified in both pre-leaching and post-leaching samples for all curing times analyzed. Exposure to acidic environments altered bands related to carbonate bonds formed in the IOT-AAB mixture.
Subject(s)
Iron , Mining , Iron/chemistry , Alkalies/chemistry , Metals/chemistry , X-Ray Diffraction , Saccharum/chemistryABSTRACT
A revised study of the growth and melting of crystals in congruently melting Al50Ni50alloy is carried out by molecular dynamics (MDs) and phase field (PF) methods. An embedded atom method (EAM) potential of Purja Pun and Mishin (2009Phil. Mag.89 3245) is used to estimate the material's properties (density, enthalpy, and self-diffusion) of the B2 crystalline and liquid phases of the alloy. Using the same EAM potential, the melting temperature, density, and diffusion coefficient become well comparable with experimental data in contrast with previous works where other potentials were used. In the new revision of MD data, the kinetics of melting and solidification are quantitatively evaluated by the 'crystal-liquid interface velocity-undercooling' relationship exhibiting the well-known bell-shaped kinetic curve. The traveling wave solution of the kinetic PF model as well as the hodograph equation of the solid-liquid interface quantitatively describe the 'velocity-undercooling' relationship obtained in the MD simulation in the whole range of investigated temperatures for melting and growth of Al50Ni50crystals.
ABSTRACT
Molecular dynamics simulations were used to investigate the initial stage of phase separation mechanisms for an oversaturated electrolytic solution. We developed a low computational cost methodology to determine the simulation frames where the first ionic clusters are formed. By discretizing the simulation box, we obtain a density profile in the moments preceding and succeeding the nuclei's formation. The growth of the clusters identified with our methodology was analyzed until the end of the simulation. Calculation of the Steinhardt parameter showed symmetry of the solid, giving indications that the classical nucleation theory explains the mechanism of the solid formation. The methodology developed was useful for identifying phase separation mechanisms in the nucleation process. At lower concentrations, there was no formation of stable clusters. At intermediate concentrations, the analyses indicate a transition of phases in one stage, from a oversaturate electrolytic solution to a crystalline solid. At high concentration, a transition of phases in two stages, initially, is the formation of a dense liquid, and only after that, crystalline solid formed inside the dense liquid. The change in phase separation mechanism due to increasing oversaturation underscores the importance of precise determination of the driving force for phase separation and concentration limits for each mechanism.
Subject(s)
Molecular Dynamics Simulation , Sodium Chloride , CrystallizationABSTRACT
Disposal of mine tailings can cause negative environmental effects by releasing contaminants to surface and underground water. Alkali activation is a promising technique for immobilizing metals in stabilization/solidification of these wastes. This study evaluates the leaching behavior of cemented bauxite tailings (BT) submitted to weathering conditions. The alkali-activated binder was composed of sugar cane bagasse ash, carbide lime, and sodium hydroxide solution. Comparisons of the durability and leaching behavior of BT stabilized with alkali-activated binder and high initial strength Portland cement were performed. The durability results for alkali-activated were similar to the Portland cement, showing an average difference of 16%. Portland cement showed favorable results in the encapsulation of heavy metals like Cd and Hg, while the alkali-activated cement on Al, Cr, and Se. For Ba, Fe, Mn, and Zn immobilization, both types of cement presented an equal performance. The durability and leaching behavior of stabilized bauxite tailings is governed by the cement content and porosity of the blends, as well as their pH.
Subject(s)
Construction Materials , Metals, Heavy , Alkalies , Aluminum Oxide , Metals, Heavy/chemistryABSTRACT
Aluminum bronze is a complex group of copper-based alloys that may include up to 14% aluminum, but lower amounts of nickel and iron are also added, as they differently affect alloy characteristics such as strength, ductility, and corrosion resistance. The phase transformations of nickel aluminum-bronze alloys have been the subject of many studies due to the formations of intermetallics promoted by slow cooling. In the present investigation, quaternary systems of aluminum bronze alloys, specifically Cu-10wt%Al-5wt%Ni-5wt%Fe (hypoeutectoid bronze) and Cu-14wt%Al-5wt%Ni-5wi%Fe (hypereutectoid bronze), were directionally solidified upward under transient heat flow conditions. The experimental parameters measured included solidification thermal parameters such as the tip growth rate (VL) and cooling rate (TR), optical microscopy, scanning electron microscopy (SEM) analysis, hardness, and microhardness. We observed that the hardness and microhardness values vary according to the thermal parameters and solidification. We also observed that the Cu-14wt%Al-5wt%Ni-5wi%Fe alloy presented higher hardness values and a more refined structure than the Cu-10wt%Al-5wt%Ni-5wt%Fe alloy. SEM analysis proved the presence of specific intermetallics for each alloy.
ABSTRACT
The composition of a commercial duplex stainless steel was modified with boron additions (3.5, 4.5, and 5.5 wt.%) and processed by rapid-quenching techniques: Melt-spinning, copper-mold casting, and high-velocity oxygen fuel (HVOF). Spray deposition was also used to produce alloys as the process may induce rapid-solidified-like microstructures. These processing routes led to microstructures with distinguished corrosion resistance. Among the alloys with different boron contents, the 63.5Fe25Cr7Ni4.5B composition enabled the production of fully amorphous ribbons by melt-spinning. The cooling rate experienced during copper-mold casting, high-velocity oxygen fuel, and spray deposition did not ensure complete amorphization. The crystalline phases thereby formed were (Fe,Cr)2B and (Fe,Mo)3B2 borides in an austenitic-matrix with morphology and refinement dependent of the cooling rates. Fully amorphous 63.5Fe25Cr7Ni4.5B ribbons exhibited outstanding corrosion resistance in chloride-rich alkaline and acid media with negligible corrosion current densities of about 10-8 A/cm² and a broad passivation plateau. Although the specimens of the same composition produced by HVOF process and spray deposition exhibited lower corrosion resistance because of intrinsic porosity and crystalline phases, their corrosion behaviors were superior to those of AISI 1045 steel used as substrate with the advantage to be reinforced with hard borides known to be resistant against wear.
ABSTRACT
In this work, the dispersive liquid-liquid microextraction technique based on the solidification of the organic phase (DLLME-SFO) has been automated for the first time. DLLME-SFO is automated by hyphenating a sequential injection analysis (SIA) system with a custom-made robotic phase separator. Automated in-syringe DLLME is followed by phase separation in a 3D printed device integrating a Peltier cell set, mounted on a multi-axis robotic arm. The combined action of the flow system and the robotic arm is controlled by a single software package, enabling the solidification/melting and collection of the organic phase for further analyte quantification. As proof-of-concept, automated DLLME-SFO was applied to the extraction of parabens followed by separation using liquid chromatography, obtaining LODs between 0.3 and 1.3⯵gâ¯L-1 (4â¯mL of sample extracted in 1â¯mL of 1-dodecanol: MeOH, 15:85, v-v). The method showed a high reproducibility, obtaining intraday RSDs between 4.6% and 5.8% (nâ¯=â¯6), and interday RSDs between 5.6% and 8.6% (nâ¯=â¯6). The developed method was evaluated for the determination of parabens in water, urine, saliva, and personal care products.
ABSTRACT
A simple method has been proposed for the determination of cocaine's major adulterants (caffeine, levamisole, lidocaine, phenacetin, diltiazem, and hydroxyzine) in human urine by dispersive liquid-liquid microextraction based on solidification of floating organic drop (DLLME-SFO) in combination with high-performance liquid chromatography - photodiode array detector (HPLC-PDA). The reversed-phase chromatographic separation was obtained with a column C18 extended (250×4.6mm; 5µm; 80Å) in gradient elution mode using acetonitrile-trifluoroacetic acid 0.026% (v,v) (pH=2.5) at 1mLmin-1 as mobile phase, at 25°C, and detection at 235nm. The analysis time was 25min. This condition had the best resolution factors (>1.15), retention factors (>0.68), number of plates (>2094.9), and separation factors (>1.05) for all targets, indicating a good separation. The kind of extraction and dispersive solvent were investigated for unifactorial design. The buffer pH, the volume of extraction and disperser solvent, and the amount of salt were optimized for full factorial design. Under optimum conditions, human urine samples were alkalized with 0.5M sodium phosphate buffer (pH 10) and added to sodium chloride (20%m/v). Acetonitrile (150µL) and 1-dodecanol (30µL) were used as dispersive and extraction solvent, respectively. The method presented linear range of 312.5-3125ngmL-1 to caffeine and levamisole and 187.5-1875ngmL-1 to lidocaine, phenacetin, diltiazem, and hydroxyzine. The limit of quantification was 187.5ngmL-1 to lidocaine, phenacetin, diltiazem, and hydroxyzine and 312.5ngmL-1 for caffeine and levamisole. The recovery mean values were between 6.0 and 42.6%. The method showed good precision and accuracy, with within- and between-run relative standard deviation and relative error less than 15%. The samples were stable after freeze-thaw cycle and short-term room temperature stability tests. Besides, this method was satisfactorily applied in urine of cocaine users. It is expected that this method, which was the first to combine the use of DLLME-SFO and HPLC-PDA for the determination of cocaine's major adulterants in human urine, will contribute to the accuracy in the diagnosis of acute intoxication, the proper planning of therapeutic measures, as well as to the favorable prognostic of cocaine intoxicated patients.
Subject(s)
Cocaine/isolation & purification , Cocaine/urine , Drug Contamination , Liquid Phase Microextraction/methods , Adult , Chromatography, High Pressure Liquid/methods , Female , Humans , Male , Middle Aged , Young AdultABSTRACT
A simple, rapid, and sensitive method for the determination of atrazine, simazine, cyproconazole, tebuconazole, and epoxiconazole in mineral water employing the dispersive liquid-liquid microextraction with solidification of a floating organic drop with determination by liquid chromatography tandem mass spectrometry has been developed. A mixed solution of 250 µL 1-dodecanol and 1250 µL methanol was injected rapidly into 10 mL aqueous solution (pH 7.0) with 2% w/v NaCl. After centrifugation for 5 min at 2000 rpm, the organic solvent droplets floated on the surface of the aqueous solution and the floating solvent solidified. The method limits of detection were between 3.75 and 37.5 ng/L and limits of quantification were between 12.5 and 125 ng/L. The recoveries ranged from 70 to 118% for repeatability and between 76 and 95% for intermediate precision with a relative standard deviation from 2 to 18% for all compounds. Low matrix effect was observed. The proposed method can be successfully applied in routine analysis for determination of pesticide residues in mineral water samples, allowing for monitoring of triazine and triazoles at levels below the regulatory limits set by international and national legislations.
Subject(s)
Chromatography, High Pressure Liquid/methods , Liquid Phase Microextraction/methods , Mineral Waters/analysis , Tandem Mass Spectrometry/methods , Triazines/analysis , Triazines/isolation & purification , Triazoles/analysis , Triazoles/isolation & purificationABSTRACT
Características físicas (absorção de água), mecânicas (resistência à compressão), de toxicidade e de superfície (microscopia eletrônica de varredura) foram avaliadas em blocos cerâmicos acústicos, fabricados por meio do processo de solidificação/estabilização (S/E), a partir da incorporação de lodo proveniente de estação de tratamento de efluentes têxteis. Os blocos cerâmicos acústicos foram produzidos com incorporação de 5, 10, 15, 20, 25, 30 e 35% de lodo têxtil na massa de argila, bem como o bloco controle. Os resultados indicaram a porcentagem de 20% de lodo como o limite para fornecer material com características de acordo com os padrões estabelecidos pela legislação brasileira. O processo de S/E foi eficiente no aproveitamento/tratamento do lodo têxtil, uma vez que permitiu a imobilização dos poluentes na massa de argila, os quais não foram lixiviados, tampouco solubilizados.
Physical characteristics (water absorption), mechanical (compression length), of toxicity and surface (scanning electron microscopy) were evaluated in acoustic ceramic blocks, manufactured by the process of solidification/stabilization (S/S) from the incorporation of sludge from a textile wastewater treatment plant. Acoustic ceramic blocks were produced by incorporating of 5, 10, 15, 20, 25, 30 and 35% of textile sludge in the clay mass/material as well as the control block. The results indicated the percentage of 20% of sludge, as the limit to provide materials with good characteristics of accordance with the standards established by Brazilian law. The S/S process was efficient in the recovery/treatment of the textile sludge, as it allowed the immobilization of pollutants in the clay mass/material, which have not been leached, neither solubilized.
ABSTRACT
A quantidade de resíduos sólidos industriais tem aumentado significativamente em decorrência da industrialização, e o seu gerenciamento adequado é necessário para reduzir o impacto ao meio ambiente e aos ecossistemas. Neste trabalho, foram avaliadas a integridade e a retenção de metais pesados em materiais estabilizados por solidificação. Foi adotado o planejamento completamente aleatorizado com um único fator, ou seja, foram comparadas as médias de quatro tratamentos (A, B, C e D) com 0, 40, 50 e 60 por cento respectivamente de contaminantes e três repetições. Cimento Portland comum, bentonita sódica e hidróxido de cálcio foram usados para estabilizar por solidificação o resíduo sólido sintético contendo óxido de Cd2+, Pb2+ e Cu2+. Pode-se concluir que os tratamentos influenciaram no resultado de lixiviação do cádmio, chumbo e cobre. Os tratamentos mostraram que as concentrações do extrato solubilizado e lixiviado aumentam em função da quantidade de cádmio, chumbo e cobre adicionada. O maior valor encontrado foi para o material proveniente do tratamento D, que apresentou lixiviação igual a 32,815 mg.kg-1 para o cádmio e 29,769 mg.kg-1 para o chumbo. Para os ensaios de integridade/durabilidade, constatou-se que o aumento da absorção de água fez com que a resistência à compressão diminuísse. O uso de cimento, de hidróxido de cálcio e de bentonita sódica se mostrou ideal para retenção de metais pesados, evitando a sua lixiviação e a solubilização para o meio ambiente.
As the quantity of hazardous industrial wastes increases significantly owing to rapid industrialization, its appropriate management is required to reduce adverse impacts on humans and ecosystems. This work evaluated the integrity and retention of heavy metals in materials stabilized by solidification. It was adopted a completely randomized design with a single factor, that is, the averages of four treatments were compared (A, B, C and D) with 0, 40, 50 and 60 percent respectively contaminants and three repetitions. Portland cement, bentonita and lime-fly ash binders were used to solidify a synthetic heavy metal sludge containing oxides of Cd2+, Pb2+ e Cu2+. It can be concluded that the treatment influenced the result of leaching of cadmium, lead and copper. The treatments showed that the concentrations of solubilized and leachate extract increase with the amount of cadmium, lead and copper added. The highest price was found in the material from the treatment D, that presented leaching equal to 32.815 mg.kg-1 for cadmium and 29.769 mg.kg-1 for the lead. For the tests of integrity/durability, it was found that increasing the absorption of water has caused resistance to compression decreased. The use of cement, calcium hydroxide and sodium bentonite were ideal for retention of heavy metals, avoiding leaching and solubilization for it's the environment.