Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Pharmacol Res ; 175: 105959, 2022 01.
Article in English | MEDLINE | ID: mdl-34756924

ABSTRACT

Glioblastomas (GBMs), the most frequent brain tumours, are highly invasive and their prognosis is still poor despite the use of combination treatment. MG624 is a 4-oxystilbene derivative that is active on α7- and α9-containing neuronal nicotinic acetylcholine receptor (nAChR) subtypes. Hybridisation of MG624 with a non-nicotinic resveratrol-derived pro-oxidant mitocan has led to two novel compounds (StN-4 and StN-8) that are more potent than MG624 in reducing the viability of GBM cells, but less potent in reducing the viability of mouse astrocytes. Functional analysis of their activity on α7 receptors showed that StN-4 is a silent agonist, whereas StN-8 is a full antagonist, and neither alters intracellular [Ca2+] levels when acutely applied to U87MG cells. After 72 h of exposure, both compounds decreased U87MG cell proliferation, and pAKT and oxphos ATP levels, but only StN-4 led to a significant accumulation of cells in phase G1/G0 and increased apoptosis. One hour of exposure to either compound also decreased the mitochondrial and cytoplasmic ATP production of U87MG cells, and this was not paralleled by any increase in the production of reactive oxygen species. Knocking down the α9 subunit (which is expressed at relatively high levels in U87MG cells) decreased the potency of the effects of both compounds on cell viability, but cell proliferation, ATP production, pAKT levels were unaffected by the presence of the noncell-permeable α7/α9-selective antagonist αBungarotoxin. These last findings suggest that the anti-tumoral effects of StN-4 and StN-8 on GBM cells are not only due to their action on nAChRs, but also to other non-nicotinic mechanisms.


Subject(s)
Ammonium Compounds/pharmacology , Antineoplastic Agents/pharmacology , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Stilbenes/pharmacology , Adenosine Triphosphate/metabolism , Animals , Astrocytes/drug effects , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cell Line, Tumor , Cell Physiological Phenomena/drug effects , Glioblastoma/genetics , Glioblastoma/metabolism , Humans , Ligands , Mice , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , Receptors, Nicotinic/genetics , alpha7 Nicotinic Acetylcholine Receptor/genetics
2.
Photosynth Res ; 147(1): 107-124, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33269435

ABSTRACT

Protein phosphorylation is a fundamental post-translational modification in all organisms. In photoautotrophic organisms, protein phosphorylation is essential for the fine-tuning of photosynthesis. The reversible phosphorylation of the photosystem II (PSII) core and the light-harvesting complex of PSII (LHCII) contribute to the regulation of photosynthetic activities. Besides the phosphorylation of these major proteins, recent phosphoproteomic analyses have revealed that several proteins are phosphorylated in the thylakoid membrane. In this study, we utilized the Phos-tag technology for a comprehensive assessment of protein phosphorylation in the thylakoid membrane of Arabidopsis. Phos-tag SDS-PAGE enables the mobility shift of phosphorylated proteins compared with their non-phosphorylated isoform, thus differentiating phosphorylated proteins from their non-phosphorylated isoforms. We extrapolated this technique to two-dimensional (2D) SDS-PAGE for detecting protein phosphorylation in the thylakoid membrane. Thylakoid proteins were separated in the first dimension by conventional SDS-PAGE and in the second dimension by Phos-tag SDS-PAGE. In addition to the isolation of major phosphorylated photosynthesis-related proteins, 2D Phos-tag SDS-PAGE enabled the detection of several minor phosphorylated proteins in the thylakoid membrane. The analysis of the thylakoid kinase mutants demonstrated that light-dependent protein phosphorylation was mainly restricted to the phosphorylation of the PSII core and LHCII proteins. Furthermore, we assessed the phosphorylation states of the structural domains of the thylakoid membrane, grana core, grana margin, and stroma lamella. Overall, these results demonstrated that Phos-tag SDS-PAGE is a useful biochemical tool for studying in vivo protein phosphorylation in the thylakoid membrane protein.


Subject(s)
Arabidopsis/physiology , Light-Harvesting Protein Complexes/metabolism , Photosynthesis , Photosystem II Protein Complex/metabolism , Pyridines , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis/radiation effects , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Chromatography, Liquid , Electrophoresis, Gel, Two-Dimensional , Electrophoresis, Polyacrylamide Gel , Mutation , Phosphorylation , Protein Isoforms , Protein Kinases/genetics , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Tandem Mass Spectrometry , Thylakoids/metabolism
3.
Front Plant Sci ; 10: 974, 2019.
Article in English | MEDLINE | ID: mdl-31417591

ABSTRACT

Reversible phosphorylation of thylakoid proteins contributes to photoacclimation responses in photosynthetic organisms, enabling the fine-tuning of light harvesting under changing light conditions and promoting the onset of photoprotective processes. However, the precise functional role of many of the described phosphorylation events on thylakoid proteins remains elusive. The calcium sensor receptor protein (CAS) has previously been indicated as one of the targets of the state transition kinase 8 (STN8). Here we show that in Arabidopsis thaliana, CAS is also phosphorylated by the state transition kinase 7 (STN7), as well as by another, so-far unknown, Ca2+-dependent kinase. Phosphoproteomics analysis and in vitro phosphorylation assays on CAS variants identified the phylogenetically conserved residues Thr-376, Ser-378, and Thr-380 as the major phosphorylation sites of the STN kinases. Spectroscopic analyses of chlorophyll fluorescence emission at 77K further showed that, while the cas mutant is not affected in state transition, it displays a persistent strong excitation of PSI under high light exposure, similar to the phenotype previously observed in other mutants defective in photoacclimation mechanisms. Together with the observation of a strong concomitant phosphorylation of light harvesting complex II (LHCII) and photosynthetic core proteins under high irradiance in the cas mutant this suggests a role for CAS in the STN7/STN8/TAP38 network of phosphorylation-mediated photoacclimation processes in Arabidopsis.

4.
Front Plant Sci ; 9: 1032, 2018.
Article in English | MEDLINE | ID: mdl-30065742

ABSTRACT

Phospho-proteomic studies have confirmed that phosphorylation is a common mechanism to regulate protein function in the chloroplast, including the enzymes of starch metabolism. In addition to the photosynthetic machinery protein kinases (STN7 and STN8) and their cognate protein phosphatases PPH1 (TAP38) and PBCP, multiple other protein kinases and phosphatases have now been localized to the chloroplast. Here, we build a framework for understanding protein kinases and phosphatases, their regulation, and potential roles in starch metabolism. We also catalog mapped phosphorylation sites on proteins of chloroplast starch metabolism to illustrate the potential and mostly unknown roles of protein phosphorylation in the regulation of starch biology.

5.
Plant J ; 90(6): 1176-1186, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28295753

ABSTRACT

The thylakoid-associated kinases STN7 and STN8 are involved in short- and long-term acclimation of photosynthetic electron transport to changing light conditions. Here we report the identification of STN7/STN8 in vivo targets that connect photosynthetic electron transport with metabolism and gene expression. Comparative phosphoproteomics with the stn7 and stn8 single and double mutants identified two proteases, one RNA-binding protein, a ribosomal protein, the large subunit of Rubisco and a ferredoxin-NADP reductase as targets for the thylakoid-associated kinases. Phosphorylation of three of the above proteins can be partially complemented by STN8 in the stn7 single mutant, albeit at lower efficiency, while phosphorylation of the remaining three proteins strictly depends on STN7. The properties of the STN7-dependent phosphorylation site are similar to those of phosphorylated light-harvesting complex proteins entailing glycine or another small hydrophobic amino acid in the -1 position. Our analysis uncovers the STN7/STN8 kinases as mediators between photosynthetic electron transport, its immediate downstream sinks and long-term adaptation processes affecting metabolite accumulation and gene expression.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Arabidopsis/physiology , Electron Transport/physiology , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Electron Transport/genetics , Light-Harvesting Protein Complexes/genetics , Light-Harvesting Protein Complexes/metabolism , Phosphorylation/genetics , Phosphorylation/physiology , Photosynthesis/genetics , Photosynthesis/physiology , Photosystem II Protein Complex/genetics , Photosystem II Protein Complex/metabolism , Protein Kinases/genetics , Protein Serine-Threonine Kinases/genetics
6.
Plant J ; 89(4): 681-691, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27813190

ABSTRACT

Reversible phosphorylation of thylakoid light-harvesting proteins is a mechanism to compensate for unbalanced excitation of photosystem I (PSI) versus photosystem II (PSII) under limiting light. In monocots, an additional phosphorylation event on the PSII antenna CP29 occurs upon exposure to excess light, enhancing resistance to light stress. Different from the case of the major LHCII antenna complex, the STN7 kinase and its related PPH1 phosphatase were proven not to be involved in CP29 phosphorylation, indicating that a different set of enzymes act in the high-light (HL) response. Here, we analyze a rice stn8 mutant in which both PSII core proteins and CP29 phosphorylation are suppressed in HL, implying that STN8 is the kinase catalyzing this reaction. In order to identify the phosphatase involved, we produced a recombinant enzyme encoded by the rice ortholog of AtPBCP, antagonist of AtSTN8, which catalyzes the dephosphorylation of PSII core proteins. The recombinant protein was active in dephosphorylating P-CP29. Based on these data, we propose that the activities of the OsSTN8 kinase and the antagonistic OsPBCP phosphatase, in addition to being involved in the repair of photo-damaged PSII, are also responsible for the HL-dependent reversible phosphorylation of the inner antenna CP29.


Subject(s)
Light , Oryza/enzymology , Oryza/metabolism , Phosphoprotein Phosphatases/metabolism , Photosystem II Protein Complex/metabolism , Plant Proteins/metabolism , Protein Kinases/metabolism , Oryza/genetics , Phosphoprotein Phosphatases/genetics , Phosphorylation/radiation effects , Photosystem II Protein Complex/radiation effects , Plant Proteins/genetics , Protein Kinases/genetics
7.
J Photochem Photobiol B ; 162: 240-247, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27390892

ABSTRACT

When phosphorylation of Photosystem (PS) II core proteins is blocked in STN8 knock-out mutants of rice (Oryza sativa) under photoinhibitory illumination, the mobilization of PSII supercomplex is prevented. We have previously proposed that more superoxide (O2(-)) is produced from PSII in the mutant (Nath et al., 2013, Plant J. 76, 675-686). Here, we clarify the type and site for the generation of reactive oxygen species (ROS). Using both histochemical and fluorescence probes, we observed that, compared with wild-type (WT) leaves, levels of ROS, including O2(-) and hydrogen peroxide (H2O2), were increased when leaves from mutant plants were illuminated with excess light. However, singlet oxygen production was not enhanced under such conditions. When superoxide dismutase was inhibited, O2(-) production was increased, indicating that it is the initial event prior to H2O2 production. In thylakoids isolated from WT leaves, kinase was active in the presence of ATP, and spectrophotometric analysis of nitrobluetetrazolium absorbance for O2(-) confirmed that PSII-driven superoxide production was greater in the mutant thylakoids than in the WT. This contrast in levels of PSII-driven superoxide production between the mutants and the WT plants was confirmed by conducting protein oxidation assays of PSII particles from osstn8 leaves under strong illumination. Those assays also demonstrated that PSII-LHCII supercomplex proteins were oxidized more in the mutant, thereby implying that PSII particles incur greater damage even though D1 degradation during PSII-supercomplex mobilization is partially blocked in the mutant. These results suggest that O2(-) is the major form of ROS produced in the mutant, and that the damaged PSII in the supercomplex is the primary source of O2(-).


Subject(s)
Gene Knockout Techniques , Light-Harvesting Protein Complexes/metabolism , Light , Oryza/genetics , Photosystem II Protein Complex/metabolism , Protein Kinases/genetics , Superoxides/metabolism , Hydrogen Peroxide/metabolism , Mutation , Oryza/cytology , Oryza/enzymology , Oryza/radiation effects , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/radiation effects , Protein Kinases/deficiency , Thylakoids/genetics , Thylakoids/metabolism , Thylakoids/radiation effects
8.
J Exp Bot ; 66(21): 6891-903, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26272903

ABSTRACT

Senescence is a highly regulated process characterized by the active breakdown of cells, which ultimately leads to the death of plant organs or whole plants. In annual plants such as Arabidopsis thaliana senescence can be observed in each individual leaf. Whether deficiencies in photosynthesis promote the induction of senescence was investigated by monitoring chlorophyll degradation, photosynthetic parameters, and reactive oxygen species accumulation in photosynthetic mutants. Several mutations affecting components of the photosynthetic apparatus, including psal-2, psan-2, and psbs, were found to lead to premature or faster senescence, as did simultaneous inactivation of the STN7 and STN8 kinases. Premature senescence is apparently not directly linked to an overall reduction in photosynthesis but to perturbations in specific aspects of the process. Dark-induced senescence is accelerated in mutants affected in linear electron flow, especially psad2-1, psan-2, and pete2-1, as well as in stn7 and stn8 mutants and STN7 and STN8 overexpressor lines. Interestingly, no direct link with ROS production could be observed.


Subject(s)
Arabidopsis/metabolism , Photosynthesis , Photosystem I Protein Complex/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Electron Transport , Mutation , Plant Leaves/growth & development , Plant Leaves/metabolism
9.
Plant Cell Physiol ; 55(7): 1245-54, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24793754

ABSTRACT

PSII undergoes photodamage, which results in photoinhibition-the light-induced loss of photosynthetic activity. The main target of damage in PSII is the reaction center protein D1, which is buried in the massive 1.4 MDa PSII holocomplex. Plants have evolved a PSII repair cycle that degrades the damaged D1 subunit and replaces it with a newly synthesized copy. PSII core proteins, including D1, are phosphorylated in high light. This phosphorylation is important for the mobilization of photoinhibited PSII from stacked grana thylakoids to the repair machinery in distant unstacked stroma lamellae. It has been recognized that the degradation of the damaged D1 is more efficient after its dephosphorylation by a protein phosphatase. Recently a protein phosphatase 2C (PP2C)-type PSII core phosphatase (PBCP) has been discovered, which is involved in the dephosphorylation of PSII core proteins. Its role in PSII repair, however, is unknown. Using a range of spectroscopic and biochemical techniques, we report that the inactivation of the PBCP gene affects the growth characteristic of plants, with a decreased biomass and altered PSII functionality. PBCP mutants show increased phosphorylation of core subunits in dark and photoinhibitory conditions and a diminished degradation of the D1 subunit. Our results on D1 turnover in PBCP mutants suggest that dephosphorylation of PSII subunits is required for efficient D1 degradation.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Gene Expression Regulation, Plant , Phosphoprotein Phosphatases/metabolism , Photosystem II Protein Complex/metabolism , Thylakoids/metabolism , 5' Untranslated Regions/genetics , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/radiation effects , Arabidopsis Proteins/genetics , Biomass , Darkness , Gene Knockout Techniques , Light , Mutagenesis, Insertional , Phenotype , Phosphoprotein Phosphatases/genetics , Phosphorylation , Photosynthesis , Photosystem II Protein Complex/genetics , Protoplasts , Seedlings
10.
Philos Trans R Soc Lond B Biol Sci ; 369(1640): 20130225, 2014 Apr 19.
Article in English | MEDLINE | ID: mdl-24591712

ABSTRACT

Land plants live in a challenging environment dominated by unpredictable changes. A particular problem is fluctuation in sunlight intensity that can cause irreversible damage of components of the photosynthetic apparatus in thylakoid membranes under high light conditions. Although a battery of photoprotective mechanisms minimize damage, photoinhibition of the photosystem II (PSII) complex occurs. Plants have evolved a multi-step PSII repair cycle that allows efficient recovery from photooxidative PSII damage. An important feature of the repair cycle is its subcompartmentalization to stacked grana thylakoids and unstacked thylakoid regions. Thus, understanding the crosstalk between stacked and unstacked thylakoid membranes is essential to understand the PSII repair cycle. This review summarizes recent progress in our understanding of high-light-induced structural changes of the thylakoid membrane system and correlates these changes to the efficiency of the PSII repair cycle. The role of reversible protein phosphorylation for structural alterations is discussed. It turns out that dynamic changes in thylakoid membrane architecture triggered by high light exposure are central for efficient repair of PSII.


Subject(s)
Chloroplasts/radiation effects , Light/adverse effects , Models, Biological , Photosynthesis/physiology , Photosystem II Protein Complex/metabolism , Plant Physiological Phenomena , Thylakoids/radiation effects , Phosphorylation
11.
J Exp Bot ; 65(8): 1955-72, 2014 May.
Article in English | MEDLINE | ID: mdl-24622954

ABSTRACT

Thylakoids of land plants have a bipartite structure, consisting of cylindrical grana stacks, made of membranous discs piled one on top of the other, and stroma lamellae which are helically wound around the cylinders. Protein complexes predominantly located in the stroma lamellae and grana end membranes are either bulky [photosystem I (PSI) and the chloroplast ATP synthase (cpATPase)] or are involved in cyclic electron flow [the NAD(P)H dehydrogenase (NDH) and PGRL1-PGR5 heterodimers], whereas photosystem II (PSII) and its light-harvesting complex (LHCII) are found in the appressed membranes of the granum. Stacking of grana is thought to be due to adhesion between Lhcb proteins (LHCII or CP26) located in opposed thylakoid membranes. The grana margins contain oligomers of CURT1 proteins, which appear to control the size and number of grana discs in a dosage- and phosphorylation-dependent manner. Depending on light conditions, thylakoid membranes undergo dynamic structural changes that involve alterations in granum diameter and height, vertical unstacking of grana, and swelling of the thylakoid lumen. This plasticity is realized predominantly by reorganization of the supramolecular structure of protein complexes within grana stacks and by changes in multiprotein complex composition between appressed and non-appressed membrane domains. Reversible phosphorylation of LHC proteins (LHCPs) and PSII components appears to initiate most of the underlying regulatory mechanisms. An update on the roles of lipids, proteins, and protein complexes, as well as possible trafficking mechanisms, during thylakoid biogenesis and the de-etiolation process complements this review.


Subject(s)
Embryophyta/physiology , Embryophyta/ultrastructure , Thylakoids/physiology , Thylakoids/ultrastructure , Embryophyta/growth & development , Organogenesis, Plant
13.
Plant J ; 76(4): 675-86, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24103067

ABSTRACT

STN8 kinase is involved in photosystem II (PSII) core protein phosphorylation (PCPP). To examine the role of PCPP in PSII repair during high light (HL) illumination, we characterized a T-DNA insertional knockout mutant of the rice (Oryza sativa) STN8 gene. In this osstn8 mutant, PCPP was significantly suppressed, and the grana were thin and elongated. Upon HL illumination, PSII was strongly inactivated in the mutants, but the D1 protein was degraded more slowly than in wild-type, and mobilization of the PSII supercomplexes from the grana to the stromal lamellae for repair was also suppressed. In addition, higher accumulation of reactive oxygen species and preferential oxidation of PSII reaction center core proteins in thylakoid membranes were observed in the mutants during HL illumination. Taken together, our current data show that the absence of STN8 is sufficient to abolish PCPP in osstn8 mutants and to produce all of the phenotypes observed in the double mutant of Arabidopsis, indicating the essential role of STN8-mediated PCPP in PSII repair.


Subject(s)
Oryza/enzymology , Photosystem II Protein Complex/chemistry , Photosystem II Protein Complex/metabolism , Plant Proteins/metabolism , Protein Kinases/deficiency , Protein Kinases/genetics , Protein Serine-Threonine Kinases/deficiency , Protein Serine-Threonine Kinases/genetics , Gene Knockdown Techniques , Light , Mutagenesis, Insertional , Oryza/genetics , Oryza/ultrastructure , Phenotype , Phosphorylation/genetics , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/antagonists & inhibitors , Plant Leaves/metabolism , Protein Serine-Threonine Kinases/metabolism , Thylakoids/enzymology , Thylakoids/metabolism , Thylakoids/ultrastructure
14.
FEBS Lett ; 587(21): 3372-81, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24056074

ABSTRACT

Photosystem II (PSII) is vulnerable to high light (HL) illumination resulting in photoinhibition. In addition to photoprotection mechanisms, plants have developed an efficient PSII repair mechanism to save themselves from irreversible damage to PSII under abiotic stresses including HL illumination. The phosphorylation/dephosphorylation cycle along with subsequent degradation of photodamaged D1 protein to be replaced by the insertion of a newly synthesized copy of D1 into the PSII complex, is the core function of the PSII repair cycle. The exact mechanism of this process is still under discussion. We describe the recent progress in identifying the kinases, phosphatases and proteases, and in understanding their involvement in the maintenance of thylakoid structure and the quality control of proteins by PSII repair cycle during photoinhibition.


Subject(s)
Photosystem II Protein Complex/metabolism , Stress, Physiological/physiology , Light , Models, Biological , Phosphorylation , Plants/metabolism , Reactive Oxygen Species/metabolism , Thylakoids/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL