Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters











Publication year range
1.
Water Res ; 263: 122163, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39111214

ABSTRACT

Substantial nutrient inputs from reservoir impoundment typically increase sedimentation rate and primary production. This can greatly enhance methane (CH4) production, making reservoirs potentially significant sources of atmospheric CH4. Consequently, elucidating CH4 emissions from reservoirs is crucial for assessing their role in the global methane budget. Reservoir operations can also influence hydrodynamic and biogeochemical processes, potentially leading to pronounced spatiotemporal heterogeneity, especially in reservoirs with complex tributaries, such as the Three Gorges Reservoir (TGR). Although several studies have investigated the spatial and temporal variations in CH4 emissions in the TGR and its tributaries, considerable uncertainties remain regarding the impact of reservoir operations on CH4 dynamics. These uncertainties primarily arise from the limited spatial and temporal resolutions of previous measurements and the complex underlying mechanisms of CH4 dynamics in reservoirs. In this study, we employed a fast-response automated gas equilibrator to measure the spatial distribution and seasonal variations of dissolved CH4 concentrations in XXB, a representative area significantly impacted by TGR operations and known for severe algal blooms. Additionally, we measured CH4 production rates in sediments and diffusive CH4 flux in the surface water. Our multiple campaigns suggest substantial spatial and temporal variability in CH4 concentrations across XXB. Specifically, dissolved CH4 concentrations were generally higher upstream than downstream and exhibited a vertical stratification, with greater concentrations in bottom water compared to surface water. The peak dissolved CH4 concentration was observed in May during the drained period. Our results suggest that the interplay between aquatic organic matter, which promotes CH4 production, and the dilution process caused by intrusion flows from the mainstream primarily drives this spatiotemporal variability. Importantly, our study indicates the feasibility of using strategic reservoir operations to regulate these factors and mitigate CH4 emissions. This eco-environmental approach could also be a pivotal management strategy to reduce greenhouse gas emissions from other reservoirs.


Subject(s)
Methane , Environmental Monitoring , Seasons , Rivers/chemistry , Geologic Sediments/chemistry , China
2.
Sci Total Environ ; 952: 175817, 2024 Nov 20.
Article in English | MEDLINE | ID: mdl-39197794

ABSTRACT

Tropospheric ozone affects human health, ecosystems, and climate change. Previous studies on Tropospheric Column Ozone (TCO) have primarily concentrated on specific regions or global geographic divisions. This has led to insufficient exploration of the spatiotemporal characteristics and influencing factors of TCO in global and rational subregions. In this study, TCO is calculated using the Modern Era Retrospective analysis for Research and Applications version 2 (MERRA-2) reanalysis data and corrected using satellite data. Cluster analysis is conducted to explore the temporal characteristics of TCO variations in different regions. The results show that the global TCO is basically distributed latitudinally, with higher TCO in the northern hemisphere, which is related to atmospheric circulation, radiation, stratospheric transport, and the distribution of ozone precursors. Between 1980 and 2020, the global average annual TCO showed an increasing trend at 0.09 DU yr-1 due to rising anthropogenic emissions of ozone precursors (NOx at 589547.86 t yr-1 and NMVOC at 1070818.24 t yr-1), increasing tropopause height (-0.10 hPa yr-1), and the enhanced ozone flux at the tropopause (0.22 ppbv m s-2 yr-1). Cluster analysis reveals different trends in TCO changes across regions. The ocean south of 60°S and parts of West Antarctica (Region 2), the region from 30°N to 60°N and the western oceanic region of 30°S (Region 3), and the region from the equator to 60°S and the region north of 60°N (Region 5) exhibit increasing trends (with rates of 0.08 DU yr-1, 0.07 DU yr-1, and 0.11 DU yr-1, respectively), linked to the enhanced ozone flux at the tropopause, the rising tropopause height and increasing ozone p precursors. Conversely, the decreasing TCO trends in the equatorial Pacific (Region 1) and East Antarctica (Region 4) (with rates of -0.01 DU yr-1 and -0.02 DU yr-1) may be related to increased cloudiness and weakened photochemical reactions.

3.
Sci Total Environ ; 946: 174127, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38908574

ABSTRACT

Black carbon (BC), as a critical light-absorbing constituent within aerosols, exerts profound effects on atmospheric radiation balance, climate, air quality and human health, etc. And it is also a long-standing focus in rapidly developing megacities. So, this study primarily focuses on investigating the variation characteristics and underlying causes of BC in Chongqing (31,914,300 population), which is one of the municipalities directly under the central government of China, serving as a pivotal economic hub in southwest China. Utilizing MERRA-2 reanalysis data, we examined the long-term changes of atmospheric BC over Chongqing 20 years (from 2002 to 2021). Moreover, BC mass concentration observations were conducted using an Aethalometer (AE-33) from March 15 to June 14, 2021 in Liangping District, Chongqing. The statistical analysis over the last 20 years reveals an annual mean BC concentration in Chongqing of 3.42 ± 0.20 µg/m3, exhibiting growth from 2002 to 2008, followed by a decline from 2008 to 2021. Monthly concentration displays a "U-shaped" trend, with the lowest values occurring in summer and the highest in winter. Due to topographical and meteorological influences, local emissions primarily contribute to BC pollution, characterized by a spatial distribution pattern of high in the west and low in the east. Ground observation indicates a distinct dual-peaked pattern in the diurnal variation of BC, with peak concentrations aligning with periods of high traffic emissions. The variation in BC is significantly influenced by meteorological conditions (wind, temperature, atmospheric boundary layer) and local pollution sources (predominantly traffic). Furthermore, extreme events analysis suggests that local emissions and regional transport (with higher contributions from Chongqing and the Sichuan Basin) predominantly contributed to BC pollution. This study effectively makes up for the deficiency in analyzing the distribution and sources of BC pollution in Chongqing, providing valuable scientific insights for the atmospheric environment of megacities.

4.
J Environ Manage ; 362: 121335, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38833934

ABSTRACT

Transitional features of desert environments partially determine the risks associated with ecosystems. Influenced by climate change and human activities, the variability and uncertainty of desertification levels and ecological risks in the Qinghai Area of Qilian Mountain National Park (QMNPQA) has become increasingly prominent. As a critical ecological barrier in northwest China, monitoring desertification dynamics and ecological risks is crucial for maintaining ecosystem stability. This study identifies the optimal monitoring model from four constructed desertification monitoring models and analyzes spatiotemporal changes in desertification. The spatial and temporal changes in ecological risks and their primary driving factors were analyzed using methods such as raster overlay calculation, geographic detector, cloud model, and trend analysis. The main conclusions are as follows: The desertification feature spatial model based on GNDVI-Albedo demonstrates better applicability in the study area, with an inversion accuracy of 81.24%. The levels of desertification and ecological risks in QMNPQA exhibit significant spatial heterogeneity, with a gradual decrease observed from northwest to southeast. From 2000 to 2020, there is an overall decreasing trend in desertification levels and ecological risks, with the decreasing trend area accounting for 89.82% and 85.71% respectively, mainly concentrated in the southeastern and northwestern parts of the study area. The proportion of areas with increasing trends is 4.49% and 7.05% respectively, scattered in patches in the central and southern edge areas. Surface temperature (ST), Digital Elevation Map (DEM), and Green normalized difference vegetation index (GNDVI) are the most influential factors determining the spatial distribution of ecological risks in QMNPQA. The effects of management and climatic factors on ecological risks demonstrate a significant antagonistic effect, highlighting the positive contributions of human activities in mitigating the driving effects of climate change on ecological risks. The research results can provide reference for desertification prevention and ecological quality improvement in QMNPQA.


Subject(s)
Climate Change , Conservation of Natural Resources , Ecosystem , Human Activities , Parks, Recreational , China , Humans , Ecology
5.
Environ Geochem Health ; 45(8): 5761-5781, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36823386

ABSTRACT

Attempts have been made in the present study for ascertaining the concentrations of atmospheric polycyclic aromatic hydrocarbons (PAHs) using passive biosamplers in preference to conventional air sampling methods. Mechanical stirring, sonication, Soxhlet technique and microwave-assisted Soxhlet extraction (MASE) were employed to extract PAHs from an evergreen plant (Murraya paniculata) leaves (having long life-span) sampled from polluted places of South Kolkata, India, with dense population and heavy traffic. Effects of extraction methods and operational parameters (solvent and time) on the recovery levels of PAHs were also investigated. Purified extracts, acquired through adsorption chromatography, were subjected to GC-MS and HPLC-UV analyses for qualitative and quantitative assessment of PAHs. Spatio-temporal distribution of accumulated PAHs across the sampling sites was monitored over premonsoon, postmonsoon and winter supported by pollutant source characterization. The results displayed that the extraction yields of Soxhlet (272.07 ± 26.15 µg g-1) and MASE (280.17 ± 15.46 µg g-1) were the highest among the four techniques. Conditions of extraction with toluene for 6 h were found to be most favorable for PAHs. In spatio-temporal analysis, total concentrations of PAHs in the foliar samples varied from 200.98 ± 2.72 to 550.79 ± 10.11 µg g-1 dry weight, and the highest values being recorded in the samples of Exide More because of daylong inexorable traffic flow/crowding increasing the burden of ambient PAHs. Widespread changes in meteorology exerted influence on seasonal concentrations of PAHs in plant leaves, and extent of leaf contamination by PAHs was observed extreme in winter followed by postmonsoon and then, premonsoon. Foliar accretion of PAHs differed in the study sites with diverse sources of emission from motor vehicles, fossil fuel and biomass burning along with other human interferences.


Subject(s)
Air Pollutants , Murraya , Polycyclic Aromatic Hydrocarbons , Humans , Polycyclic Aromatic Hydrocarbons/analysis , Biological Monitoring , Environmental Monitoring/methods , India , Air Pollutants/analysis
6.
Water Res ; 207: 117788, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34717210

ABSTRACT

Methane (CH4) emissions from freshwater aquatic systems such as rivers and reservoirs are an important component of the global methane budget. However, the estimation can be largely affected by the spatial and temporal resolutions of measurements. Especially, the lack of high-resolution studies in the Three Gorges Reservoir (TGR), one of the largest reservoirs in the world, has led to a longstanding debate on its CH4 emissions. In this study, the spatial distribution and seasonal variations of dissolved CH4 concentrations were measured using a fast-response automated gas equilibrator in the TGR. We observed large spatiotemporal variations of dissolved CH4 (mean ± SD: 0.26 ± 0.19 µM in summer and 0.24 ± 0.17 µM in winter). Higher concentrations with stronger variations were found in the upstream than in the section close to the Three Gorges Dam. The dissolved CH4 concentration in the TGR was mainly influenced by sewage discharge, sedimentation, topographical conditions, tributaries, and spatial and seasonal variations in hydrodynamics. Regression analyses suggest that the concentration can be characterized by sewage discharge, water depth, and electrical conductivity to a certain extent. Mean diffusive CH4 fluxes from the TGR in summer and winter were 16.2 mg m-2 d-1 and 3.1 mg m-2 d-1, respectively. Downsampling simulations show that scaling dissolved CH4 in the TGR from one site likely involves large errors, and at least ∼38 sites and ∼52-58 sites are needed to achieve an accurate estimate in summer and winter, respectively. Due to the large spatial and temporal heterogeneity, high-resolution measurements are key to improving the reliability of CH4 estimates and assessing the contribution of the TGR to regional and global CH4 budgets.


Subject(s)
Methane , Rivers , Fresh Water , Reproducibility of Results , Seasons
7.
Environ Pollut ; 265(Pt B): 114955, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32544790

ABSTRACT

Metal contamination in the Pearl River Estuary (PRE) is persistent-, yet a comprehensive understanding of distribution and behavior of metals in surface water of this large, multi-source estuary is still lacking. In the present study, water samples from 24 sites spanning the whole estuary during the dry and wet season were collected and fractioned. Trace metal concentrations in samples were then determined following a preconcentration technique using Nobias Chelate-PA1 resin. Distribution of trace metals exhibited variability along and across estuary, as a result of estuarine mixing, external metal loadings, addition and removal. Behavior of metals was contrasting between the dry and wet seasons, exhibiting metal-specific intercorrelations and dynamics. Colloidal metals (Mn, Ni and Cd) were primarily present in upper estuary and areas affected by external contaminant loading. Colloidal Cu was the only metal that was ubiquitous in the estuary in both seasons. It showed a high affinity for small-size organic colloids (likely fulvic acid) during the dry season. Overall, the present study demonstrated the multi-source character of the PRE and that the behavior of trace metals was controlled by the coupling of hydrologic and geochemical processes, with anthropogenic perturbations.


Subject(s)
Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring , Estuaries , Geologic Sediments , Metals/analysis , Rivers
8.
Environ Monit Assess ; 192(6): 370, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32415432

ABSTRACT

The black soil region in Northeast China is an important production base of commodity grain. However, soil erosion is a major threat that has caused a decline in arable land area and productivity and a series of environmental problems in recent years. To understand the current situation of soil erosion and its changes in the whole black soil region, including six treatment regions, we used the spatial-temporal analysis of soil erosion from 2000 to 2015 and the overlay analysis with its drivers; additionally, soil erosion was evaluated qualitatively with the integrated evaluation method, and its change was indicated by the soil erosion change index (SECI). We found that soil erosion that caused soil loss occurred in each treatment region mainly at the light level in 2015. Water erosion, the most widely distributed erosion type, affected the largest area, while most serious erosion at intensive or higher levels stemmed from wind erosion. Although the situation of water erosion was improved in 2015 compared to that in 2000, the overall situation of soil erosion was worse due to the deterioration of wind and freeze-thaw erosion. Grassland, woodland, and cultivated land changes, such as the conversion from grassland to cultivated land, from woodland to sparse woodland and from dry land to paddy land, revealed these changes to a great extent.


Subject(s)
Environmental Monitoring , Soil , China , Conservation of Natural Resources , Forests , Wind
9.
Water Res ; 176: 115723, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32220661

ABSTRACT

Assessment methods on data quality and environmental variability are lacking for microplastics (MP). Here we assess occurrence and variability of MP number concentrations in two Dutch rivers. Strict QA/QC procedures were applied to identify MP using Fourier-transform infrared (FTIR) microscopy followed by state of the art automated image analysis. For a series of randomly selected, yet ever smaller subareas of filters, we assessed how accurately MP numbers and polymer types are represented during partial filter analysis. Levels of uncertainty were acceptable when analysing 50% of a filter during chemical mapping, and when identifying at least a subset of 50 individual particles with attenuated total reflection (ATR)-FTIR. Applying these guidelines, MP number concentrations between 67 and 11532 MP m-3 were detected in Dutch riverine surface waters. Spatial differences caused MP number concentrations to vary by two orders of magnitude. Temporal differences were lower and induced a maximum variation of one order of magnitude. In total, 26 polymer types were identified, the most common were polyethylene (23%), polypropylene (19.7%) and ethylene propylene diene monomer rubber (18.3%). The highest diversity of polymer types was found for small MPs, whereas MP larger than 1 mm was scarce and almost exclusively made of polyethylene or polypropylene. Virtually all sampling locations revealed MP number concentrations that are considerably below known effect thresholds for anticipated adverse ecological effects.


Subject(s)
Plastics , Water Pollutants, Chemical , Environmental Monitoring , Microplastics , Systems Analysis
10.
Environ Res ; 183: 109188, 2020 04.
Article in English | MEDLINE | ID: mdl-32032813

ABSTRACT

The main objective of this work was to evaluate human exposure to electromagnetic fields in a city of about one hundred thousand inhabitants, both inside and outside dwellings, using exposure quotients. To this end, a personal exposure meter was used, collecting data in different frequency bands, including radio and television broadcasting, mobile telephony, cordless telephones, and wireless communication networks. The indoor measurements were made with the exposure meter in a static position. Those outdoor were made by walking around the building with the exposure meter held by the operator. The median electric field was 0.200 V/m outdoors and 0.102 V/m indoors. The median of the ICNIRP exposure quotients for multiple-frequency sources was 25 10-6 outside and 16 10-6 inside. The proximity of the operator's body caused the readings of the electric field in the FM band to be overestimated by a factor of 1.35, and in the mobile telephony bands by factors from 0.76 to 1.02. The standard deviation of the measurements repeated inside a dwelling over five days was of the order of the exposure meter's standard uncertainty of calibration, but the spatial dispersion at the scale of a dwelling and of the city was much greater. The two main contributors to the exposure were FM radio followed by the "downlink" mobile telephony bands. Inside the dwellings, the DECT and WIFI bands contributed less. Exposure quotients are dimensionless parameters that characterize exposure, and reflect the relative weight of each service to that exposure.


Subject(s)
Cell Phone , Electromagnetic Fields , Environmental Exposure , Cities , Humans , Radio Waves
11.
Environ Sci Pollut Res Int ; 27(26): 32239-32250, 2020 Sep.
Article in English | MEDLINE | ID: mdl-31873902

ABSTRACT

Improving water management depends on understanding the functioning of irrigation and drainage systems across different environmental scales. For this purpose, this study in the Nile Delta of Egypt particularly examines the spatial and temporal variation of drainage water salinity from the system to the plot level. A better understanding of this variation across nested scales is crucial to refine the government's drainage reuse strategy and reduce the adverse effects on agricultural productivity, lagoon ecology, and human health. The study investigates the drainage system of the Meet Yazid study area (82,740 ha) located in the upper central part of the Nile Delta. The parameters measured were electrical conductivity (EC), dissolved oxygen (DO), pH, and temperature. Results showed that salinity and quality of drainage water in the Nile Delta vary highly with space and time. The secondary drains exhibited the highest variability of salinity compared with main drains and subsurface drainage collectors because they accumulate salts from deeper soil layers and seepage of saline groundwater at the time of low flow discharge. In secondary drains, the salinity increased up to four times that of drainage water coming from the collectors. Moreover, DO values were most of the time not meeting standards for reuse in irrigation, especially at main drains that collect not only agricultural drainage but also untreated household sewage water.


Subject(s)
Groundwater , Salinity , Egypt , Environmental Monitoring , Humans , Soil , Water , Water Quality
12.
Jamba ; 11(1): 712, 2019.
Article in English | MEDLINE | ID: mdl-31745406

ABSTRACT

The spatiotemporal analysis of drought is of great importance to Eswatini as the country has been facing recurring droughts with negative impacts on agriculture, the environment and the economy. In 2016, the country experienced the most severe drought in over 35 years, resulting in food shortages, drying up of rivers as well as livestock deaths. The frequent occurrence of extreme drought events makes the use of drought indices essential for drought monitoring, early warning and planning. The aim of this study was to assess the applicability of the Standard Precipitation Index (SPI) for near real-time and retrospective drought monitoring in Eswatini. The 3-, 6- and 12-month SPI were computed to analyse the severity and onset of meteorological drought between 1986 and 2017. The results indicated that the climate of Eswatini exhibits geospatial and temporal variability. Droughts intensified in terms of frequency, severity and geospatial coverage, with the worst drought years being 1985-1986, 2005-2006 and 2015-2016 agricultural seasons. Moderate droughts were the most prevalent, while the frequency of severe and very severe droughts was low. Most parts of the country were vulnerable to mild and moderate agricultural droughts. Spatial analysis showed that the most severe and extreme droughts were mostly experienced in the Lowveld and Middleveld agro-ecological zones. The 3-, 6- and 12-month SPI computations conducted in January detected the onset of early season drought, thereby affirming the applicability of the index for monitoring near real-time and retrospective droughts in Eswatini. Drought monitoring using the SPI provides information for early warning, particularly in drought-prone areas, by depicting a drought before the effects are felt.

13.
Jamba ; 11(1): 725, 2019.
Article in English | MEDLINE | ID: mdl-31616546

ABSTRACT

The spatiotemporal analysis of drought is of great importance to Eswatini as the country has been facing recurring droughts with negative impacts on agriculture, environment and economy. In 2016, the country experienced the most severe drought in over 35 years resulting in food shortages, drying up of rivers as well as livestock deaths. The frequent occurrence of extreme drought events makes the use of drought indices essential for drought monitoring, early warning and planning. The aim of this study was therefore to assess the applicability of the Standard Precipitation Index (SPI) for near real-time and retrospective drought monitoring in Eswatini. The 3-, 6- and 12-month SPI were computed to analyse severity and onset of meteorological drought between 1986 and 2017. The results indicated that the climate of Eswatini exhibits geospatial and temporal variability. Droughts intensified in terms of frequency, severity and geospatial coverage, with the worst drought years being 1985-1986, 2005-2006 and 2015-2016 agricultural seasons. Moderate droughts were the most prevalent, while the frequency of severe and very severe droughts was low. Most parts of the country were vulnerable to mild and moderate agricultural droughts. Spatial analysis showed that the most severe and extreme droughts were mostly experienced in the Lowveld and Middleveld agro-ecological zones. The 3-, 6- and 12-month SPI computations conducted in January detected the onset of early season drought, thereby affirming the applicability of the index for monitoring near real-time and retrospective droughts in Eswatini. Drought monitoring using SPI provides information for early warning, particularly in drought-prone areas, by depicting a drought before the effects have begun to be felt.

14.
Ying Yong Sheng Tai Xue Bao ; 30(7): 2218-2230, 2019 Jul.
Article in Chinese | MEDLINE | ID: mdl-31418224

ABSTRACT

Quercus mongolica and Phellodendron amurense are two important broad-leaved species in temperate forests of Northeast China. It is critical to explore their responses to climate change for supporting management, protection, and restoration of the broad-leaved forest in Northeast China under the future climate change scenario. Three sampling sites along a longitude gradient, Heilun, Tieli and Yichun, were set up in the Xiaoxing'an Mountains. Dendrochronological methods were used to establish standard chronologies for Q. mongolica and P. amurense. Correlation analyses were conducted between these chronologies and local climatic factors to establish the spatial and temporal variations in growth-climate relationship of Q. mongolica and P. amurense. The results showed that the radial growth of P. amurense was sensitive to temperature, while that of Q. mongolica was limi-ted by both temperature and precipitation. The temperature sensitivities of these two species were different. High spring temperature inhibited the radial growth of Q. mongolica, but promoted that of P. amurense. The limiting effect of high maximum temperature in summer on radial growth of Q. mongolica was significantly higher than that of P. amurense. With the increases of longitude (water availability), the correlation coefficients between radial growth of Q. mongolica and precipitation gradually weakened, while P. amurense didn't change. The physiological characteristics of those tree species was the key factors affecting their growth-climate relationship. With the significant warming since the 1976, the growth trend of P. amurense increased, whilst that of Q. mongolica decreased. Deteriorated drought stress caused by warming and difference in the species' ability to cope with water deficits might be the main reasons for different responses of two species, and for the divergence phenomenon occurring for Q. mongolica. If warming continues or worsens in the future, the growth of Q. mongolica may decline due to the intensified drought stress, while that of P. amurense may be less affected or be slightly enhanced.


Subject(s)
Climate Change , Phellodendron/growth & development , Quercus/growth & development , China , Forests , Trees
15.
Huan Jing Ke Xue ; 39(3): 1386-1395, 2018 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-29965487

ABSTRACT

The soil carbon-to-nitrogen (C/N) ratio of soils is a sensitive indicator of soil quality and an indicator for assessing the carbon and nitrogen nutrition balance of soils. Its variation is significant in reflecting the carbon and nitrogen cycling of soils. An accurate knowledge of how the C/N ratio varies spatially and temporally and the driving factors at county scale is of great significance to the extrapolation of balanced fertilization based on soil C/N ratio regulation as well as to the protection of the ecological environment. This study was based on 200 points of surface soil samples (0-20 cm) collected during the second National Soil Survey in 1982 and 423 points of surface soil samples (0-20 cm) collected during the soil test-based formulated fertilization project in 2012 in Yugan County. Combined with the soil parent material, soil type, farmland-use type, terrain factors, pH, straw incorporation pattern, and nitrogen fertilizer rate over the past 30 years, spatial and temporal variability characteristics of the soil C/N ratio were analyzed by using ordinary kriging methods, and the effects of the influencing factors were quantified by regression analysis. The results indicated that the mean value of the C/N ratio was 10.05 and 11.18 in 1982 and 2012, respectively. The coefficient of variation was 19.40% and 25.04%, respectively, which suggested the soil C/N ratio had moderate variability in the study area. The ratios of nugget to sill were 15.91% and 71.25% in 1982 and 2012, respectively. This means that the leading factor from the structural factors (parent material and soil type) into the stochastic factors (nitrogen fertilizer rate and straw incorporation pattern). In the past 30 years, most of the regional soil C/N ratio increased significantly especially the eastern region. The spatial variability of soil C/N in 1982 was mainly affected by soil parent material, soil type, terrain factor, and pH, with the degree of influence of each variable at 17.3%, 14.2%, 7.4%, and 2.3%. In 2012, the spatial variability was mainly affected by soil parent material, soil type, farmland-use type, terrain factor, straw incorporation pattern, and nitrogen fertilizer rate, with the degree of influence of each variable of 8.7%, 23.5% 28.2%, 12.2%, 12.6%, and 42.3%, respectively. To maintain the steady growth of the soil C/N ratio, it is suggested that the return of carbon be incorporated with the input of nitrogen, such as incorporating crop residues into the soil and inputting more organic fertilizers into the soil in future farming practices.

16.
Sci Total Environ ; 640-641: 908-920, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30021325

ABSTRACT

Reservoirs are considered as important carbon source of the atmosphere, whilst, regional and global reservoir CO2 quantification is hampered by data limitation and bias in spatial and temporal sampling. By deploying chamber measurements and employing the newly developed model of gas transfer velocity, CO2 partial pressure (pCO2) and evasion in the main stem of the Three Gorges Reservoir (TGR) were investigated. The pCO2 ranged from 429 to 8668 µatm with an average of 2511.6 ±â€¯1721.3 µatm, 6.1-fold higher than the ambient air pCO2 (mean: 410 µatm). All the samples were net CO2 sources via water-air interface, displaying pronounced spatial and monthly variability. The CO2 areal flux averaged 212.5 ±â€¯120.1 mmol/m2/d in June, 123.3 ±â€¯78.5 mmol/m2/d in July in the lotic TGR main stream, much higher than its lentic system, i.e., 79.6 ±â€¯41.3 mmol/m2/d in November, and 76.3 ±â€¯88.1 mmol/m2/d in March. Much lower k levels in the lentic reservoir surface resulted in lower CO2 evasion rates. Furthermore, dam impoundment considerably altered the riverine carbon cycle, as reflected by the changing magnitude of CO2 efflux and environmental controls of dissolved CO2. Precipitation and concurrent soil CO2 influx exhibited a central role in controlling riverine pCO2, and respiration of allochthonous organic carbon was a secondary factor in the TGR lotic system, whilst, both in-stream metabolism and terrestrial inputs played crucial roles in controlling aqueous CO2 in the TGR lentic system. In comparison, we provided key findings of k model and more reliable CO2 quantification with a consideration of water level shifts and a complete coverage of spatial sampling. Our higher CO2 emission (1.47 (1.16-2.13) Tg CO2/y) than previous studies called more field measurements to assess the resulting changes in CO2 flux owing to dam operation and changing environment, and their implications for regional carbon budgets should be warranted.

17.
Sci Total Environ ; 642: 168-179, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-29894876

ABSTRACT

In addition to being influenced by the environment, the indoor air pollution in hospitals may be associated with specific compounds emitted from various products used, health care activities and building materials. This study has enabled assessment of the chemical and microbiological concentrations of indoor air in two French hospitals. Based on an integrated approach, the methodology defined aims to measure concentrations of a wide range of chemical compounds (>50 volatile and semi-volatile organic compounds), particle concentrations (PM10 and PM2.5), microorganisms (fungi, bacteria and viruses) and ambient parameters (temperature, relative humidity, pressure and carbon dioxide). Chemical and microbiological air concentrations were measured during two campaigns (winter and summer) and across seven rooms (for spatial variability). The results have shown that indoor air contains a complex mixture of chemical, physical and microbiological compounds. Concentrations in the same order of magnitude were found in both hospitals. Compared to dwelling indoor air, our study shows low, at least equivalent, contamination for non-hospital specific parameters (aldehydes, limonene, phthalates, aromatic hydrocarbons), which is related to ventilation efficiency. Chemical compounds retrieved at the highest concentration and frequencies are due to healthcare activities, for example alcohol - most commonly ethanol - and hand rubbing (median concentration: ethanol 245.7 µg/m3 and isopropanol 13.6 µg/m3); toluene and staining in parasitology (highest median concentration in Nancy laboratory: 2.1 µg/m3)).


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/analysis , Environmental Monitoring , Hospitals , Air Pollution, Indoor/statistics & numerical data , France , Ventilation , Volatile Organic Compounds/analysis
18.
Chemosphere ; 193: 1105-1112, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29874738

ABSTRACT

To test the hypothesis that assessments of human exposure to PBDEs and NBFRs (PBEB, EH-TBB, BEH-TEBP, BTBPE and DBDPE) via dust ingestion should take into account spatial and temporal variability in dust contamination; 238 dust samples were collected from nine different rooms within three homes in Birmingham UK. In each room, three different dust samples were taken at monthly intervals for nine months, one sample from elevated surfaces and two samples from two different floor areas. Substantial within-room and within-home spatial variability in BFR concentrations was apparent between two floor areas and between different rooms due to the varying distances of sampled surfaces from potential BFR sources. With the exception of DBDPE, BFR concentrations in elevated surface dust exceeded significantly those in floor dust. Considerable within-room and within-home temporal variability in BFR concentrations was also apparent over a nine month sampling period. This is likely attributable to changes in room contents. Based on observed spatial and temporal variability, exposure estimates based on analysis of a single dust sample taken from one specific floor area at one specific point in time may not be entirely representative of human exposure in that room. Noticeable variability in BFR concentrations was also observed between colder and warmer seasons. In 13 out of 17 floor areas, concentrations of Σ8tri-deca-BDEs were higher in colder seasons, while those of Σ5NBFRs were higher in warmer seasons. Significant negative correlation was observed in two rooms between concentrations of BDE-99, Σ7tri-hepta-BDEs and BEH-TEBP and dust loading (g/m2).


Subject(s)
Air Pollution, Indoor/analysis , Dust/analysis , Environmental Monitoring/methods , Flame Retardants/analysis , Halogenation , Humans
19.
Microb Ecol ; 76(4): 866-884, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29675703

ABSTRACT

Analysis of seasonal patterns of marine bacterial community structure along horizontal and vertical spatial scales can help to predict long-term responses to climate change. Several recent studies have shown predictable seasonal reoccurrence of bacterial assemblages. However, only a few have assessed temporal variability over both horizontal and vertical spatial scales. Here, we simultaneously studied the bacterial community structure at two different locations and depths in shelf waters of a coastal upwelling system during an annual cycle. The most noticeable biogeographic patterns observed were seasonality, horizontal homogeneity, and spatial synchrony in bacterial diversity and community structure related with regional upwelling-downwelling dynamics. Water column mixing eventually disrupted bacterial community structure vertical heterogeneity. Our results are consistent with previous temporal studies of marine bacterioplankton in other temperate regions and also suggest a marked influence of regional factors on the bacterial communities inhabiting this coastal upwelling system. Bacterial-mediated carbon fluxes in this productive region appear to be mainly controlled by community structure dynamics in surface waters, and local environmental factors at the base of the euphotic zone.


Subject(s)
Bacterial Physiological Phenomena , Climate Change , Phytoplankton/physiology , Water Movements , Atlantic Ocean , Microbiota , Seasons , Spain
20.
Ecol Evol ; 7(17): 7104-7116, 2017 09.
Article in English | MEDLINE | ID: mdl-28904787

ABSTRACT

We monitored soil CO 2 effluxes for over 3 years in a seasonally wet tropical forest in Central Panama using automated and manual measurements from 2013 to 2016. The measurements displayed a high degree of spatial and temporal variability. Temporal variability could be largely explained by surface soil water dynamics over a broad range of temporal scales. Soil moisture was responsible for seasonal cycles, diurnal cycles, intraseasonal variability such as rain-induced pulses following dry spells, as well as suppression during near saturated conditions, and ultimately, interannual variability. Spatial variability, which remains largely unexplained, revealed an emergent role of forest structure in conjunction with physical drivers such as soil temperature and topography. Mean annual soil CO 2 effluxes (±SE) amounted to 1,613 (±59) gC m-2 year-1 with an increasing trend in phase with an El Niño/Southern Oscillation (ENSO) cycle which culminated with the strong 2015-2016 event. We attribute this trend to a relatively mild wet season during which soil saturated conditions were less persistent.

SELECTION OF CITATIONS
SEARCH DETAIL