Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.108
Filter
1.
Mater Today Bio ; 29: 101256, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39381265

ABSTRACT

The incorporation of growth factors and biomaterials is a promising strategy for improving osseointegration. However, current strategies to develop biomaterials with exogenous growth factors present disadvantages like inefficiency, difficult deployment, and potential off-target activation, making their translation into clinical practice challenging. This study reveals a bioactive N-doped tantalum carbide (TaC) solid solution film that can be used to construct a TaCN film via bionic interface engineering to recruit host bone growth factors to the wounded site and improve bone regeneration. X-ray photoelectron spectroscopy (XPS) and protein absorption analysis reveal that the performance of TaCN is related to the surface chemical bonds of films. The introduction of N to TaC causes a cascade effect wherein negative charges enrich on the TaCN surface, and the recruitment of positively charged bone growth factors around the TaCN film is facilitated. Under these circumstances, the endogenous bone growth factors enhance bone healing. The TaCN film shows an outstanding performance for in vivo osteogenic differentiation along with a superior in vitro cytocompatibility. Incorporation of N atoms into TaC provides a new clinically translatable strategy to mobilize host bone growth factors for in situ bone regeneration without the need for incorporation of exogenous growth factors.

2.
Sensors (Basel) ; 24(17)2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39275602

ABSTRACT

ZnO film ultrasonic transducers for temperature and stress measurements with dual-mode wave excitation (longitudinal and shear) were deposited using the reactive RF magnetron sputtering technique on Si and stainless steel substrates and construction steel bolts. It was found that the position in the substrate plane had a significant effect on the structure and ultrasonic performance of the transducers. The transducers deposited at the center of the deposition zone demonstrated a straight columnar structure with a c-axis parallel to the substrate normal and the generation of longitudinal waves. The transducers deposited at the edge of the deposition zone demonstrated inclined columnar structures and the generation of dominant shear or longitudinal shear waves. Transducers deposited on the bolts with dual-wave excitation were used to study the effects of high temperatures in the range from 25 to 525 °C and tensile stress in the range from 0 to 268 MPa on ultrasonic response. Dependencies between changes in the relative time of flight and temperature or axial stress were obtained. The dependencies can be described by second-order functions of temperature and stress. An analysis of the contributions of thermal expansion, strain, and the speed of sound to changes in the time of flight was performed. At high temperatures, a decrease in the signal amplitude was observed due to the decreasing resistivity of the transducer. The ZnO ultrasonic transducers can be used up to temperatures of ~500 °C.

3.
Sensors (Basel) ; 24(17)2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39275731

ABSTRACT

Accurate measurement of the pretightening stress for bolts has great significance for improving the assembly quality and safety, especially in severe environments. In this study, AlN thin film transducers were deposited on GH4169 nickel base alloy bolts using the RF magnetron sputtering, enabling a systematic investigation into the correlation between structures and the intensity of ultrasonic echo signals. Employing the finite element method resulted in consistency with the experimental data, enabling further exploration of the enhancement mechanism. With the increasing thickness of both the piezoelectric layer and the electrode layer, the intensity of the ultrasonic echo signals saw a great enhancement. The maximum-intensity observed increase is 14.7 times greater than that of the thinnest layers. Specifically, the thicker piezoelectric layer improves its mechanical displacement, while the increased thickness of the electrode layer contributes to better densification. An electrode diameter of nearly 4 mm is optimal for an AlN thin film transducer of M8 bolts. For pretightening the stress measurement, the sample with a strong and stable echo signal shows a low measurement error of pretightening below ±2.50%.

4.
ChemSusChem ; : e202401535, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39243152

ABSTRACT

Anode-free Lithium metal batteries, with their high energy density (>500 Wh/kg), are emerging as a promising solution for high-energy-density rechargeable batteries. However, the Coulombic Efficiency and capacity often decline due to interface side reactions. To address this, a lithiophilic layer is introduced, promoting stable and uniform Li deposition. Despite its effectiveness, this layer often undergoes electrochemical deactivation over time. This work investigates lithiophilic silver (Ag), prepared via magnetron sputtering on a copper (Cu) current collector. Finite element simulations identify stress changes from alloying reactions as a key cause of Ag particle pulverization and deactivation. A high Young's modulus coating layer is proposed to mitigate this. The Ag2TiO3@Ag@TiO2@Cu composite electrode, designed with multi-layer structures, demonstrates a slower deactivation process through galvanostatic electrochemical cycling. Characterization methods such as SEM, AFM, and TEM confirm the suppression of Ag particle pulverization, while uncoated Ag fractures and deactivates. This work uncovers a potential failure mechanism of lithiophilic metallic nanoparticles and proposes a strategy for deactivation suppression using an artificial coating layer.

5.
Nanomaterials (Basel) ; 14(18)2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39330675

ABSTRACT

Thin films of silver-doped zinc oxide (SZO) were deposited at room temperature using a DC reactive magnetron co-sputtering technique using two independent Zn and Ag targets. The crystallographic structure, chemical composition and surface morphology of SZO films with different silver concentrations were correlated with the photocatalytic (PC) properties. The crystallization of the SZO films was made using millisecond range flash-lamp-annealing (FLA) treatments. FLA induces significant structural ordering of the wurtzite structure and an in-depth redistribution of silver, resulting in the formation of silver agglomerates. The wurtzite ZnO structure is observed for silver contents below 10 at.% where Ag is partially incorporated into the oxide matrix, inducing a decrease in the optical band-gap. Regardless of the silver content, all the as-grown SZO films do not exhibit any significant PC activity. The best PC response is achieved for samples with a relatively low Ag content (2-5 at.%) after FLA treatment. The enhanced PC activity of SZO upon FLA can be attributed to structural ordering and the effective band-gap narrowing through the combination of silver doping and the plasmonic effect caused by the formation of Ag clusters.

6.
Materials (Basel) ; 17(18)2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39336186

ABSTRACT

In the nuclear industry, coated cladding is a topical problem and it is chosen as the near-term and most promising ATF (Accident-Tolerant Fuel) cladding concept. The main objective of this concept is to enhance the accident tolerance of nuclear power plants and accordingly, the performance of cladding is expected to be improved. This work assesses the corrosion performance of a Zircalloy-4 alloy coated with a thin chromium coating by MS (magnetron sputtering), tested under a CANDU (CANada Deuterium Uranium) reactor primary circuit simulated condition (LiOH solution, 10 MPa, 310 °C, pH = 10.5). The anticorrosive performance is evaluated by a gravimetric analysis, a metallographic analysis, X-ray diffraction, electronic microscopy, and electrochemical methods. A four times less gain mass was noticed compared to uncoated Zircaloy-4, indicating a smaller corrosion rate. The SEM micrographs illustrate that the coatings are still adherent, and they are keeping the initial morphological characteristics during the autoclaving process. A SEM cross-section analysis shows values of the thickness of the coatings between 0.8 and 1.46 µm. By XRD, the presence of Cr2O3 oxide is identified. Electrochemical testing confirms good stability and good corrosion performance of Cr coating over time under autoclave conditions.

7.
ACS Appl Mater Interfaces ; 16(38): 51364-51375, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39259945

ABSTRACT

Magnetically responsive soft biomaterials are at the forefront of bioengineering and biorobotics. We have created a magnetic hybrid material by coupling silk fibroin─i.e., a natural biopolymer with an optimal combination of biocompatibility and mechanical robustness─with the FeCo alloy, the ferromagnetic material with the highest saturation magnetization. The material is in the form of a 6 µm-thick silk fibroin film, coated with a FeCo layer (nominal thickness: 10 nm) grown by magnetron sputtering deposition. The sputtering deposition technique is versatile and eco-friendly and proves effective for growing the magnetic layer on the biopolymer substrate, also allowing one to select the area to be decorated. The hybrid material is biocompatible, lightweight, flexible, robust, and water-resistant. Electrical, structural, mechanical, and magnetic characterization of the material, both as-prepared and after being soaked in water, have provided information on the adhesion between the silk fibroin substrate and the FeCo layer and on the state of internal mechanical stresses. The hybrid film exhibits a high magnetic bending response under a magnetic field gradient, thanks to an ultralow fraction of the FeCo component (less than 0.1 vol %, i.e., well below 1 wt %). This reduces the risk of adverse health effects and makes the material suitable for bioactuation applications.


Subject(s)
Biocompatible Materials , Fibroins , Fibroins/chemistry , Biocompatible Materials/chemistry , Cobalt/chemistry , Animals , Bombyx/chemistry , Alloys/chemistry
8.
ACS Appl Mater Interfaces ; 16(38): 51097-51108, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39264035

ABSTRACT

The swift evolution of contemporary electronics products, such as flexible screens and wearable electronic devices, highlights the significance of flexible protective coatings, which combine superior mechanical and optical properties. Even though the recently developed polymer protective coatings can satisfy requirements for flexibility and transparency, their intrinsic nature often results in a hardness below 1 GPa, rendering them susceptible to scratches. On the other hand, traditional inorganic coatings, known for their high hardness and transparency, fall short of meeting flexibility requirements. In the present study, a SiNx/BN periodical nanolayered coatings (PNCs) structure has been tailored to achieve high mechanical durability, transparency, and flexibility. In SiNx/BN PNCs, the optical and mechanical properties of the single-layer SiNx film are crucial to the overall performance of the PNCs. Therefore, pulse direct current (DC) magnetron sputtering was optimized first to enhance the ionization efficiency of Si and N, thereby promoting their reaction and diminishing the presence of elemental silicon in SiNx. The effects of the pulse frequency and duty cycle on SiNx were evaluated. Additionally, the influence of the thickness ratio and modulation periods on the overall performance of the SiNx/BN PNCs was investigated. As a result, a SiNx/BN coating with sapphire-grade hardness, almost no optical absorption in the visible-near-infrared (vis-NIR) range, high wear resistance, and exceptional flexibility was demonstrated.

9.
Nanomaterials (Basel) ; 14(17)2024 Aug 25.
Article in English | MEDLINE | ID: mdl-39269048

ABSTRACT

In this study, the effect of annealing and substrate conditions on the ferroelectricity of undoped hafnium oxide (HfO2) was analyzed. Hafnium oxide was deposited on various substrates such as platinum, titanium nitride, and silicon (Pt, TiN, Si) through RF magnetron sputtering. Annealing was performed in a nitrogen atmosphere at temperatures ranging from 400 to 600 °C, and the process lasted anywhere from 1 to 30 min. As a result, it was confirmed that the orthorhombic phase, the main cause of ferroelectricity, was dominant after a post-anneal at 600 °C for 30 min. Additionally, it was observed that interface mixing between hafnium oxide and the substrate may degrade ferroelectricity. Accordingly, the highest remanent polarization, measured at 14.24 µC/cm2, was observed with the Pt electrode. This finding was further corroborated by piezo force microscopy and endurance tests, with the results being significant compared to previously reported values. This analysis demonstrates that optimizing substrate and annealing conditions, rather than doping, can enhance the ferroelectricity of hafnium oxide, laying the foundation for the future development of ferroelectric-based transistors.

10.
Sci Rep ; 14(1): 21653, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39289363

ABSTRACT

The oxidation resistance of Hf0.28B0.72 and Hf0.11Al0.20B0.69 thin films was investigated comparatively at 700 °C for up to 8 h. Single-phase solid solution thin films were co-sputtered from HfB2 and AlB2 compound targets. After oxidation at 700 °C for 8 h an oxide scale thickness of 31  ±  2 nm was formed on Hf0.11Al0.20B0.69 which corresponds to 14% of the scale thickness measured on Hf0.28B0.72. The improved oxidation resistance can be rationalized based on the chemical composition and the morphology of the formed oxide scales. On Hf0.28B0.72 the formation of a porous, O, Hf, and B-containing scale and the formation of crystalline HfO2 is observed. Whereas on Hf0.11Al0.20B0.69 a dense, primarily amorphous scale containing O, Al, B as well as approximately 3 at% of Hf forms, which reduces the oxidation kinetics significantly by passivation. Benchmarking Hf0.11Al0.20B0.69 with Ti-Al-based boride and nitride thin films with similar Al concentrations reveals superior oxidation behavior of the Hf-Al-based thin film. The incorporation of few at% of Hf in the oxide scale decelerates oxidation kinetics at 700 °C and leads to a reduction in oxide scale thickness of 21% and 47% compared to Ti0.12Al0.21B0.67 and Ti0.27Al0.21N0.52, respectively. Contrary to Ti-Al-based diborides, Hf0.11Al0.20B0.69 shows excellent oxidation behavior despite B-richness.

11.
Nano Lett ; 24(40): 12568-12575, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39315654

ABSTRACT

The introduction of nitrogen vacancies has been shown to be an effective way to tune the plasmonic properties of refractory titanium nitrides. However, its underlying mechanism remains debated due to the lack of high-quality single-crystalline samples and a deep understanding of electronic properties. Here, a series of epitaxial titanium nitride films with varying nitrogen vacancy concentrations (TiNx) were synthesized. Spectroscopic ellipsometry measurements revealed that the plasmon energy could be tuned from 2.64 eV in stoichiometric TiN to 3.38 eV in substoichiometric TiNx. Our comprehensive analysis of electrical and plasmonic properties showed that both the increased electronic states around the Fermi level and the decreased carrier effective mass due to the modified electronic band structures are responsible for tuning the plasmonic properties of TiNx. Our findings offer a deeper understanding of the tunable plasmonic properties in epitaxial TiNx films and are beneficial for the development of nitride plasmonic devices.

12.
Sci Rep ; 14(1): 22158, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39333402

ABSTRACT

In this work, we use mass quadrupole spectroscopy to analyze the ion energy distribution function for C+ ions from different gas composition discharges (20, 40, 60, 80, and 90% Ne) + Ar in a plasma sputtering process. Carbon films were obtained for each gas composition discharge. The carbon bonding structure of films was analyzed by Raman spectroscopy using deconvolution fitting of the G and D Raman peaks. The C-sp3 content was correlated with the electrical and tribological properties of the carbon films. Our results further corroborate the enhancement of carbon ionization in HiPIMS processes by adding neon in conventional argon gas during the deposition process. Furthermore, we found that excessive levels of carbon ionization were detrimental in the formation of C-sp3 decreasing the resistivity, and indicating the decrement of the elastic modulus of the samples. In addition, the use of neon in the gas working mixture increased the deposition rate significantly compared to argon-only processes from 1.7 to 3.22 nm/min for the highest deposition rate cases. Tribology showed that an intermediate C-sp3 content in the carbon films developed desirable tribological behaviors with lower friction coefficients and wear rates, revealing that higher values of C-sp3 content are not necessarily for robust solid lubricious and wear resistance.

13.
ACS Appl Mater Interfaces ; 16(39): 52595-52603, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39301816

ABSTRACT

Barium disilicide (BaSi2) is a thin-film solar cell material composed of abundant elements, and its application potential is further enhanced by its formation on inexpensive substrates, such as glass. The effect of the substrate temperature on the co-sputtering of BaSi2 and Ba targets to form BaSi2 films on Si(111) and TiN/glass substrates was investigated. Contrary to expectations, the photoresponsivity reached maximum values exceeding 5 and 2 A W-1, respectively, the highest value ever reported for as-deposited samples formed at 750 °C, more than 100 °C higher than those reported previously. Because the photoresponsivity is proportional to carrier lifetime, this result indicates that high-temperature growth can bring out the high performance of BaSi2 as a light-absorbing layer. Because amorphous SiC (a-SiC) has a larger forbidden band gap and electron affinity than BaSi2, it is considered suitable as an electron transport layer (ETL) material for BaSi2 solar cells. On the basis of this, the formation of BaSi2 (absorption layer)/a-SiC (ETL)/TiN (electrode)/glass heterojunctions was also attempted, and the layered structure was examined by cross-sectional transmission electron microscopy (TEM). Polycrystalline BaSi2 films were found to be even on the amorphous layer by TEM. A high photoresponsivity of over 2 A W-1 was obtained. Therefore, the BaSi2/a-SiC/TiN structure provides a guideline for the structural design of BaSi2-based thin-film solar cells on glass.

14.
J Funct Biomater ; 15(8)2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39194662

ABSTRACT

This study aims to evaluate and compare the properties of a biomedical clinically established zirconium nitride (ZrN) multilayer coating prepared using two different techniques: pulsed magnetron sputtering and cathodic arc deposition. The investigation focuses on the crystalline structure, grain size, in-vitro oxidation behaviour and tribological performance of these two coating techniques. Experimental findings demonstrate that the sputter deposition process resulted in a distinct crystalline structure and smaller grain size compared to the arc deposition process. Furthermore, in vitro oxidation caused oxygen to penetrate the surface of the sputtered ZrN top layer to a depth of 700 nm compared to 280 nm in the case of the arc-deposited coating. Finally, tribological testing revealed the improved wear rate of the ZrN multilayer coating applied by sputter deposition.

15.
Nanomaterials (Basel) ; 14(16)2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39195394

ABSTRACT

As a layered material with single/multi-atom thickness, two-dimensional transition metal sulfide WS2 has attracted extensive attention in the field of science for its excellent physical, chemical, optical, and electrical properties. The photoelectric properties of WS2 are even more promising than graphene. However, there are many existing preparation methods for WS2, but few reports on its direct growth on tungsten films. Therefore, this paper studies its preparation method and proposes an innovative two-dimensional material preparation method to grow large-sized WS2 with higher quality on metal film. In this experiment, it was found that the reaction temperature could regulate the growth direction of WS2. When the temperature was below 950 °C, the film showed horizontal growth, while when the temperature was above 1000 °C, the film showed vertical growth. At the same time, through Raman and band gap measurements, it is found that the different thicknesses of precursor film will lead to a difference in the number of layers of WS2. The number of layers of WS2 can be controlled by adjusting the thickness of the precursor.

16.
ACS Appl Mater Interfaces ; 16(36): 47961-47972, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39191509

ABSTRACT

High-performance flexible Sn-doped In2O3 (indium tin oxide, ITO) electrodes were fabricated using a multicoating process on colorless polyimide (CPI) substrates for flexible perovskite solar cells (FPSCs). The effects of different coating sequences on the electrical, optical, and mechanical properties of the flexible ITO electrodes were thoroughly investigated after preparing them with direct-current magnetron sputtering (DMS) and arc plasma ion plating (APIP). Although both the sputtered ITO (SITO)/arc ion-plated ITO (AITO) film and the AITO/SITO film showed similarly low sheet resistance (18.69-25.29 Ω/sq) and high optical transmittance (94.96-96.85%), the coating sequence significantly affected the mechanical flexibility of the multicoated ITO films. The 120 nm-thick SITO/AITO electrode exhibited small outer and inner critical bending radii (3 mm and 3 mm, respectively) compared to the AITO/SITO electrode (4 and 5 mm, respectively). Owing to better adhesion of the arc-ion-plated ITO bottom layer and the amorphous structure of the top SITO layer, the SITO/AITO electrode exhibited excellent mechanical flexibility and durability. In addition, an FPSC using the SITO/AITO electrode achieved a higher power conversion efficiency (15.09%) than that with the AITO/SITO electrode (13.22%). This improvement was attributed to its high transmittance, low sheet resistance, smooth surface morphology, and enhanced hole collection efficiency. These findings highlight the efficacy of the combined DMS and APIP multicoating process for fabricating high-quality flexible ITO electrodes for high-performance FPSCs.

17.
Materials (Basel) ; 17(15)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39124342

ABSTRACT

This research introduces a hydrogen sensor made from a thin film of magnesium zinc oxide (MgZnO) deposited using a technique called radiofrequency co-sputtering (RF co-sputtering). Separate magnesium oxide (MgO) and zinc oxide (ZnO) targets were used to deposit the MgZnO film, experimenting with different deposition times and power levels. The sensor performed best (reaching a sensing response of 2.46) when exposed to hydrogen at a concentration of 1000 parts per million (ppm). This peak performance occurred with a MgZnO film thickness of 432 nanometers (nm) at a temperature of 300 °C. Initially, the sensor's responsiveness increased as the film thickness grew. This is because thicker films tend to have more oxygen vacancies, which are imperfections that play a role in the sensor's function. However, further increases in film thickness beyond the optimal point harmed performance. This is attributed to the growth of grains within the film, which hindered its effectiveness. X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM) were employed to thoroughly characterize the quality of the MgZnO thin film. These techniques provided valuable insights into the film's crystal structure and morphology, crucial factors influencing its performance as a hydrogen sensor.

18.
Molecules ; 29(15)2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39124945

ABSTRACT

We show that in plasmas generated in deuterium in the presence of sputtered W surfaces, various molecular tungsten species are formed, whose chemical composition depends on the presence of gaseous impurities, namely, nitrogen, oxygen, and hydrogen. A magnetron discharge was used for plasma sustaining, and the species were investigated by mass spectrometry and optical emission spectroscopy. The identified tungsten-containing molecules are described by the chemical formula WOxNyDzHt, where x = 0-4, y = 0-3, z = 0-3, t = 0-5. Presumptively, even higher mass tungsten molecular species are present in plasma, which were not detected because of the limitation of the spectrometer measurement range to 300 amu. The presence of these molecules will likely impact the W particle balance and dust formation mechanisms in fusion plasmas.

19.
Adv Sci (Weinh) ; : e2403845, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39120071

ABSTRACT

Magnetron-sputtered thermoelectric thin films have the potential for reproducibility and scalability. However, lattice mismatch during sputtering can lead to increased defects in the epitaxial layer, which poses a significant challenge to improving their thermoelectric performance. In this work, nanocrystalline n-type Bi2Te3 thin films with an average grain size of ≈110 nm are prepared using high-temperature sputtering and post-annealing. Herein, it is demonstrated that high-temperature treatment exacerbates Te evaporation, creating Te vacancies and electron-like effects. Annealing improves crystallinity, increases grain size, and reduces defects, which significantly increases carrier mobility. Furthermore, the pre-deposited Ti additives are ionized at high temperatures and partially diffused into Bi2Te3, resulting in a Ti doping effect that increases the carrier concentration. Overall, the 1 µm thick n-type Bi2Te3 thin film exhibits a room temperature resistivity as low as 3.56 × 10-6 Ω∙m. Notably, a 5 µm thick Bi2Te3 thin film achieves a record power factor of 6.66 mW mK-2 at room temperature, which is the highest value reported to date for n-type Bi2Te3 thin films using magnetron sputtering. This work demonstrates the potential for large-scale of high-quality Bi2Te3-based thin films and devices for room-temperature TE applications.

20.
Sci Rep ; 14(1): 18885, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39143374

ABSTRACT

To improve the mechanical properties of the rolling body surface of wind power bearings, extend its service life. In this study, a large-scale molecular/atomic parallel processor LAMMPS was introduced, and then the process of magnetron sputtering technology in the preparation of DLC/Ni-DLC thin films on the 42CrMo substrate material was simulated. The effects of deposition parameters such as sputtering temperature, sputtering voltage, deposition air pressure, and Ni doping on the residual stress, film base bonding, and organizational structure of the thin films were investigated. The simulation results show that for different deposition parameters, the atomic tensile and compressive stresses existed simultaneously in DLC/Ni-DLC films, and the residual stresses were between - 0.504-5.003 Gpa and - 2.11-0.065 Gpa, respectively; the doping of Ni effectively improved the distribution of hybrid structure and the mechanical properties of the DLC films, and the ratio of the sp3 hybrid structure in the film organization was about 2.56 times higher than that of the non-doped films, and the membrane base bonding force was increased by 32.78% and the residual stress is reduced and transitioned from tensile stress to compressive stress. In addition, it was observed that the thickness of the mixed layer of DLC/Ni-DLC films with the substrate was not increased after the thickness of the mixed layer was extended to about 2 nm. Nickel doping and reasonable control of deposition parameters help to reduce the residual stress and improve the bonding strength of the film by changing the organizational structure of the film, which provides an important theoretical and scientific basis for the preparation of low-stress, high-performance and long-life DLC films and the wide application of rolling bodies for wind power bearings under complex working conditions.

SELECTION OF CITATIONS
SEARCH DETAIL