Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
Add more filters











Publication year range
1.
Adv Funct Mater ; 34(29)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39308638

ABSTRACT

Real-time and non-invasive monitoring of neuronal differentiation will help increase our understanding of neuronal development and help develop regenerative stem cell therapies for neurodegenerative diseases. Traditionally, reverse transcription-polymerase chain reaction (RT-PCR), western blotting, and immunofluorescence (IF) staining have been widely used to investigate stem cell differentiation; however, their limitations include endpoint analysis, invasive nature of monitoring, and lack of single-cell-level resolution. Several limitations hamper current approaches to studying neural stem cell (NSC) differentiation. In particular, fixation and staining procedures can introduce artificial changes in cellular morphology, hindering our ability to accurately monitor the progression of the process and fully understand its functional aspects, particularly those related to cellular connectivity and neural network formation. Herein, we report a novel approach to monitor neuronal differentiation of NSCs non-invasively in real-time using cell-based biosensors (CBBs). Our research efforts focused on utilizing intein-mediated protein engineering to design and construct a highly sensitive biosensor capable of detecting a biomarker of neuronal differentiation, hippocalcin. Hippocalcin is a critical protein involved in neurogenesis, and the CBB functions by translocating a fluorescence signal to report the presence of hippocalcin externally. To construct the hippocalcin sensor proteins, hippocalcin bioreceptors, AP2 and glutamate ionotropic receptor AMPA-type subunit 2 (GRIA2), were fused to each split-intein carrying split-nuclear localization signal (NLS) peptides, respectively, and a fluorescent protein was introduced as a reporter. Protein splicing (PS) was triggered in the presence of hippocalcin to generate functional signal peptides, which promptly translocated the fluorescence signal to the nucleus. The stem cell-based biosensor showed fluorescence signal translocation only upon neuronal differentiation. Undifferentiated stem cells or cells that had differentiated into astrocytes or oligodendrocytes did not show fluorescence signal translocation. The number of differentiated neurons was consistent with that measured by conventional IF staining. Furthermore, this approach allowed for the monitoring of neuronal differentiation at an earlier stage than that detected using conventional approaches, and the translocation of fluorescence signal was monitored before the noticeable expression of class III ß-tubulin (TuJ1), an early neuronal differentiation marker. We believe that these novel CBBs offer an alternative to current techniques by capturing the dynamics of differentiation progress at the single-cell level and by providing a tool to evaluate how NSCs efficiently differentiate into specific cell types, particularly neurons.

2.
Mol Pharm ; 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39213620

ABSTRACT

Protein-based therapeutic agents currently used for targeted tumor therapy exhibit limited penetrability, nonspecific toxicity, and a short circulation half-life. Although targeting cell surface receptors improves cancer selectivity, the receptors are also slightly expressed in normal cells; consequently, the nonspecific toxicity of recombinant protein-based therapeutic agents has not been eliminated. In this study, an allosteric-regulated protein switch was designed that achieved cytoplasmic reorganization of engineered immunotoxins in tumor cells via interactions between allosteric self-splicing elements and cancer markers. It can target the accumulated HIF-1α in hypoxic cancer cells and undergo allosteric activation, and the splicing products were present in hypoxic cancer cells but were absent in normoxic cells, selectively killing tumor cells and reducing nonspecific toxicity to normal cells. The engineered pro-protein provides a platform for targeted therapy of tumors while offering a novel universal strategy for combining the activation of therapeutic functions with specific cancer markers. The allosteric self-splicing element is a powerful tool that significantly reduces the nonspecific cytotoxicity of therapeutic proteins.

3.
Adv Sci (Weinh) ; : e2405593, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39105414

ABSTRACT

Rapid and efficient cell line development (CLD) process is essential to expedite therapeutic protein development. However, the performance of widely used glutamine-based selection systems is limited by low selection efficiency, stringency, and the inability to select multiple genes. Therefore, an AND-gate synthetic selection system is rationally designed using split intein-mediated protein ligation of glutamine synthetase (GS) (SiMPl-GS). Split sites of the GS are selected using a computational approach and validated with GS-knockout Chinese hamster ovary cells for their potential to enable cell survival in a glutamine-free medium. In CLD, SiMPl-GS outperforms the wild-type GS by selectively enriching high producers. Unlike wild-type GS, SiMPl-GS results in cell pools in which most cells produce high levels of therapeutic proteins. Harnessing orthogonal split intein pairs further enables the selection of four plasmids with a single selection, streamlining multispecific antibody-producing CLD. Taken together, SiMPl-GS is a simple yet effective means to expedite CLD for therapeutic protein production.

4.
Int J Biol Macromol ; 273(Pt 1): 132793, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38830492

ABSTRACT

Recombinant cytochrome P450 monooxygenases possess significant potential as biocatalysts, and efforts to improve heme content, electron coupling efficiency, and catalytic activity and stability are ongoing. Domain swapping between heme and reductase domains, whether natural or engineered, has thus received increasing attention. Here, we successfully achieved split intein-mediated reconstitution (IMR) of the heme and reductase domains of P450 BM3 both in vitro and in vivo. Intriguingly, the reconstituted enzymes displayed promising properties for practical use. IMR BM3 exhibited a higher heme content (>50 %) and a greater tendency for oligomerization compared to the wild-type enzyme. Moreover, these reconstituted enzymes exhibited a distinct increase in activity ranging from 165 % to 430 % even under the same heme concentrations. The reproducibility of our results strongly suggests that the proposed reconstitution approach could pave a new path for enhancing the catalytic efficiency of related enzymes.


Subject(s)
Cytochrome P-450 Enzyme System , Heme , Inteins , NADPH-Ferrihemoprotein Reductase , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics , Heme/chemistry , Heme/metabolism , NADPH-Ferrihemoprotein Reductase/chemistry , NADPH-Ferrihemoprotein Reductase/genetics , NADPH-Ferrihemoprotein Reductase/metabolism , Protein Domains , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
5.
Biochem Biophys Res Commun ; 720: 150097, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38754162

ABSTRACT

Inteins are unique single-turnover enzymes that can excise themselves from the precursor protein without the aid of any external cofactors or energy. In most cases, inteins are covalently linked with the extein sequences and protein splicing happens spontaneously. In this study, a novel protein ligation system was developed based on two atypical split inteins without cross reaction, in which the large segments of one S1 and one S11 split intein fusion protein acted as a protein ligase, the small segments (only several amino acids long) was fused to the N-extein and C-extein, respectively. The splicing activity was demonstrated in E. coli and in vitro with different extein sequences, which showed ∼15% splicing efficiency in vitro. The protein trans-splicing in vitro was further optimized, and possible reaction explanations were explored. As a proof of concept, we expect this approach to expand the scope of trans-splicing-based protein engineering and provide new clues for intein based protein ligase.


Subject(s)
Escherichia coli , Inteins , Protein Splicing , Inteins/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Protein Engineering/methods , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/chemistry , Ligases/metabolism , Ligases/genetics , Ligases/chemistry , Exteins/genetics
6.
Int J Mol Sci ; 25(4)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38396696

ABSTRACT

The rise of antimicrobial resistance poses a significant global health threat, necessitating urgent efforts to identify novel antimicrobial agents. In this study, we undertook a thorough screening of soil-derived bacterial isolates to identify candidates showing antimicrobial activity against Gram-positive bacteria. A highly active antagonistic isolate was initially identified as Bacillus altitudinis ECC22, being further subjected to whole genome sequencing. A bioinformatic analysis of the B. altitudinis ECC22 genome revealed the presence of two gene clusters responsible for synthesizing two circular bacteriocins: pumilarin and a novel circular bacteriocin named altitudin A, alongside a closticin 574-like bacteriocin (CLB) structural gene. The synthesis and antimicrobial activity of the bacteriocins, pumilarin and altitudin A, were evaluated and validated using an in vitro cell-free protein synthesis (IV-CFPS) protocol coupled to a split-intein-mediated ligation procedure, as well as through their in vivo production by recombinant E. coli cells. However, the IV-CFPS of CLB showed no antimicrobial activity against the bacterial indicators tested. The purification of the bacteriocins produced by B. altitudinis ECC22, and their evaluation by MALDI-TOF MS analysis and LC-MS/MS-derived targeted proteomics identification combined with massive peptide analysis, confirmed the production and circular conformation of pumilarin and altitudin A. Both bacteriocins exhibited a spectrum of activity primarily directed against other Bacillus spp. strains. Structural three-dimensional predictions revealed that pumilarin and altitudin A may adopt a circular conformation with five- and four-α-helices, respectively.


Subject(s)
Bacillus , Bacteriocins , Bacteriocins/genetics , Bacteriocins/pharmacology , Anti-Bacterial Agents/chemistry , Chromatography, Liquid , Escherichia coli/metabolism , Tandem Mass Spectrometry , Bacillus/metabolism
7.
Food Chem ; 446: 138804, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38402766

ABSTRACT

In this study, we prepared a functional organic-inorganic hybrid nanoflower (InHNF) via split intein moiety in a biomineralization process without using organic solvents. InHNF could specifically bind the target enzymes from crude cell lysates within seconds and site-directedly display them on the surface by forming a peptide bond with enzyme's terminal amino acid residue. This unique feature enabled InHNF to increase the specific activity of zearalenone detoxifying enzyme ZHD518 by 40 âˆ¼ 60% at all tested temperatures and prevented enzyme denaturation even under extreme pH conditions (pH 3-11). Furthermore, it exhibited excellent operational stability, with a residual activity of over 70% after eight reaction cycles. Strikingly, InHNF-ZHD518 achieved above 50% ZEN degradation despite the near inactivation of free ZHD518 in beer sample. Overall, InHNF nanocarriers can achieve environmentally friendly, purification-free, and site-directed immobilization of food enzymes and enhance their catalytic properties, making them suitable for a wide range of industrial applications.


Subject(s)
Zearalenone , Zearalenone/chemistry , Inteins
8.
J Mol Biol ; 435(24): 168360, 2023 12 15.
Article in English | MEDLINE | ID: mdl-37949312

ABSTRACT

Optogenetics has emerged as a powerful tool for spatiotemporal control of biological processes. Near-infrared (NIR) light, with its low phototoxicity and deep tissue penetration, holds particular promise. However, the optogenetic control of polypeptide bond formation has not yet been developed. In this study, we introduce a NIR optogenetic module for conditional protein splicing (CPS) based on the gp41-1 intein. We optimized the module to minimize background signals in the darkness and to maximize the contrast between light and dark conditions. Next, we engineered a NIR CPS gene expression system based on the protein ligation of a transcription factor. We applied the NIR CPS for light-triggered protein cleavage to activate gasdermin D, a pore-forming protein that induces pyroptotic cell death. Our NIR CPS optogenetic module represents a promising tool for controlling molecular processes through covalent protein linkage and cleavage.


Subject(s)
Optogenetics , Protein Splicing , Inteins/genetics , Gene Expression Regulation
9.
J Microbiol Biotechnol ; 33(12): 1681-1691, 2023 Dec 28.
Article in English | MEDLINE | ID: mdl-37789714

ABSTRACT

Flavin mononucleotide-binding proteins or domains emit cyan-green fluorescence under aerobic and anaerobic conditions, but relatively low fluorescence and less thermostability limit their application as reporters. In this work, we incorporated the codon-optimized fluorescent protein from Chlamydomonas reinhardtii with two different linkers independently into the redox-responsive split intein construct, overexpressed the precursors in hyperoxic Escherichia coli SHuffle T7 strain, and cyclized the target proteins in vitro in the presence of the reducing agent. Compared with the purified linear protein, the cyclic protein with the short linker displayed enhanced fluorescence. In contrast, cyclized protein with incorporation of the long linker including the myc-tag and human rhinovirus 3C protease cleavable sequence emitted slightly increased fluorescence compared with the protein linearized with the protease cleavage. The cyclic protein with the short linker also exhibited increased thermal stability and exopeptidase resistance. Moreover, induction of the target proteins in an oxygen-deficient culture rendered fluorescent E. coli BL21 (DE3) cells brighter than those overexpressing the linear construct. Thus, the cyclic reporter can hopefully be used in certain thermophilic anaerobes.


Subject(s)
Escherichia coli , Flavin Mononucleotide , Humans , Fluorescence , Flavin Mononucleotide/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Cyclization , Bacterial Proteins/metabolism , Coloring Agents/metabolism
10.
Curr Protoc ; 3(10): e901, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37882966

ABSTRACT

In this work, we describe a novel self-cleaving affinity tag technology based on a highly modified split-intein cleaving element. In this system, which has recently been commercialized by Protein Capture Science, LLC under the name iCapTagTM , the N-terminal segment of an engineered split intein is covalently immobilized onto a capture resin, while the smaller C-terminal intein segment is fused to the N-terminus of the desired target protein. The tagged target can then be expressed in an appropriate expression system, without concern for premature intein cleaving. During the purification, strong binding between the intein segments effectively captures the tagged target onto the capture resin while simultaneously generating a cleaving-competent intein complex. After unwanted impurities are washed from the resin, cleavage of the target protein is initiated by a shift of the buffer pH from 8.5 to 6.2. As a result, the highly purified tagless target protein is released from the column in the elution step. Alternately, the resin beads can be added directly to cell culture broth or lysate, allowing capture, purification and cleavage of the tagless target protein using a column-free format. These methods result in highly pure tagless target protein in a single step, and can thereby accelerate characterization and functional studies. In this work we demonstrate the single step purification of streptokinase, a fibrinolytic agent, and an engineered recombinant human hemoglobin 1.1 (rHb1.1). © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Expression of high-titer protein tagged with the Nostoc punctiforme (Npu) DnaE split-intein on the N-terminus Basic Protocol 2: Purification of high-titer protein using the Nostoc punctiforme (Npu) DnaE split-intein purification platform Alternate Protocol 1: Expression of low-titer protein tagged with the Nostoc punctiforme (Npu) DnaE split-intein on the N-terminus Alternate Protocol 2: Purification of low-titer protein using the Nostoc punctiforme (Npu) DnaE split-intein purification platform.


Subject(s)
Inteins , Nostoc , Humans , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , Protein Splicing , Nostoc/genetics , Nostoc/chemistry
11.
Methods Mol Biol ; 2699: 237-253, 2023.
Article in English | MEDLINE | ID: mdl-37647002

ABSTRACT

Glycoprotein therapeutics are currently used by large patient populations and generate significant revenue for the biopharmaceutical industry. These therapeutic proteins are currently purified at industrial scale using individualized processes involving multiple chromatographic steps. In the absence of a viable affinity platform method, the required chromatographic steps are difficult to develop and inevitably lead to significant yield losses. Further, during preclinical development, there is a need for reliable platform technologies capable of performing high-throughput screening for biologic candidates. Although affinity tags can provide a solution to some of these challenges, they require specific affinity resins, and the tag itself can interfere with the target protein characteristics. Fusion protein systems consisting of elastin-like polypeptide (ELP) and self-cleaving split inteins such as Npu DnaE can serve as potential non-chromatographic platform technologies for the single-step purification of tagless glycoproteins expressed in mammalian cells. In this chapter, we demonstrate the use of this technology to obtain highly purified anti-ErbB2 ML39 single-chain variable fragment (scFv) expressed from Expi293F suspension cells.


Subject(s)
Inteins , Single-Chain Antibodies , Animals , Humans , Elastin/genetics , Chromatography , High-Throughput Screening Assays , Mammals
12.
Angew Chem Int Ed Engl ; 62(33): e202306270, 2023 08 14.
Article in English | MEDLINE | ID: mdl-37357888

ABSTRACT

Membrane-associated D-proteins are an important class of synthetic molecules needed for D-peptide drug discovery, but their chemical synthesis using canonical ligation methods such as native chemical ligation is often hampered by the poor solubility of their constituent peptide segments. Here, we describe a Backbone-Installed Split Intein-Assisted Ligation (BISIAL) method for the synthesis of these proteins, wherein the native L-forms of the N- and C-intein fragments of the unique consensus-fast (Cfa) (i.e. L-CfaN and L-CfaC ) are separately installed onto the two D-peptide segments to be ligated via a removable backbone modification. The ligation proceeds smoothly at micromolar (µM) concentrations under strongly chaotropic conditions (8.0 M urea), and the subsequent removal of the backbone modification groups affords the desired D-proteins without leaving any "ligation scar" on the products. The effectiveness and practicality of the BISIAL method are exemplified by the synthesis of the D-enantiomers of the extracellular domains of T cell immunoglobulin and ITIM domain (TIGIT) and tropomyosin receptor kinase C (TrkC). The BISIAL method further expands the chemical protein synthesis ligation toolkit and provides practical access to challenging D-protein targets.


Subject(s)
Inteins , Proteins , Peptides/chemistry , Protein Splicing
13.
Hum Gene Ther ; 34(13-14): 629-638, 2023 07.
Article in English | MEDLINE | ID: mdl-37279283

ABSTRACT

The cytosine base editor (CBE) has shown promise as a gene editing tool for gene therapy, as it can convert cytidine to thymidine. Adeno-associated virus (AAV) has been widely used for in vivo gene therapy, but its limited 4.7 kb packing capacity presents challenges in delivering CBE by a single AAV. To address this, one feasible solution is to split CBE into two sections for dual-AAV delivery. In this study, we utilized BE3 as an example and constructed 22 potential split-BE3 pairs with the combination of 11 splitting sites and two split-inteins (Npu and Rma). These split-BE3 pairs were initially screened in the green fluorescent protein (GFP) reporter system, with six split-BE3 pairs selected for further evaluation. The subsequent screening of split-BE3 pairs was performed at two endogenous sites in 293T and HeLa cells, revealing that the split-BE3-Rma674, split-BE3-Rma713, and split-BE3-Rma1005 displayed effective C-to-T conversion after transfection. The effectiveness of dual-AAV split-BE3 was further validated in culture cells and adult mouse eyes. Of note, the split-BE3-Rma674 demonstrated the most efficient C-to-T editing after AAV infection, with a maximal editing efficiency of 23.29% ± 10.98% in the mouse retinal pigment epithelium cells in vivo. Overall, our study presents a novel split-BE3 system with effective C-to-T conversion, which could be applied to CBE-based in vivo gene therapy.


Subject(s)
Cytosine , Dependovirus , Humans , Animals , Mice , Dependovirus/genetics , Dependovirus/metabolism , Cytosine/metabolism , HeLa Cells , Gene Editing , Transfection , CRISPR-Cas Systems
14.
Protein Expr Purif ; 207: 106272, 2023 07.
Article in English | MEDLINE | ID: mdl-37062513

ABSTRACT

To expand the reported redox-dependent intein system application, in this work, we used the split intein variant with highly trans-splicing efficiency and minimal extein dependence to cyclize the green fluorescent protein variant reporter in vitro. The CPG residues were introduced adjacent to the intein's catalytic cysteine for reversible formation of a disulfide bond to retard the trans-splicing reaction under the oxidative environment. The cyclized reporter protein in Escherichia coli cells was easily prepared by organic extraction and identified by the exopeptidase digestion. The amounts of extracted cyclized protein reporter in BL21 (DE3) cells were higher than those in hyperoxic SHuffle T7 coexpression system for facilitating the disulfide bond formation. The double His6-tagged precursor was purified for in vitro cyclization of the protein for 3 h. Compared with the purified linear counterpart, the cyclic reporter showed about twofold increase in fluorescence intensity, exhibited thermal and hydrolytic stability, and displayed better folding efficiency in BL21 (DE3) cells at the elevated temperature. Taken together, the developed redox-dependent intein system will be used for producing other cyclic disulfide-free proteins. The cyclic reporter is a potential candidate applied in certain thermophilic aerobes.


Subject(s)
Inteins , Protein Splicing , Inteins/genetics , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Oxidation-Reduction
15.
Biochem Biophys Res Commun ; 655: 44-49, 2023 05 07.
Article in English | MEDLINE | ID: mdl-36924678

ABSTRACT

Conditional protein splicing is a powerful biotechnological tool that can be used to post-translationally control the activity of target proteins. Here we demonstrated a novel conditional protein splicing approach in which the small ubiquitin-like modifier (SUMO) protease induced the splicing of an atypical split intein. The engineered Ter DnaE-3 S11 split intein which has a small C-intein segment with only 6 amino acids was used in this study. A SUMO tag was fused to the N-terminus of the C-intein to inhibit the protein trans-splicing in vitro. The splicing products could be detected in 15 min with the addition of SUMO protease by western blotting and the splicing efficiency was ∼4-fold higher than the control without SUMO protease for overnight reaction. This engineered Ter DnaE-3 S11 split intein-mediated protein trans-splicing had been further shown to be triggered by SUMO protease in different exteins in vitro. Our study provides new insights into the regulation of protein splicing and is a promising tool for the control of protein structure and function in vitro.


Subject(s)
Peptide Hydrolases , Protein Splicing , Peptide Hydrolases/genetics , Peptide Hydrolases/metabolism , Ubiquitin/metabolism , Inteins , Proteins/metabolism , Endopeptidases/metabolism
16.
Chembiochem ; 24(3): e202200487, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36178424

ABSTRACT

Biochemical studies of integral membrane proteins are often hampered by low purification yields and technical limitations such as aggregation causing in vitro manipulations to be challenging. The ability of controlling proteins in live cells bypasses these limitations while broadening the scope of accessible questions owing to the proteins being in their native environment. Here we take advantage of the intein biorthogonality to mammalian systems, site specificity, fast kinetics, and auto-processing nature as an attractive option for modifying surface proteins. Using EGFR as a model, we demonstrate that the split-intein pair AvaN /NpuC can be used to efficiently and specifically modify target membrane proteins with a synthetic adduct for downstream live cell application.


Subject(s)
Inteins , Protein Splicing , Animals , Membrane Proteins , Mammals
17.
Front Bioeng Biotechnol ; 11: 1319916, 2023.
Article in English | MEDLINE | ID: mdl-38390601

ABSTRACT

The current trend in biopharmaceutical drug manufacturing is towards increasing potency and complexity of products such as peptide scaffolds, oligonucleotides and many more. Therefore, a universal affinity purification step is important in order to meet the requirements for cost and time efficient drug production. By using a self-splicing intein affinity tag, a purification template is generated that allows for a universal chromatographic affinity capture step to generate a tagless target protein without the use of proteases for further tag removal. This study describes the successful implementation of gp41-1-based split inteins in a chromatographic purification process for, e.g., E. coli-derived targets. The tagless target is generated in a single-step purification run. The on-column cleavage is induced by triggering a simple pH change in the buffer conditions without the need for additives such as Zn2+ or thiols. This system has proven to be reusable for at least ten purification cycles that use 150 mM H3PO4 as the cleaning agent.

18.
Front Microbiol ; 13: 1052686, 2022.
Article in English | MEDLINE | ID: mdl-36452926

ABSTRACT

Circular bacteriocins are antimicrobial peptides produced by bacteria that after synthesis undergo a head-to-tail circularization. Compared to their linear counterparts, circular bacteriocins are, in general, very stable to temperature and pH changes and more resistant to proteolytic enzymes, being considered as one of the most promising groups of antimicrobial peptides for their potential biotechnological applications. Up to now, only a reduced number of circular bacteriocins have been identified and fully characterized, although many operons potentially coding for new circular bacteriocins have been recently found in the genomes of different bacterial species. The production of these peptides is very complex and depends on the expression of different genes involved in their synthesis, circularization, and secretion. This complexity has greatly limited the identification and characterization of these bacteriocins, as well as their production in heterologous microbial hosts. In this work, we have evaluated a synthetic biology approach for the in vitro and in vivo production combined with a split-intein mediated ligation (SIML) of the circular bacteriocin garvicin ML (GarML). The expression of one single gene is enough to produce a protein that after intein splicing, circularizes in an active peptide with the exact molecular mass and amino acid sequence as native GarML. In vitro production coupled with SIML has been validated with other, well described and not yet characterized, circular bacteriocins. The results obtained suggest that this synthetic biology tool holds great potential for production, engineering, improving and testing the antimicrobial activity of circular bacteriocins.

19.
Int Immunopharmacol ; 113(Pt B): 109393, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36375323

ABSTRACT

Hepatocellular carcinoma (HCC) accounts for ∼90 % of all liver cancer cases, which was the third most common cause of cancer death worldwide in 2020. Glypican-3 (GPC3) is highly and specifically expressed in HCC, which makes it a promising therapeutic target. We discovered novel antibody sequences against GPC3 from a phage display library and ranked the candidates by their binding affinity and epitope bins. Candidates with single- to double-digit nanomolar affinity were selected and expressed in Fab format and linked to a deimmunized bacterial exotoxin moiety via an intein trans-splicing reaction. The resulting immunotoxins were evaluated for their in vitro binding specificity and affinity, cell surface binding on the HepG2 or Huh7, rate of internalization, and potency of cytotoxicity. The immunotoxin called GT5 exhibited strong antigen binding and cell surface binding, as well as high internalization efficiency. The molecule GT5 was further evaluated for cytotoxicity in HepG2 and Huh7 cell-based assay and assessed for its pharmacokinetics and antitumor activity in a murine tumor xenograft model. GT5 significantly inhibited tumor growth and showed stronger potency than the chemotherapeutic drug sorafenib. In conclusion, GT5, a novel GPC3 targeting immunotoxin, was shown to have a high affinity towards GPC3 and effectively inhibit hepatocellular tumor growth in vitro and in vivo, thus providing the basis for further development of GT5 immunotoxin as a novel therapeutic modality for the treatment of liver cancer.


Subject(s)
Carcinoma, Hepatocellular , Immunotoxins , Liver Neoplasms , Humans , Mice , Animals , Carcinoma, Hepatocellular/therapy , Glypicans/chemistry , Glypicans/metabolism , Immunotoxins/pharmacology , Immunotoxins/therapeutic use , Liver Neoplasms/therapy , Cell Surface Display Techniques
20.
Sheng Wu Gong Cheng Xue Bao ; 38(6): 2365-2376, 2022 Jun 25.
Article in Chinese | MEDLINE | ID: mdl-35786486

ABSTRACT

DLP4 (defensin-like peptide 4) is a novel insect defensin, which has strong antibacterial activity against Gram-positive bacteria and is not susceptible to develop drug resistance. In this study, an elastin-like polypeptide (ELP) and an intein fusion system were used for production and purification of DLP4, which combined the characteristics of the phase transition of ELP and the C-cleavage of the intein. A recombinant expression plasmid pET-ELP-I-DLP4 was constructed and transformed into Escherichia coli. Subsequently, DLP4 was purified by simple centrifugation, alternation of pH and temperature. However, the C-cleavage of the intein occurred unexpectedly during the process of expression and purification. To solve this problem, the intein was split into N-intein (I0N) and C-intein (I0C), and fused with ELP or DLP4 to construct two recombinant expression plasmids pET-ELP-I0N and pET-ELP-I0C-DLP4, respectively. These two plasmids were transformed into E. coli separately. The mixture of the two cultures of E. coli strains restored the C-cleavage activity of the intein. This operation yielded DLP4 of about 1.49 mg/L. Antibacterial test confirmed that the purified DLP4 exhibited expected activity. Thus, this approach can be used as an effective way for DLP4 expression and purification in the prokaryotic system.


Subject(s)
Elastin , Inteins , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Antimicrobial Peptides , Defensins/metabolism , Elastin/chemistry , Elastin/genetics , Elastin/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Inteins/genetics , Peptides/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL