Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
J Drug Target ; : 1-10, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38838039

ABSTRACT

Stimulation of the innate immune stimulator of interferon genes (STING) pathway has been shown to boost anti-tumour immunity. Nevertheless, the systemic delivery of STING agonists to the tumour presents challenges. Therefore, we designed a cyclic dinucleotide (CDN)-based drug delivery system (DDS) combined photothermal therapy (PTT)/photodynamic therapy (PDT)/immunotherapy for cutaneous melanoma. We coencapsulated a reactive oxygen species (ROS)-responsive prodrug thioketone-linked CDN (TK-CDN), and photoresponsive agents chlorin E6 (Y6) within mitochondria-targeting reagent triphenylphosphonium (TPP)-modified liposomes (Lipo/TK-CDN/TPP/Y6). Lipo/TK-CDN/TPP/Y6 exhibited a photothermal effect similar to Y6, along with a superior cellular uptake rate. Upon endocytosis by B16F10 cells, Lipo/TK-CDN/TPP/Y6 generated large amounts of ROS under laser irradiation for PDT. Mice bearing B16F10 tumours were intravenously injected with Lipo/TK-CDN/TPP/Y6 and exposed to irradiation, resulting in a substantial inhibition of tumour growth. Exploration of the mechanism of anti-tumour action showed that Lipo/TK-CDN/TPP/Y6 had a stronger stimulation of STING activation and anti-tumour immune cell infiltration compared to other groups. Hence, the Lipo/TK-CDN/TPP/Y6 nanoparticles offer great potential as a DDS for targeted and on-demand drug release at tumour sites. These nanoparticles exhibit promise as a candidate for precise and controllable combination therapy in the treatment of tumours.

2.
Redox Biol ; 74: 103202, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38865901

ABSTRACT

Stimulator of Interferon Genes (STING) is essential for the inflammatory response to cytosolic DNA. Despite that aberrant activation of STING is linked to an increasing number of inflammatory diseases, the development of inhibitors has been challenging, with no compounds in the pipeline beyond the preclinical stage. We previously identified endogenous nitrated fatty acids as novel reversible STING inhibitors. With the aim of improving the specificity and efficacy of these compounds, we developed and tested a library of nitroalkene-based compounds for in vitro and in vivo STING inhibition. The structure-activity relationship study revealed a robustly improved electrophilicity and reduced degrees of freedom of nitroalkenes by conjugation with an aromatic moiety. The lead compounds CP-36 and CP-45, featuring a ß-nitrostyrene moiety, potently inhibited STING activity in vitro and relieved STING-dependent inflammation in vivo. This validates the potential for nitroalkene compounds as drug candidates for STING modulation to treat STING-driven inflammatory diseases, providing new robust leads for preclinical development.


Subject(s)
Alkenes , Inflammation , Membrane Proteins , Nitro Compounds , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/metabolism , Animals , Inflammation/drug therapy , Humans , Mice , Alkenes/chemistry , Alkenes/pharmacology , Nitro Compounds/chemistry , Nitro Compounds/pharmacology , Structure-Activity Relationship
3.
Biomark Res ; 12(1): 59, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38853246

ABSTRACT

BACKGROUND: Pyroptosis belongs to a unique type of programmed cell death among which GSDME is reported to exert anti-tumor immunity. However, the underlying mechanisms of how to boost tumor-infiltrating lymphocytes and whether it could benefit the efficacy of ICIs are still unknown. METHODS: CRC samples were used to analyze its relationship with CD8+T cells. GSDME in mouse CRC cell lines CT26/MC38 was overexpressed. The infiltration of CD8+T cells in grafted tumors was determined by multiplex flow cytometric analysis and immunohistochemistry. Transcriptomic analysis was performed in cell lines to define key signatures related to its overexpression. The mechanism of how mtDNA was released by GSDME-induced mitochondrial damage and activated cGAS-STING pathway was observed. Whether GSDME benefited ICIs and the relationships with the genotypes of CRC patients were investigated. RESULTS: It had favorable prognostic value in CRC and was positively associated with increased number and functionality of CD8+T cells both in human samples and animal models. This was due to mitochondrial damage and activation of cGAS-STING-IFNß pathway for the recruitment of CD8+T cells. Mechanically, GSDME overexpression enhanced N-GSDME level, leading to the mitochondrial damage and mtDNA was released into cytosol. Finally, GSDME benefited with ICIs and exhibited positive relationships with MSI in CRC patients. CONCLUSION: We presented the mechanism of GSDME in anti-tumor immunity through activating cGAS-STING-IFNß axis mediated by mitochondrial damage, leading to more infiltration of CD8+T cells with synergistic efficacy with ICIs.

4.
Expert Opin Ther Pat ; 34(5): 297-313, 2024 May.
Article in English | MEDLINE | ID: mdl-38849323

ABSTRACT

INTRODUCTION: Stimulator of Interferon Genes (STING) is an innate immune sensor. Activation of STING triggers a downstream response that results in the expression of proinflammatory cytokines (TNF-α, IL-1ß) via nuclear factor kappa-B (NF-κB) or the expression of type I interferons (IFNs) via an interferon regulatory factor 3 (IRF3). IFNs can eventually result in promotion of the adaptive immune response including activation of tumor-specific CD8+ T cells to abolish the tumor. Consequently, activation of STING has been considered as a potential strategy for cancer treatment. AREAS COVERED: This article provides an overview on structures and pharmacological data of CDN-like and non-nucleotide STING agonists acting as anticancer agents (January 2021 to October 2023) from a medicinal chemistry perspective. The data in this review come from EPO, WIPO, RCSB PDB, CDDI. EXPERT OPINION: In recent years, several structurally diverse STING agonists have been identified. As an immune enhancer, they are used in the treatment of tumors, which has received extensive attention from scientific community and pharmaceutical companies. Despite the multiple challenges that have appeared, STING agonists may offer opportunities for immunotherapy.


Subject(s)
Antineoplastic Agents , Membrane Proteins , Neoplasms , Patents as Topic , Humans , Animals , Neoplasms/drug therapy , Neoplasms/pathology , Antineoplastic Agents/pharmacology , Membrane Proteins/agonists , Membrane Proteins/metabolism , Membrane Proteins/genetics , Immunity, Innate/drug effects , Immunotherapy/methods
6.
Mol Pharm ; 21(6): 2865-2877, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38666508

ABSTRACT

Imaging strategies for the specific detection and therapeutic monitoring of myocarditis are still lacking. Stimulator of interferon genes (STING) is a signal transduction molecule involved in an innate immune response. Here, we evaluated the feasibility of the recently developed STING-targeted radiotracer [18F]FBTA for positron emission tomography (PET) imaging to detect myocardial inflammation and monitor treatment in myocarditis mice. [18F]FBTA-PET imaging was performed in myocarditis mice and normal mice to verify the specificity of [18F]FBTA for the diagnosis of myocarditis. We also performed PET imaging in mice with myocarditis treated to verify the ability of [18F]FBTA in therapeutic monitoring. The expression of STING and inflammatory cell types was confirmed by flow cytometry and immunohistochemistry. [18F]FDG-PET imaging of myocarditis was used as a contrast. [18F]FBTA-PET imaging showed that the average radioactive uptake was significantly higher in the hearts of the myocarditis group than in the control group. STING was highly overexpressed in cardiac inflammatory cells, including macrophages, dendritic cells (DCs), and T cells. However, there was no significant difference in cardiac radiotracer uptake of [18F]FDG between the myocarditis group and the control group. Moreover, cardiac uptake of [18F]FBTA was significantly reduced in cyclosporin A-treated myocarditis mice and myocardial STING expression was also significantly reduced after the treatment. Overall, we showed that a STING-targeted PET tracer [18F]FBTA can be used to monitor changes in the inflammatory microenvironment in myocarditis. Besides, [18F]FBTA-PET is also suitable for real-time monitoring of myocarditis treatment, representing a promising diagnostic and therapeutic monitoring approach for myocarditis.


Subject(s)
Membrane Proteins , Myocarditis , Positron-Emission Tomography , Myocarditis/diagnostic imaging , Myocarditis/drug therapy , Myocarditis/metabolism , Animals , Mice , Positron-Emission Tomography/methods , Membrane Proteins/metabolism , Male , Radiopharmaceuticals , Fluorodeoxyglucose F18 , Mice, Inbred BALB C , Disease Models, Animal , Myocardium/metabolism , Myocardium/pathology , Dendritic Cells/metabolism , Cyclosporine
7.
J Virol ; 98(3): e0181523, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38421179

ABSTRACT

Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne bunyavirus with high pathogenicity. There has been a gradual increase in the number of reported cases in recent years, with high morbidity and mortality rates. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway plays an important role in the innate immune defense activated by viral infection; however, the role of the cGAS-STING signaling pathway during SFTSV infection is still unclear. In this study, we investigated the relationship between SFTSV infection and cGAS-STING signaling. We found that SFTSV infection caused the release of mitochondrial DNA into the cytoplasm and inhibits downstream innate immune signaling pathways by activating the cytoplasmic DNA receptor cGAS. We found that the SFTSV envelope glycoprotein Gn was a potent inhibitor of the cGAS-STING pathway and blocked the nuclear accumulation of interferon regulatory factor 3 and p65 to inhibit downstream innate immune signaling. Gn of SFTSV interacted with STING to inhibit STING dimerization and inhibited K27-ubiquitin modification of STING to disrupt the assembly of the STING-TANK-binding kinase 1 complex and downstream signaling. In addition, Gn was found to be involved in inducing STING degradation, further inhibiting the downstream immune response. In conclusion, this study identified the important role of the glycoprotein Gn in the antiviral innate immune response and revealed a novel mechanism of immune escape for SFTSV. Moreover, this study increases the understanding of the pathogenic mechanism of SFTSV and provides new insights for further treatment of SFTS. IMPORTANCE: Severe fever with thrombocytopenia syndrome virus (SFTSV) is a newly discovered virus associated with severe hemorrhagic fever in humans. However, the role of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway during SFTSV infection is still unclear. We found that SFTSV infection inhibits downstream innate immune signaling pathways by activating the cytoplasmic DNA receptor cGAS. In addition, SFTSV Gn blocked the nuclear accumulation of interferon regulatory factor 3 and p65 to inhibit downstream innate immune signaling. Moreover, we determined that Gn of SFTSV inhibited K27-ubiquitin modification of STING to disrupt the assembly of the STING-TANK-binding kinase 1 complex and downstream signaling. We found that the SFTSV envelope glycoprotein Gn is a potent inhibitor of the cGAS-STING pathway. In conclusion, this study highlights the crucial function of the glycoprotein Gn in the antiviral innate immune response and reveals a new method of immune escape of SFTSV.


Subject(s)
NF-kappa B , Severe Fever with Thrombocytopenia Syndrome , Humans , NF-kappa B/metabolism , Interferon Regulatory Factor-3/metabolism , Signal Transduction/genetics , Immunity, Innate/genetics , Nucleotidyltransferases/metabolism , Interferons/metabolism , Antiviral Agents , Ubiquitins/metabolism , Protein Serine-Threonine Kinases/metabolism
8.
Adv Sci (Weinh) ; 11(4): e2305442, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38009491

ABSTRACT

Neuroinflammation is associated with poor outcomes in patients with spinal cord injury (SCI). Recent studies have demonstrated that stimulator of interferon genes (Sting) plays a key role in inflammatory diseases. However, the role of Sting in SCI remains unclear. In the present study, it is found that increased Sting expression is mainly derived from activated microglia after SCI. Interestingly, knockout of Sting in microglia can improve the recovery of neurological function after SCI. Microglial Sting knockout restrains the polarization of microglia toward the M1 phenotype and alleviates neuronal death. Furthermore, it is found that the downregulation of mitofusin 2 (Mfn2) expression in microglial cells leads to an imbalance in mitochondrial fusion and division, inducing the release of mitochondrial DNA (mtDNA), which mediates the activation of the cGas-Sting signaling pathway and aggravates inflammatory response damage after SCI. A biomimetic microglial nanoparticle strategy to deliver MASM7 (named MSNs-MASM7@MI) is established. In vitro, MSNs-MASM7@MI showed no biological toxicity and effectively delivered MASM7. In vivo, MSNs-MASM7@MI improves nerve function after SCI. The study provides evidence that cGas-Sting signaling senses Mfn2-dependent mtDNA release and that its activation may play a key role in SCI. These findings provide new perspectives and potential therapeutic targets for SCI treatment.


Subject(s)
Microglia , Spinal Cord Injuries , Humans , Microglia/metabolism , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Down-Regulation , Inflammation/metabolism , Spinal Cord Injuries/metabolism , Nucleotidyltransferases/metabolism
9.
Small ; 20(9): e2307448, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37845027

ABSTRACT

Radium-223 (223 Ra) is the first-in-class alpha-emitter to mediate tumor eradication, which is commonly thought to kill tumor cells by directly cleaving double-strand DNA. However, the immunogenic characteristics and cell death modalities triggered by 223 Ra remain unclear. Here, it is reported that the 223 Ra irradiation induces the pro-inflammatory damage-associated molecular patterns including calreticulin, HMGB1, and HSP70, hallmarks of tumor immunogenicity. Moreover, therapeutic 223 Ra retards tumor progression by triggering pyroptosis, an immunogenic cell death. Mechanically, 223 Ra-induced DNA damage leads to the activation of stimulator of interferon genes (STING)-mediated DNA sensing pathway, which is critical for NLRP3 inflammasome-dependent pyroptosis and subsequent DCs maturation as well as T cell activation. These findings establish an essential role of STING in mediating alpha-emitter 223 Ra-induced antitumor immunity, which provides the basis for the development of novel cancer therapeutic strategies and combinatory therapy.


Subject(s)
Pyroptosis , Radium , Radium/pharmacology , Radium/therapeutic use , Cell Death , DNA
10.
Eur J Nucl Med Mol Imaging ; 51(3): 641-655, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37924341

ABSTRACT

PURPOSE: To optimize chemotherapy regimens and improve the effectiveness of chemotherapy combined with immunotherapy, a PET tracer specifically targeting the stimulator of interferon genes (STING), denoted as [18F]FBTA was used to monitor the early changes in tumor immunogenicity after chemotherapy in colorectal cancer (CRC) mice. METHODS: The toluene sulfonate precursor was labeled with 18F to produce the STING targeted probe-[18F]FBTA. [18F]FBTA-PET imaging and biodistribution were performed using CRC mice treated with oxaliplatin (OXA) or cisplatin (CDDP). CRC mice were also treated with low (CDDP-LD: 1 mg/kg) or medium (CDDP-MD: 2.5 mg/kg) doses of CDDP, and subjected to PET imaging and biodistribution. The effects of different chemotherapeutic agents and different doses of CDDP on tumor innate immunity were verified by flow cytometry and immunohistochemistry. RESULTS: PET imaging of CRC mice exhibited notably enhanced tumor uptake in the early phase of chemotherapy with treatment with OXA (3.09 ± 0.25%ID/g) and CDDP (4.01 ± 0.18%ID/g), especially in the CDDP group. The PET-derived tumor uptake values have strong correlations with STING immunohistochemical score. Flow cytometry showed both agents led to DCs and macrophages infiltration in tumors. Compared with OXA, CDDP treatment recruits more DCs and macrophages in CRC tumors. Both CDDP-LD and CDDP-MD treatment elevated uptake in CRC tumors, especially in CDDP-MD group. Immunohistochemistry and flow cytometry confirmed CDDP-MD treatment recruits more DCs and macrophages than CDDP-LD treatment. CONCLUSION: Overall, the STING-targeted tracer-[18F]FBTA was demonstrated to monitor early changes in tumor immunogenicity in CRC mice after chemotherapy. Besides, the STING-targeted strategy may help to select the appropriate chemotherapy regimen, including chemotherapeutic agents and doses, which further improve clinical decision making for combination immunotherapy after chemotherapy for CRC.


Subject(s)
Colorectal Neoplasms , Positron-Emission Tomography , Mice , Animals , Tissue Distribution , Positron-Emission Tomography/methods , Colorectal Neoplasms/diagnostic imaging , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Cell Line, Tumor
11.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1013361

ABSTRACT

According to the latest global cancer statistics, the incidence and mortality of lung cancer rank first in China. Classical therapies remain the most common cancer treatment options, such as surgical resection, radiotherapy, and chemotherapy, but not all cancer patients respond to classical therapies, which require new lung cancer treatment strategies. After decades of research and development, cancer immunotherapy has achieved certain curative effect, which provides new possibilities for cancer treatment. Cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) is a cytosolic DNA sensor. It can induce protective immune defense responses against various DNA-containing pathogens and provide anti-tumor immunity by activating the interferon (IFN) gene stimulator (STING) protein. At present, relevant researchers in China and abroad have done a lot of research on the occurrence and development of lung cancer and the pathophysiological mechanism of drug intervention in the treatment of lung cancer. The results show that cGAS/STING signaling pathway plays an important role in the development of the disease, and traditional Chinese medicine monomers or compounds can intervene in lung cancer cells by regulating the cGAS/STING signaling pathway, induce their autophagy and death, regulate their cycle operation, promote senescence, inhibit their proliferation and tumor angiogenesis, promote their invasion and metastasis, and promote the immune activation of anti-lung cancer cells, so as to inhibit or delay the occurrence and development of lung cancer. In recent years, the related research results have been updated rapidly, and the previous literature has not included the latest research results in time, which causes a lot of inconvenience for many scholars to search the literature. Based on this, this paper mainly summarized the mechanism of cGAS/STING signaling pathway intervention in lung cancer in China and abroad in recent years, as well as the research progress of related traditional Chinese medicine intervention, so as to provide new ideas for the development of lung cancer in molecular biology, drug treatment research, and clinical new drug research and provide a reference for further mechanism research.

12.
Front Immunol ; 14: 1235936, 2023.
Article in English | MEDLINE | ID: mdl-38152396

ABSTRACT

Circulating monocytes are important players of the inflammatory response to ionizing radiation (IR). These IR-resistant immune cells migrate to radiation-damaged tissues and differentiate into macrophages that phagocytize dying cells, but also facilitate inflammation. Besides the effect of damage-associated molecular patterns, released from irradiated tissues, the inflammatory activation of monocytes and macrophages is largely dependent on IR-induced DNA damage and aberrant transcriptional activity, which may facilitate expression of type I interferons (IFN-I) and numerous inflammation-related genes. We analyzed the accumulation of dsRNA, dsDNA fragments, and RNA:DNA hybrids in the context of induction of RNA-triggered MAVS-mediated and DNA-triggered STING-mediated signaling pathways, in primary human monocytes and a monocytic cell line, THP1, in response to various doses of gamma IR. We found that exposure to lower doses (<7.5 Gy) led to the accumulation of dsRNA, along with dsDNA and RNA:DNA hybrids and activated both MAVS and STING pathway-induced gene expression and signaling activity of IFN-I. Higher doses of IR resulted in the reduced dsRNA level, degradation of RNA-sensing mediators involved in MAVS signaling and coincided with an increased accumulation of dsDNA and RNA:DNA hybrids that correlated with elevated STING signaling and NF-κB-dependent gene expression. While both pathways activate IFN-I expression, using MAVS- and STING-knockout THP1 cells, we identified differences in the spectra of interferon-stimulated genes (ISGs) that are associated with each specific signaling pathway and outlined a large group of STING signaling-associated genes. Using the RNAi technique, we found that increasing the dose of IR activates STING signaling through the DNA sensor cGAS, along with suppression of the DDX41 helicase, which is known to reduce the accumulation of RNA:DNA hybrids and thereby limit cGAS/STING signaling activity. Together, these results indicate that depending on the applied dose, IR leads to the activation of either dsRNA-induced MAVS signaling, which predominantly leads to the expression of both pro- and anti-inflammatory markers, or dsDNA-induced STING signaling that contributes to pro-inflammatory activation of the cells. While RNA:DNA hybrids boost both MAVS- and STING-mediated signaling pathways, these structures being accumulated upon high IR doses promote type I interferon expression and appear to be potent enhancers of radiation dose-dependent pro-inflammatory activation of monocytes.


Subject(s)
Interferon Type I , RNA , Humans , RNA/genetics , Monocytes/metabolism , DNA/metabolism , Nucleotidyltransferases/metabolism , Radiation, Ionizing , Inflammation
13.
ACS Nano ; 17(21): 21782-21798, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37922196

ABSTRACT

mRNA antigens require powerful nanocarriers for efficient delivery, as well as immunomodulators for controlling their excessive immunogenicity. While lipid nanoparticles (LNPs) used in mRNA vaccines exhibited systemic toxicity, there is an urgent need for developing potential nanoparticles with strong immunoenhancing effects for mRNA antigens. Although natural polysaccharides as adjuvants assisted various types of antigens in triggering potent immune responses, they have been rarely investigated in mRNA vaccines. Here, we constructed four polysaccharide nanoparticles with different molecular weights (MWs) to deliver and protect mRNA antigens, and boosted antigen cross-presentation, DC maturation, CD4+/CD8+T cell responses and humoral immune responses. Importantly, the immunoenhancing capacities of polysaccharide nanoparticles were highly dependent on their MW properties. CS NPs with high MW initiated stimulator of interferon genes (STING)-mediated autophagy and NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome signaling, consequently possessing superior mRNA antigen-specific immune responses in vitro and in vivo. In contrast, CS NPs with low MWs induced NLRP3 signaling without STING or autophagy activation, which failed to induce robust immune responses. Therefore, it uncovered the MW-dependent immunoenhancing effects and mechanism of polysaccharide nanoparticles, providing a platform for designing potential nanosized polysaccharide immunomodulators for mRNA vaccines.


Subject(s)
Interferons , Nanoparticles , Interferons/pharmacology , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Antigens , Adjuvants, Immunologic/pharmacology , Polysaccharides/pharmacology , Antigen Presentation , mRNA Vaccines
14.
Prog Med Chem ; 62: 1-59, 2023.
Article in English | MEDLINE | ID: mdl-37981349

ABSTRACT

For many years, antibody drug conjugates (ADC) have teased with the promise of targeted payload delivery to diseased cells, embracing the targeting of the antibody to which a cytotoxic payload is conjugated. During the past decade this promise has started to be realised with the approval of more than a dozen ADCs for the treatment of various cancers. Of these ADCs, brentuximab vedotin really laid the foundations of a template for a successful ADC with lysosomal payload release from a cleavable dipeptide linker, measured DAR by conjugation to the Cys-Cys interchain bonds of the antibody and a cytotoxic payload. Using this ADC design model oncology has now expanded their repertoire of payloads to include non-cytotoxic compounds. These new payload classes have their origins in prior medicinal chemistry programmes aiming to design selective oral small molecule drugs. While this may not have been achieved, the resulting compounds provide excellent starting points for ADC programmes with some compounds amenable to immediate linker attachment while for others extensive SAR and structural information offer invaluable design insights. Many of these new oncology payload classes are of interest to other therapeutic areas facilitating rapid access to drug-linkers for exploration as non-oncology ADCs. Other therapeutic areas have also pursued unique payload classes with glucocorticoid receptor modulators (GRM) being the most clinically advanced in immunology. Here, ADC payloads come full circle, as oncology is now investigating GRM payloads for the treatment of cancer. This chapter aims to cover all these new ADC approaches while describing the medicinal chemistry origins of the new non-cytotoxic payloads.


Subject(s)
Antineoplastic Agents , Immunoconjugates , Neoplasms , Humans , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Brentuximab Vedotin , Neoplasms/drug therapy
15.
Biomed Pharmacother ; 169: 115883, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37979373

ABSTRACT

The stimulator of the interferon gene (STING) signaling pathway acts as a primary defense system against DNA pathogens. Because of the crucial role of STING in type I interferon (IFN) response and innate immunity, extensive research has been conducted to elucidate the roles of various effector molecules involved in STING-mediated signal transduction. However, despite the substantial contribution of microtubules to the immune system, the association between the STING signaling pathway and microtubules remains unclear. In this study, we revealed that the modulation of STING via microtubule-destabilizing agents (MDAs) specifically induced type I IFN responses rather than inflammatory responses in human monocytes. Co-treatment of MDAs with STING agonists induced the elevation of phospho-TANK-binding kinase 1 (TBK1), amplifying the innate immune response. However, during the deficiency of TBK1, the non-canonical signaling pathway through nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) contributed to MDA-induced STING activation in type I IFN response which suggested the versatile regulation of MDA in STING-mediated immunity.


Subject(s)
Interferon Type I , Monocytes , Humans , Immunity, Innate/physiology , Interferon Type I/metabolism , Membrane Proteins/metabolism , Monocytes/metabolism , NF-kappa B/metabolism , Signal Transduction/physiology
16.
Biomaterials ; 302: 122300, 2023 11.
Article in English | MEDLINE | ID: mdl-37659110

ABSTRACT

The immunotherapy efficiency of stimulator of interferon genes (STING)-activatable drugs (e.g., 7-ethyl-10-hydroxycamptothecin, SN38) is limited by their non-specificity to tumor cells and the slow excretion of the DNA-containing exosomes from the treated cancer cells. The efficacy of tumor ferroptosis therapy is always limited by the elimination of lipid peroxides (LPO) by the pathways of glutathione peroxidase 4 (GPX4), dihydroorotate dehydrogenase (DHODH) and ferroptosis suppressor protein 1(FSP1). To solve these problems, in this study, we developed a STING pathway-activatable contrast agent (i.e., FeGd-HN@TA-Fe2+-SN38 nanoparticles) for magnetic resonance imaging (MRI)-guided tumor immunoferroptosis synergistic therapy. The remarkable in vivo MRI performance of FeGd-HN@TA-Fe2+-SN38 is attributed to its high accumulation at tumor location, the high relaxivities of FeGd-HN core, and the pH-sensitive TA-Fe2+-SN38 layer. The effectiveness and biosafety of the immunoferroptosis synergistic therapy induced by FeGd-HN@TA-Fe2+-SN38 are demonstrated by the in vivo investigations on the 4T1 tumor-bearing mice. The mechanisms of in vivo immunoferroptosis synergistic therapy by FeGd-HN@TA-Fe2+-SN38 are demonstrated by measurements of in vivo ROS, LPO, GPX4 and SLC7A11 levels, the intratumor matured DCs and CD8+ T cells, the protein expresion of STING and IRF-3, and the secretion of IFN-ß and IFN-γ.


Subject(s)
Contrast Media , Neoplasms , Animals , Mice , CD8-Positive T-Lymphocytes , Magnetic Resonance Imaging , Immunotherapy , Neoplasms/diagnostic imaging , Neoplasms/therapy , Lipid Peroxides , Cell Line, Tumor
17.
Medicina (Kaunas) ; 59(7)2023 Jul 16.
Article in English | MEDLINE | ID: mdl-37512126

ABSTRACT

Background and Objectives: Damage to normal bone tissue following therapeutic irradiation (IR) represents a significant concern, as IR-induced bone microenvironment disruption can cause bone loss and create a more favorable environment for tumor metastases. The aim of the present study was to explore the cellular regulatory mechanism of IR-induced bone microenvironment disruption to effectively prevent radiotherapy-associated adverse effects in the future. Materials and Methods: In this study, a mouse model of local IR was established via local irradiation of the left hind limb of BALB/c mice with 12 Gy X-rays, and an in vitro osteocyte (OCY) model was established by exposing osteocyte-like MLO-Y4 cells to 2, 4, and 8 Gy irradiation to analyze multicellular biological injuries and cellular senescence. Small interfering RNA (siRNA) transfection at the cellular level and a selective antagonist intervention C-176 at the animal level were used to explore the potential role of the stimulator of interferon genes (STING) on IR-induced bone microenvironment disruption. Results: The results showed that 12 Gy local IR induces multicellular dysfunction, manifested as ascension of OCYs exfoliation, activation of osteoclastogenesis, degeneration of osteogenesis and fate conversion of adipogenesis, as well as cellular senescence and altered senescence-associated secretory phenotype (SASP) secretion. Furthermore, the expression of STING was significantly elevated, both in the primary OCYs harvested from locally irradiated mice and in vitro irradiated MLO-Y4 cells, accompanied by the markedly upregulated levels of phosphorylated TANK-binding kinase 1 (P-TBK1), RANKL and sclerostin (SOST). STING-siRNA transfection in vitro restored IR-induced upregulated protein expression of P-TBK1 and RANKL, as well as the mRNA expression levels of inflammatory cytokines, such as IL-1α, IL-6 and NF-κB, accompanied by the alleviation of excessive osteoclastogenesis. Finally, administration of the STING inhibitor C-176 mitigated IR-induced activation of osteoclastogenesis and restraint of osteogenesis, ameliorating the IR-induced biological damage of OCYs, consistent with the inhibition of P-TBK1, RANKL and SOST. Conclusions: The STING-P-TBK1 signaling pathway plays a crucial role in the regulation of the secretion of inflammatory cytokines and osteoclastogenesis potential in IR-induced bone microenvironment disruption. The selective STING antagonist can be used to intervene to block the STING pathway and, thereby, repair IR-induced multicellular biological damage and mitigate the imbalance between osteoclastogenesis and osteoblastgenesis.


Subject(s)
Bone and Bones , Signal Transduction , Animals , Mice , Bone and Bones/metabolism , Cytokines , NF-kappa B/metabolism , Osteogenesis , Signal Transduction/physiology , Mice, Inbred BALB C
18.
Cells ; 12(11)2023 05 29.
Article in English | MEDLINE | ID: mdl-37296620

ABSTRACT

The Golgi apparatus is an important organelle found in most eukaryotic cells. It plays a vital role in the processing and sorting of proteins, lipids and other cellular components for delivery to their appropriate destinations within the cell or for secretion outside of the cell. The Golgi complex also plays a role in the regulation of protein trafficking, secretion and post-translational modifications, which are significant in the development and progression of cancer. Abnormalities in this organelle have been observed in various types of cancer, although research into chemotherapies that target the Golgi apparatus is still in its early stages. There are a few promising approaches that are being investigated: (1) Targeting the stimulator of interferon genes protein: The STING pathway senses cytosolic DNA and activates several signaling events. It is regulated by numerous post-translational modifications and relies heavily on vesicular trafficking. Based on some observations which state that a decreased STING expression is present in some cancer cells, agonists for the STING pathway have been developed and are currently being tested in clinical trials, showing encouraging results. (2) Targeting glycosylation: Altered glycosylation, which refers to changes in the carbohydrate molecules that are attached to proteins and lipids in cells, is a common feature of cancer cells, and there are several methods that thwart this process. For example, some inhibitors of glycosylation enzymes have been shown to reduce tumor growth and metastasis in preclinical models of cancer. (3) Targeting Golgi trafficking: The Golgi apparatus is responsible for the sorting and trafficking of proteins within the cell, and disrupting this process may be a potential therapeutic approach for cancer. The unconventional protein secretion is a process that occurs in response to stress and does not require the involvement of the Golgi organelles. P53 is the most frequently altered gene in cancer, dysregulating the normal cellular response to DNA damage. The mutant p53 drives indirectly the upregulation of the Golgi reassembly-stacking protein 55kDa (GRASP55). Through the inhibition of this protein in preclinical models, the reduction of the tumoral growth and metastatic capacity have been obtained successfully. This review supports the hypothesis that the Golgi apparatus may be the target of cytostatic treatment, considering its role in the molecular mechanisms of the neoplastic cells.


Subject(s)
Golgi Apparatus , Neoplasms , Golgi Apparatus/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Humans , Protein Transport , Glycosylation , Antineoplastic Agents/therapeutic use , Tumor Suppressor Protein p53/metabolism
19.
Small ; 19(43): e2300544, 2023 10.
Article in English | MEDLINE | ID: mdl-37381624

ABSTRACT

Although stimulator of interferon genes (STING) agonists has shown great promise in preclinical studies, the clinical development of STING agonist therapy is challenged by its limited systemic delivery. Here, positively charged fusogenic liposomes loaded with a STING agonist (PoSTING) are designed for systemic delivery and to preferentially target the tumor microenvironment. When PoSTING is administered intravenously, it selectively targets not only tumor cells but also immune and tumor endothelial cells (ECs). In particular, delivery of STING agonists to tumor ECs normalizes abnormal tumor vasculatures, induces intratumoral STING activation, and elicits robust anti-tumor T cell immunity within the tumor microenvironment. Therefore, PoSTING can be used as a systemic delivery platform to overcome the limitations of using STING agonists in clinical trials.


Subject(s)
Liposomes , Neoplasms , Humans , Tumor Microenvironment , Endothelial Cells , Neoplasms/pathology , Neovascularization, Pathologic/drug therapy , Immunotherapy
20.
Acta Pharm Sin B ; 13(5): 2124-2137, 2023 May.
Article in English | MEDLINE | ID: mdl-37250155

ABSTRACT

Acute lung injury (ALI), as a common clinical emergency, is pulmonary edema and diffuse lung infiltration caused by inflammation. The lack of non-invasive alert strategy, resulting in failure to carry out preventive treatment, means high mortality and poor prognosis. Stimulator of interferon genes (STING) is a key molecular biomarker of innate immunity in response to inflammation, but there is still a lack of STING-targeted strategy. In this study, a novel STING-targeted PET tracer, [18F]FBTA, was labeled with high radiochemical yield (79.7 ± 4.3%) and molar activity (32.5 ± 2.9 GBq/µmol). We confirmed that [18F]FBTA has a strong STING binding affinity (Kd = 26.86 ± 6.79 nmol/L) and can be used for PET imaging in ALI mice to alert early lung inflammation and to assess the efficacy of drug therapy. Our STING-targeted strategy also reveals that [18F]FBTA can trace ALI before reaching the computed tomography (CT) diagnostic criteria, and demonstrates its better specificity and distribution than [18F]fluorodeoxyglucose ([18F]FDG).

SELECTION OF CITATIONS
SEARCH DETAIL