Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 797
Filter
1.
Ecosphere ; 15(4)2024 Apr.
Article in English | MEDLINE | ID: mdl-39247255

ABSTRACT

Herbivorous insects and their host plants comprise most known species on Earth. Illuminating how herbivory repeatedly evolved in insects from non-herbivorous lineages is critical to understanding how this biodiversity is created and maintained. We characterized the trophic niche of Scaptomyza flava, a representative of a lineage nested within the Drosophila that transitioned to herbivory ~10-15 million years ago. We used natural history studies to determine if S. flava is a true herbivore or a cryptic microbe-feeder, given that the ancestral character state for the family Drosophilidae is likely microbe-feeding. Specifically, we quantified oviposition substrate choice and larval viability across food-types, trophic-related morphological traits, and nitrogen isotope and sterol profiles across putatively herbivorous and non-herbivorous drosophilids. The results of these studies show that S. flava is an obligate herbivore of living plants. Paired with its genetic model host, Arabidopsis thaliana, S. flava is a novel and powerful system for exploring mechanisms underlying the evolution of herbivory, a complex trait that enabled the exceptional diversification of insects.

2.
Trends Mol Med ; 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39256109

ABSTRACT

Ferroptosis, a novel cell death mode driven by iron-dependent phospholipid (PL) peroxidation, has emerged as a promising therapeutic strategy for the treatments of cancer, cardiovascular diseases, and ischemic-reperfusion injury (IRI). PL peroxidation, the key process of ferroptosis, requires polyunsaturated fatty acid (PUFA)-containing PLs (PL-PUFAs) as substrates, undergoing a chain reaction with iron and oxygen. Cells prevent ferroptosis by maintaining a homeostatic equilibrium among substrates, processes, and detoxification of PL peroxidation. Sterols, lipids abundant in cell membranes, directly participate in PL peroxidation and influence ferroptosis sensitivity. Sterol metabolism also plays a key role in ferroptosis, and targeting sterols presents significant potential for treating numerous ferroptosis-associated disorders. This review elucidates the fundamental mechanisms of ferroptosis, emphasizing how sterols modulate this process and their therapeutic potential.

3.
Plants (Basel) ; 13(17)2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39273951

ABSTRACT

Olive growing is undergoing a transition from traditional cultivation systems to a more technological model characterized by increased mechanization and a higher density of plants per hectare. This shift implies the use of less vigorous varieties that can adapt to the new system. Most traditional varieties are highly vigorous, and breeding programs can provide solutions to this challenge. This study investigates the parental effect on different agronomic and olive oil characteristics and its role in breeding programs. The objectives were to evaluate and characterize different agronomic and olive oil traits in the progenies from 'Arbosana' × 'Sikitita' cross and its reciprocal cross 'Sikitita' × 'Arbosana'. The results showed a high variability of the characters evaluated in the progenitors of the reciprocal crosses. The highest coefficients of variation were observed in traits related to ripening index, phenolic compounds, polyunsaturated fatty acids, and Δ5-avenasterol, with phenolic content exhibiting the greatest variability. No statistically significant maternal effect was detected for any of the evaluated traits, although a slight positive maternal effect was systematically observed in the mean values of the evaluated traits. These results suggest that the maternal effect on olive is quite subtle, although due to a slight tendency of the maternal effect in the descriptive analyses, future studies are suggested to understand in depth the possible maternal effect on olive breeding.

4.
Molecules ; 29(17)2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39274918

ABSTRACT

Salvia elegans Vahl is a plant commonly used in Mexico as a remedy for nervous disorders, inflammatory diseases, and "ringing in the ears"; the latter can be associated with arteriosclerotic conditions and arterial hypertension. Therefore, based on medicinal use, this work aimed to evaluate the hydroalcoholic extract (SeHA, 100 mg/kg) of this plant and two fractions, ethyl acetate (SeFAc, 50 mg/kg), and obtained from SeFAc fractionation denominated SeF3 (10 mg/kg), on several alterations derived from metabolic syndrome (MetS) derived from the ingestion of a high-calorie diet (high-fat diet), in ICR (Institute of Cancer Research) mice, leading to chronic inflammation that results in neurological damage such as depression. Therefore, several MetS-related parameters, such as forced swim tests, hypertension, serum corticosterone levels, glucose, triglycerides, cholesterol, adiposity index, and insulin resistance, will be evaluated. Additionally, tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-6, and IL-10 levels were measured in kidneys, fat tissue, brains, and spleens. It was proven that all those S. elegans-derived treatments reversed the damage, showing antidepressant, antihypertensive, antihyperglycemic, and antidyslipidemic effects and decreased adiposity, insulin resistance, and serum corticosterone. They induced a modulatory response by modifying the levels of TNF-α, IL-1ß, IL-6, and IL-10 in different organs. High-performance liquid chromatography (HPLC) analysis of the acetate of ethyl fraction from S. elegans (SeFAc) fraction revealed the presence of rosmarinic and caffeic acids as well as flavonoids, while the fraction from SeFAc called SeF3 Was identified by gas mass as methyl glucose, glycerol, and known sterols, among others. Thus, it was concluded that S. elegans protects against the harmful effects of MetS.


Subject(s)
Depression , Diet, High-Fat , Metabolic Syndrome , Plant Extracts , Salvia , Animals , Metabolic Syndrome/drug therapy , Metabolic Syndrome/metabolism , Metabolic Syndrome/etiology , Diet, High-Fat/adverse effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Mice , Salvia/chemistry , Depression/drug therapy , Depression/etiology , Depression/metabolism , Male , Disease Models, Animal , Mice, Inbred ICR
5.
Molecules ; 29(17)2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39275026

ABSTRACT

Botanical varieties of hemp differ in chemical composition, plant morphology, agronomy, and industrial suitability. Hemp is popular for cultivation for the production of cannabinoid oil, fiber production, biomass, etc. The fertilization process is one of the most important factors affecting the plant, both its condition and chemical composition. So far, research has been carried out proving that hemp is a valuable source of, among others: fatty acids, amino acids, acids, vitamins, numerous micro- and macroelements, and antioxidant compounds. In this experiment, it was decided to check the possibility of harvesting hemp panicles twice in one year. The purpose of this treatment is to use one plant to produce cannabidiol oil and grain. The main aim of the research was to determine bioactive compounds in hemp seeds and to determine whether the cultivation method affects their content and quantity. Based on the research conducted, it was observed that hemp can be grown in two directions at the same time and harvested twice because its health-promoting properties do not lose their value. It was found that regardless of whether hemp is grown solely for seeds or to obtain essential oils and then seeds, the type of fertilization does not affect the content of phenolic acids (e.g., syringic acid: 69.69-75.14 µg/100 g, vanillic acid: 1.47-1.63 µg/100 g). Based on the conducted research, it was found that essential oils can be obtained from one plant in the summer and seeds from Henola hemp cultivation in the autumn, because such a treatment does not affect the content of the discussed compounds.


Subject(s)
Cannabis , Fatty Acids , Polyphenols , Seeds , Seeds/chemistry , Cannabis/chemistry , Cannabis/growth & development , Fatty Acids/analysis , Polyphenols/analysis , Polyphenols/chemistry , Terpenes/analysis , Terpenes/chemistry , Fertilizers/analysis , Oils, Volatile/chemistry , Oils, Volatile/analysis , Fertilization
6.
Foods ; 13(17)2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39272520

ABSTRACT

Balanites aegyptiaca is a multipurpose fruit tree that grows wild in many arid and semi-arid African areas; however, recent domestication efforts have been undertaken to protect the species from the threat of urbanization and climate change. Within this context, the impact of the domestication of Algerian B. aegyptiaca was evaluated on its seed oil, which is already valued as food. Hence, oils from wild and domesticated trees were comparatively investigated for their physicochemical and compositional quality. Both oil types had a good oxidative stability and met the requirements for human consumption in terms of the saponification index, the free acidity, and the peroxide value. Moreover, they showed a comparable FA composition, with high levels of oleic and linoleic acids, which are beneficial for the consumer's health. Domestication led to a statistically significant decrease in the tocopherols and polyphenols in the oil. The phytosterols and squalene were slightly lower in the domesticated oil than in the wild relative, although no statistically significant differences were observed. A comparable mineral profile was revealed and the minimal variations in the trace elements between the oils could be related to the natural variability in the seeds. Hopefully, this study will encourage the domestication of B. aegyptiaca as a sustainable strategy for enhancing its socioeconomic value in Algerian rural areas.

7.
Food Chem ; 461: 140820, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39153376

ABSTRACT

The application of plant sterols in the treatment of hypercholesterolemia is promising. We hypothesize that plant sterols can reduce blood cholesterol because they have a side chain of at least three branches. Three cholesterol analogues were synthesized: CA0 (no side chain), CA3 (a 3­carbon chain with one branch), and CA14 (a 14­carbon side chain with two branches), and then compared their effect on blood cholesterol with that of ß-sitosterol. Structurally, ß-sitosterol has a 10­carbon side chain with three branches. Results demonstrated that ß-sitosterol could effectively reduce plasma total cholesterol (TC) by 20.3%, whereas CA0, CA3 and CA14 did not affect plasma TC in hypercholesterolemia hamsters. ß-Sitosterol was absent in the plasma and liver, indicating it was not absorbed. We concluded that ß-sitosterol with three branches had plasma TC-lowering activity. In contrast, cholesterol analogues with a side chain of two or fewer branches did not affect plasma cholesterol.


Subject(s)
Cholesterol , Hypercholesterolemia , Sitosterols , Sitosterols/pharmacology , Sitosterols/chemistry , Animals , Cholesterol/blood , Cholesterol/chemistry , Male , Hypercholesterolemia/drug therapy , Hypercholesterolemia/blood , Cricetinae , Humans , Molecular Structure
8.
Arterioscler Thromb Vasc Biol ; 44(9): 2069-2087, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39087348

ABSTRACT

BACKGROUND: Dyslipidemia increases cardiovascular disease risk, the leading cause of death worldwide. Under time-restricted feeding (TRF), wherein food intake is restricted to a consistent window of <12 hours, weight gain, glucose intolerance, inflammation, dyslipidemia, and hypercholesterolemia are all reduced in mice fed an obesogenic diet. LDLR (low-density lipoprotein receptor) mutations are a major cause of familial hypercholesterolemia and early-onset cardiovascular disease. METHODS: We subjected benchmark preclinical models, mice lacking LDLR-knockout or ApoE knockout to ad libitum feeding of an isocaloric atherogenic diet either ad libitum or 9 hours TRF for up to 13 weeks and assessed disease development, mechanism, and global changes in hepatic gene expression and plasma lipids. In a regression model, a subset of LDLR-knockout mice were ad libitum fed and then subject to TRF. RESULTS: TRF could significantly attenuate weight gain, hypercholesterolemia, and atherosclerosis in mice lacking the LDLR-knockout mice under experimental conditions of both prevention and regression. In LDLR-knockout mice, increased hepatic expression of genes mediating ß-oxidation during fasting is associated with reduced VLDL (very-low-density lipoprotein) secretion and lipid accumulation. Additionally, increased sterol catabolism coupled with fecal loss of cholesterol and bile acids contributes to the atheroprotective effect of TRF. Finally, TRF alone or combined with a cholesterol-free diet can reduce atherosclerosis in LDLR-knockout mice. However, mice lacking ApoE, which is an important protein for hepatic lipoprotein reuptake do not respond to TRF. CONCLUSIONS: In a preclinical animal model, TRF is effective in both the prevention and regression of atherosclerosis in LDLR knockout mice. The results suggest TRF alone or in combination with a low-cholesterol diet can be a lifestyle intervention for reducing cardiovascular disease risk in humans.


Subject(s)
Atherosclerosis , Disease Models, Animal , Liver , Mice, Knockout, ApoE , Receptors, LDL , Animals , Receptors, LDL/genetics , Receptors, LDL/deficiency , Atherosclerosis/prevention & control , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/etiology , Liver/metabolism , Male , Mice, Inbred C57BL , Time Factors , Fasting/blood , Mice , Hypercholesterolemia/genetics , Hypercholesterolemia/metabolism , Hypercholesterolemia/complications , Diet, Atherogenic , Weight Gain , Mice, Knockout , Aortic Diseases/prevention & control , Aortic Diseases/genetics , Aortic Diseases/pathology , Aortic Diseases/metabolism , Lipids/blood , Apolipoproteins E
9.
J Liposome Res ; : 1-8, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39135424

ABSTRACT

The high complexity of biological membranes has driven the development and application of a wide range of model membrane systems. Among these models, liposomes are extensively used because of their versatility in mimicking cellular membranes with a wide range of lipid compositions. However, the accurate quantification of lipid components, such as sterols, within these models remains a critical requirement for validation, data interpretation, and comparison. Here, we present a reliable and sensitive colorimetric assay using the Zak color reaction, which we have specifically adapted for the quantification of sterols at the micro-scale level. The assay was evaluated using cholesterol, ergosterol, and sitosterol standards, reflecting the diversity of sterol species across organisms. The reaction mechanism involves the dehydration of sterols to form carbonium ions, which are oxidized to form various enylic carbonium ions with specific absorption peaks. Due to the different chemical structures of cholesterol, ergosterol, and sitosterol, the resulting spectra show that the colored reaction products are formed in different proportions. The stability and interconversion of these species over time were analyzed. Cholesterol and sitosterol showed a clear peak at 555 nm, while ergosterol had prominent peaks at shorter wavelengths. Sterol assays on liposomal preparations showed accurate sterol incorporation with minimal loss during processing steps. These results demonstrate that this assay provides a robust and accurate measurement of sterol content in large unilamellar vesicles, making it a valuable tool for liposomal studies.

10.
Foods ; 13(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39123609

ABSTRACT

The quality of fried products greatly depends on the changes occurring during frying. The purpose of this work was to study the lipid quality changes taking place in selected frozen foods after domestic deep-frying. Conventional, high-linoleic sunflower oil (HLSO) and high-oleic sunflower oil (HOSO) were used, and the frozen foods selected were French fries, croquettes, and nuggets. The foods were fried in domestic fryers under discontinuous conditions. Analyses included fatty acid composition, sterols, tocopherols, squalene, and lipid alteration levels. In all fried foods, the content of lipids increased after frying, which is consistent with previous findings. However, the lipid exchange between the food and the oil greatly depended on the food characteristics. Specifically, the levels of frying oil in the food lipids were about 90, 40, and 58% for French fries, croquettes, and nuggets, respectively. The main results obtained showed that lipid alteration levels considerably decreased and amounts of sterols and tocopherols significantly increased in French fries' lipids after frying. In both chicken products, croquettes and nuggets, the best quality improvement observed was a significant decrease in cholesterol in food lipids due to the lipid exchange. Overall, frying with HLSO and HOSO improved the quality and nutritional properties of all products tested.

11.
Lipids Health Dis ; 23(1): 222, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039599

ABSTRACT

BACKGROUND: Sitosterolemia, an autosomal recessive condition, is characterized by impaired metabolism of plant sterols. Clinical symptoms include skin xanthoma, premature atherosclerotic disease, arthritis, and unexplained hematological abnormalities. However, there is a dearth of studies on sitosterolemia-related brain damage. METHODS: This study focused on the family of two sitosterolemia patients who presented with severe hypercholesterolemia and xanthoma. Radiological examinations, biopsies, whole-exome sequencing (WES), and plant sterol tests were conducted. RESULTS: The index patient, a 66-year-old female, initially exhibited weakness in both lower limbs and later developed urinary and fecal incontinence. Neuroimaging showed that the falx of the brain had irregular fusiform thickening. Significant tissue edema was observed around the lesions in the bilateral frontal-parietal lobes. Pathological analysis of the biopsied brain lesion revealed extensive cholesterol crystal deposition and lymphocyte infiltration in the matrix. The index patient who experienced cerebral impairment and her sister both carried two compound heterozygous variants in ATP binding cassette transporter G5 (ABCG5). These included the nonsense variants NM_022436: c.751 C > T (p.Q251X) in exon 6 and NM_022436: c.1336 C > T (p.R446X) in exon 10. A notable increase in plant sterol levels was observed in the younger sister of the index patient. CONCLUSION: This study highlights a previously unreported neurological aspect of sitosterolemia. Imaging and pathology findings suggest that cholesterol crystals may be deposited in connective tissues such as the cerebral falx and pia mater through blood circulation.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 5 , Hypercholesterolemia , Intestinal Diseases , Lipid Metabolism, Inborn Errors , Phytosterols , Humans , Female , Phytosterols/adverse effects , Aged , Hypercholesterolemia/genetics , Hypercholesterolemia/pathology , Hypercholesterolemia/complications , Lipid Metabolism, Inborn Errors/genetics , Lipid Metabolism, Inborn Errors/pathology , Lipid Metabolism, Inborn Errors/diagnostic imaging , Intestinal Diseases/genetics , Intestinal Diseases/pathology , Intestinal Diseases/diagnostic imaging , ATP Binding Cassette Transporter, Subfamily G, Member 5/genetics , Brain/pathology , Brain/diagnostic imaging , Exome Sequencing , Xanthomatosis/pathology , Xanthomatosis/genetics , Xanthomatosis/diagnostic imaging , Pedigree , Cholesterol/blood , Male , Sitosterols , Lipoproteins
12.
Proc Biol Sci ; 291(2026): 20232915, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38981519

ABSTRACT

Archaeological studies of pre-historic Arctic cultures are often limited to artefacts and architecture; such records may be incomplete and often do not provide a continuous record of past occupation. Here, we used lake sediment archives to supplement archaeological evidence to explore the history of Thule and Dorset populations on Somerset Island, Nunavut (Canada). We examined biomarkers in dated sediment cores from two ponds adjacent to abandoned Thule settlements (PaJs-3 and PaJs-13) and compared these to sediment cores from two ponds without past human occupation. Coprostanol and epicoprostanol, δ15N measurements, sedimentary chlorophyll a and the ratio of diatom valves to chrysophyte cysts were elevated in the dated sediment profiles at both sites during Thule and Dorset occupations. Periods of pronounced human impact during the Thule occupation of the site were corroborated by 14C-dated caribou bones found at both sites that identified intense caribou hunting between ca 1185 and 1510 CE. Notably, these sediment core data show evidence of the Dorset occupation from ca 200 to 500 CE at sites where archaeological evidence was heretofore lacking. We highlight the utility of lake sediments in assisting archaeological studies to better establish the timings, peak occupations and even lifestyle practices of the Dorset and Thule Arctic peoples.


Subject(s)
Archaeology , Biomarkers , Bone and Bones , Geologic Sediments , Geologic Sediments/chemistry , Geologic Sediments/analysis , Arctic Regions , Bone and Bones/chemistry , Animals , Humans , Biomarkers/analysis , Nunavut , Reindeer , Lakes/chemistry
13.
J Agric Food Chem ; 72(30): 16976-16987, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39037854

ABSTRACT

This study evaluated the impact of different digestion conditions (adult and senior) on lipolysis and bioaccessibility of plant sterols (PS) and phytosterol oxidation products (POPs) in PS-enriched wholemeal rye bread. Under adult digestion conditions, the addition of gastric lipase (GL) reduced lipolysis products (by 6.1% for free fatty acids and 11.7% for monoacylglycerols) and the bioaccessibility of PS by 6.7%, compared to the control. In digestion with both GL and cholesterol esterase (CE), these reductions were 12.9, 20.1, and 11.3%, respectively. Both modifications (GL and GL + CE) increased the bioaccessibility of POPs by 4.5-4.0%. When simulating the elderly digestion, the modified gastric and intestinal phases did not alter PS bioaccessibility but decreased POPs bioaccessibility by 21.8% compared to control, along with reduced lipolysis. Incorporating GL and CE thus approached physiological conditions and influenced lipid digestion. Elderly simulated digestion conditions resulted in a positive outcome by maintaining PS bioaccessibility while reducing potentially harmful POPs.


Subject(s)
Biological Availability , Bread , Digestion , Lipolysis , Phytosterols , Secale , Humans , Phytosterols/metabolism , Bread/analysis , Secale/chemistry , Secale/metabolism , Models, Biological , Adult , Lipase/metabolism , Aged
14.
Biomolecules ; 14(7)2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39062582

ABSTRACT

An Arabidopsis sterol mutant, smt2 smt3, defective in sterolmethyltransferase2 (SMT2), exhibits severe growth abnormalities. The loss of C-24 ethyl sterols, maintaining the biosynthesis of C-24 methyl sterols and brassinosteroids, suggests specific roles of C-24 ethyl sterols. We characterized the subcellular localizations of fluorescent protein-fused sterol biosynthetic enzymes, such as SMT2-GFP, and found these enzymes in the endoplasmic reticulum during interphase and identified their movement to the division plane during cytokinesis. The mobilization of endoplasmic reticulum-localized SMT2-GFP was independent of the polarized transport of cytokinetic vesicles to the division plane. In smt2 smt3, SMT2-GFP moved to the abnormal division plane, and unclear cell plate ends were surrounded by hazy structures from SMT2-GFP fluorescent signals and unincorporated cellulose debris. Unusual cortical microtubule organization and impaired cytoskeletal function accompanied the failure to determine the cortical division site and division plane formation. These results indicated that both endoplasmic reticulum membrane remodeling and cytokinetic vesicle transport during cytokinesis were impaired, resulting in the defects of cell wall generation. The cell wall integrity was compromised in the daughter cells, preventing the correct determination of the subsequent cell division site. We discuss the possible roles of C-24 ethyl sterols in the interaction between the cytoskeletal network and the plasma membrane.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cytokinesis , Endoplasmic Reticulum , Methyltransferases , Sterols , Arabidopsis/genetics , Arabidopsis/metabolism , Methyltransferases/metabolism , Methyltransferases/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Sterols/metabolism , Cytokinesis/genetics , Endoplasmic Reticulum/metabolism , Cell Division/genetics , Mutation , Microtubules/metabolism , Cell Wall/metabolism
15.
Biomedicines ; 12(7)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-39061953

ABSTRACT

In this study, we present in vitro actions of pure commercial preparations of oxidized and/or dehydrated metabolites of cholesterol (OS) identified in the lipid fraction of Fraction B (FB) prepared from a catfish skin preparation on calcium transients and on the formation of human neutrophil extracellular traps (NETs). These investigations are part of an ongoing effort to understand the important roles these compounds play as components of FB when FB is applied to accelerate the healing of wounds and the healing of highly infected non-healing diabetic foot ulcers, without the use of antibiotics. Our aim was to determine potential therapeutic interventions for various disease states. Our results reveal interesting findings, demonstrating specific actions of the individual compounds. Compounds 7α-hydroxy-cholesterol (S3), Cholestane-3,5,6-triol (S5), 5-cholesten-3ß-ol-7-one (S8) and Cholesta-3,5 dien-7-one (S10) are inhibitory, while Cholesterol 5ß,6ß-epoxide (S4) and 5α-cholestane-3,6-dione (S11) activate the response for calcium influx in human neutrophils. A somewhat similar response is observed in dHL60 cell lines, where S3, S5, S7, S8, and cholesta-2,4-diene (S14) inhibit the calcium influx, although S4, S10, and S11 activate the response in this cell line. Furthermore, we observed a relationship between actions against NETosis and calcium transients. Interestingly, relative to the vehicle control, S3, Cholesta-3,5 diene (S9), and S14 appeared to significantly stimulate DNA release (NETosis), while S2, 7α-hydroxy-cholesterol (S6) and cholesta-3,5 dien-7-one (S10) caused lesser stimulation. We provide the IC50 activities for each compound tested in each assay. Calcium influx and NETs formation (NETosis) correlate with diseases exacerbation. These findings offer valuable insights into the potential therapeutic applications of individual OS for various diseases, highlighting their importance in future interventions.

16.
Foods ; 13(14)2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39063382

ABSTRACT

Extra-virgin olive oil (EVOO) is one of the most appreciated vegetable oils worldwide, but its high price makes it prone to suffer adulteration with lower quality oils. Therefore, it is important to have methodologies able to study EVOO composition as a whole in a simple and fast way, in order to guarantee its quality and safety. For this purpose, in this study, commercial samples of five Spanish olive cultivars (Arbequina, Arroniz, Cornicabra, Hojiblanca, Picual) were studied by Proton Nuclear Magnetic Resonance (1H NMR) spectroscopy, using standard and multisuppression pulses. The aim was to explore the possibility of 1H NMR use to characterize in a single run and in a global way the composition of these monocultivar oils, regarding not only their main components (fatty acids supported on triglycerides) but also minor ones (squalene, sterols, diterpenic wax esters of phytol and geranylgeraniol, phenolic and secoiridoid derivatives, like tyrosol, hydroxytyrosol, oleacein, oleocanthal, and lignans, among others, and aldehydes). The use of univariate and multivariate statistical analyses confirmed the presence of compositional features that were specific to some olive varieties. The Arbequina and Arroniz oils showed the most characteristic features that allowed for clearly differentiating them from the others. In contrast, the discrimination between the Cornicabra, Hojiblanca and Picual oils was not so easily achieved.

17.
Foods ; 13(14)2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39063383

ABSTRACT

Pretreatment of grape pomace seeds with a pulsed electric field (PEF) was applied to improve the extraction yield of cold-pressed grape seed oil. The effects of different PEF conditions, electric field intensities (12.5, 14.0 and 15.6 kV/cm), and durations (15 and 30 min) on the oil chemical composition were also studied. All PEF pretreatments significantly increased the oil yield, flow rate and concentration of total sterols (p < 0.05). In addition, similar trends were observed for total tocochromanols and phenolic compounds, except for PEF pretreatment under the mildest conditions (12.5 kV/cm, 15 min) (p < 0.05). Notably, the application of 15.6 kV/cm for 30 min resulted in the highest relative increase in oil yield and flow rate (29.6% and 56.5%, respectively) and in the concentrations of total tocochromanols, nonflavonoids, and flavonoids (22.1%, 60.2% and 81.5%, respectively). In addition, the highest relative increase in the concentration of total sterols (25.4%) was achieved by applying 12.5 kV/cm for 30 min. The fatty acid composition of the grape seed oil remained largely unaffected by the PEF pretreatments. These results show that PEF pretreatment effectively improves both the yield and the bioactive properties of cold-pressed grape seed oil.

18.
Food Chem X ; 23: 101580, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-39027685

ABSTRACT

The aims of this study are the phytochemical exploration and food valorization of Schinus molle L. (S. molle) and Schinus terebinthifolia Raddi (S. terebinthifolia) from the Rabat, Morocco. Gas chromatography (GC) and high-performance liquid chromatography (HPLC) were used to analyze the chemical composition of the oils extracted from both species by soxhlet and maceration. Moreover, physicochemical characteristics such as lipid quality indexes such as thrombogenic index (TI), atherogenic index (AI), oxidation susceptibility (OS), and calculated oxidability (Cox) were determined. These characteristics included percentage acidity, peroxide, saponification, iodine, specific extinction values, chlorophyll, and carotenoid pigments. As results, the oil yields varied from 7% (S. molle) to 13% (S. terebinthifolia). In addition, unsaturated fatty acids represented the major fraction for S. terebinthifolia (79%) and S. molle (81%). However, S. terebinthifolia contains more saturated fatty acids (20%) than S. molle (16%) with a predominance of linoleic acid (59.53% and 55%, C18,2), oleic acid (19.29% and 21.69%, C18,1), and palmitic acid (12.56% and 15.48%, C16,0) in S. molle and S. terebinthifolia, respectively. Moreover, the main sterols are ß-sitosterol followed by campesterol and then Δ-5-avenasterol, while ß-sitosterol varies according to the species and the extraction method. Results revealed also that campesterol is influenced by the extraction results in a content of 179.66 mg/kg (soxhlet) and 63.48 mg/kg (maceration) for S. molle, while S. terebinthifolia yeilds concentrations of 170 mg/kg and 138 mg/kg, then Δ-5-avenasterol, which present with (117 mg/kg and 136 mg/kg), (34 mg/kg and 80 mg/kg) of the total amount of sterols for the oils extracted by soxhlet and maceration, respectively. In addition, there are favorable physicochemical properties for all oils, such as chlorophylls (0.4 to 0.8 mg/kg) and carotenoids (0.7 to 2 mg/kg). However, further investigations are needed to determine other chemical compounds of both extracts as well as to evaluate their biological and health benefits.

19.
BMC Plant Biol ; 24(1): 674, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39004738

ABSTRACT

BACKGROUND: Kale, a versatile cruciferous crop, valued for its pro-health benefits, stress resistance, and potential applications in forage and cosmetics, holds promise for further enhancement of its bioactive compounds through in vitro cultivation methods. Micropropagation techniques use cytokinins (CKs) which are characterized by various proliferative efficiency. Despite the extensive knowledge regarding CKs, there remains a gap in understanding their role in the physiological mechanisms. That is why, here we investigated the effects of three CKs - kinetin (Kin), 6-benzylaminopurine (BAP), and 2-isopentenyladenine (2iP) - on kale physiology, antioxidant status, steroidal metabolism, and membrane integrity under in vitro cultivation. RESULTS: Our study revealed that while BAP and 2iP stimulated shoot proliferation, they concurrently diminished pigment levels and photosynthetic efficiency. Heightened metabolic activity in response to all CKs was reflected by increased respiratory rate. Despite the differential burst of ROS, the antioxidant properties of kale were associated with the upregulation of guaiacol peroxidase and the scavenging properties of ascorbate rather than glutathione. Notably, CKs fostered the synthesis of sterols, particularly sitosterol, pivotal for cell proliferation and structure of membranes which are strongly disrupted under the action of BAP and 2iP possibly via pathway related to phospholipase D and lipoxygenase which were upregulated. Intriguingly, both CKs treatment spurred the accumulation of sitostenone, known for its ROS scavenging and therapeutic potential. The differential effects of CKs on brassicasterol levels and brassinosteroid (BRs) receptor suggest potential interactions between CKs and BRs. CONCLUSION: Based on the presented results we conclude that the effect evoked by BAP and 2iP in vitro can improve the industrial significance of kale because this treatment makes possible to control proliferation and/or biosynthesis routes of valuable beneficial compounds. Our work offers significant insights into the nuanced effects of CKs on kale physiology and metabolism, illuminating potential avenues for their application in plant biotechnology and medicinal research.


Subject(s)
Antioxidants , Cytokinins , Kinetin , Plant Growth Regulators , Cytokinins/metabolism , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Kinetin/pharmacology , Antioxidants/metabolism , Brassica/drug effects , Brassica/metabolism , Brassica/physiology , Brassica/growth & development , Benzyl Compounds/pharmacology , Purines , Photosynthesis/drug effects , Plant Shoots/drug effects , Plant Shoots/metabolism , Isopentenyladenosine/analogs & derivatives , Isopentenyladenosine/metabolism , Reactive Oxygen Species/metabolism
20.
Article in English | MEDLINE | ID: mdl-38795635

ABSTRACT

Drosophila melanogaster is a well-established model system for studies on lipid metabolism and energy homeostasis. In this study, we identified and quantified the main components of the lipid profile of two widely utilized Drosophila strains, namely Canton-S and white1118, under identical experimental conditions. Differences observed between the strains can be attributed to inherent metabolic divergences, thus limiting the influence of confounding factors. Using the comprehensive lipid data acquired, we applied cluster analysis and PLS-DA techniques to ascertain whether the lipidome could effectively differentiate between the strains. Certain lipid features, such as triacylglycerols, polar lipids, and specific sterol components, could be distinguished between flies of both strains regardless of sex. Our results suggest that although Canton-S and white1118 have similar lipid profiles and distributions, a selected subset of lipids demonstrates clear discriminatory potential between strains, thereby bearing significant implications for planning biological studies using these strains as control references.


Subject(s)
Drosophila melanogaster , Lipid Metabolism , Lipidomics , Animals , Drosophila melanogaster/metabolism , Male , Female , Lipids/analysis , Basal Metabolism , Triglycerides/metabolism , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL