Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters











Publication year range
1.
BMC Plant Biol ; 24(1): 513, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849759

ABSTRACT

BACKGROUND: The phosphorylation of the Light-Harvesting Complex of photosystem II (LHCII) driven by STATE TRANSITION 7 (STN7) kinase is a part of one of the crucial regulatory mechanisms of photosynthetic light reactions operating in fluctuating environmental conditions, light in particular. There are evidenced that STN7 can also be activated without light as well as in dark-chilling conditions. However, the biochemical mechanism standing behind this complex metabolic pathway has not been deciphered yet. RESULTS: In this work, we showed that dark-chilling induces light-independent LHCII phosphorylation in runner bean (Phaseolus coccineus L.). In dark-chilling conditions, we registered an increased reduction of the PQ pool which led to activation of STN7 kinase, subsequent LHCII phosphorylation, and possible LHCII relocation inside the thylakoid membrane. We also presented the formation of a complex composed of phosphorylated LHCII and photosystem I typically formed upon light-induced phosphorylation. Moreover, we indicated that the observed steps were preceded by the activation of the oxidative pentose phosphate pathway (OPPP) enzymes and starch accumulation. CONCLUSIONS: Our results suggest a direct connection between photosynthetic complexes reorganization and dark-chilling-induced activation of the thioredoxin system. The proposed possible pathway starts from the activation of OPPP enzymes and further NADPH-dependent thioredoxin reductase C (NTRC) activation. In the next steps, NTRC simultaneously activates ADP-glucose pyrophosphorylase and thylakoid membrane-located NAD(P)H dehydrogenase-like complex. These results in starch synthesis and electron transfer to the plastoquinone (PQ) pool, respectively. Reduced PQ pool activates STN7 kinase which phosphorylates LHCII. In this work, we present a new perspective on the mechanisms involving photosynthetic complexes while efficiently operating in the darkness. Although we describe the studied pathway in detail, taking into account also the time course of the following steps, the biological significance of this phenomenon remains puzzling.


Subject(s)
Light , Phaseolus , Phaseolus/physiology , Phaseolus/metabolism , Phaseolus/enzymology , Phosphorylation , Thylakoids/metabolism , Photosystem I Protein Complex/metabolism , Cold Temperature , Light-Harvesting Protein Complexes/metabolism , Photosystem II Protein Complex/metabolism , Plant Proteins/metabolism , Starch/metabolism , Pentose Phosphate Pathway/physiology , Enzyme Activation , Photosynthesis/physiology , Stress, Physiological , Protein Serine-Threonine Kinases/metabolism
2.
Protoplasma ; 261(1): 65-75, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37462717

ABSTRACT

Solar energy absorbed by plants can be redistributed between photosystems in the process termed "state transitions" (ST). ST represents a reversible transition of a part of the PSII light harvesting complex (L-LHCII) between photosystem II (PSII) and photosystem I (PSI) in response to the change in light spectral composition. The present work demonstrates a slower development of the state 1 to state 2 transition, i.e., L-LHCII transition from PSII to PSI, in the leaves of dicotyledonous arabidopsis (Arabidopsis thaliana) than in the leaves of monocotyledonous barley (Hordeum vulgare) plants that was assessed by the measurement of chlorophyll a fluorescence at 77 K and of chlorophyll a fluorescence at room temperature. It is known that the first step of the state 1 to state 2 transition is phosphorylation of Lhcb1 and Lhcb2 proteins; however, we detected no difference in the rate of accumulation of these phosphorylated proteins in the studied plants. Therefore, the parameters, which possibly affect the second step of this transition, i.e., the migration of L-LHCII complexes along the thylakoid membrane, were evaluated. Spin-probe EPR measurements demonstrated that the thylakoid membranes viscosity in arabidopsis was higher compared to that in barley. Moreover, confocal microscopy data evidenced the different size of chloroplasts in the leaves of the studied species being larger in arabidopsis. The obtained results suggest that the observed deference in the development of the state 1 to state 2 transition in arabidopsis and barley is caused by the slower L-LHCII migration rate in arabidopsis than in barley plants rather than by the difference in the Lhcb1 and Lhcb2 phosphorylation.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Hordeum , Arabidopsis/metabolism , Lighting , Chlorophyll A/metabolism , Light-Harvesting Protein Complexes/metabolism , Arabidopsis Proteins/metabolism , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism , Phosphorylation , Light
3.
Biol Direct ; 18(1): 49, 2023 08 23.
Article in English | MEDLINE | ID: mdl-37612770

ABSTRACT

BACKGROUND: The light-harvesting antennae of photosystem (PS) I and PSII are pigment-protein complexes responsible of the initial steps of sunlight conversion into chemical energy. In natural environments plants are constantly confronted with the variability of the photosynthetically active light spectrum. PSII and PSI operate in series but have different optimal excitation wavelengths. The prompt adjustment of light absorption by photosystems is thus crucial to ensure efficient electron flow needed to sustain downstream carbon fixing reactions. Fast structural rearrangements equilibrate the partition of excitation pressure between PSII and PSI following the enrichment in the red (PSII-favoring) or far-red (PSI-favoring) spectra. Redox imbalances trigger state transitions (ST), a photoacclimation mechanism which involves the reversible phosphorylation/dephosphorylation of light harvesting complex II (LHCII) proteins by the antagonistic activities of the State Transition 7 (STN7) kinase/TAP38 phosphatase enzyme pair. During ST, a mobile PSII antenna pool associates with PSI increasing its absorption cross section. LHCII consists of assorted trimeric assemblies of Lhcb1, Lhcb2 and Lhcb3 protein isoforms (LHCII), several being substrates of STN7. However, the precise roles of Lhcb phosphorylation during ST remain largely elusive. RESULTS: We inactivated the complete Lhcb1 and Lhcb2 gene clades in Arabidopsis thaliana and reintroduced either wild type Lhcb1.3 and Lhcb2.1 isoforms, respectively, or versions lacking N-terminal phosphorylatable residues proposed to mediate state transitions. While the substitution of Lhcb2.1 Thr-40 prevented the formation of the PSI-LHCI-LHCII complex, replacement of Lhcb1.3 Thr-38 did not affect the formation of this supercomplex, nor did influence the amplitude or kinetics of PSII fluorescence quenching upon state 1-state 2 transition. CONCLUSIONS: Phosphorylation of Lhcb2 Thr-40 by STN7 alone accounts for ≈ 60% of PSII fluorescence quenching during state transitions. Instead, the presence of Thr-38 phosphosite in Lhcb1.3 was not required for the formation of the PSI-LHCI-LHCII supercomplex nor for re-equilibration of the plastoquinone redox state. The Lhcb2 phosphomutant was still capable of ≈ 40% residual fluorescence quenching, implying that a yet uncharacterized, STN7-dependent, component of state transitions, which is unrelated to Lhcb2 Thr-40 phosphorylation and to the formation of the PSI-LHCI-LHCII supercomplex, contributes to the equilibration of the PSI/PSII excitation pressure upon plastoquinone over-reduction.


Subject(s)
Arabidopsis , Arabidopsis/genetics , Gene Editing , Plastoquinone , Phosphorylation , Carbon
4.
Plant Physiol Biochem ; 194: 576-588, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36529008

ABSTRACT

Light harvesting is finetuned through two main strategies controlling energy transfer to the reaction centers of photosystems: i) regulating the amount of light energy at the absorption level, ii) regulating the amount of the absorbed energy at the utilization level. The first strategy is ensured by changes in the cross-section, i.e., the size of the photosynthetic antenna. These changes can occur in a short-term (state transitions) or long-term way (changes in antenna protein biosynthesis) depending on the light conditions. The interrelation of these two ways is still underexplored. Regulating light absorption through the long-term modulation of photosystem II antenna size has been mostly considered as an acclimatory mechanism to light conditions. The present review highlights that this mechanism represents one of the most versatile mechanisms of higher plant acclimation to various conditions including drought, salinity, temperature changes, and even biotic factors. We suggest that H2O2 is the universal signaling agent providing the switch from the short-term to long-term modulation of photosystem II antenna size under these factors. The second strategy of light harvesting is represented by redirecting energy to waste mainly via thermal energy dissipation in the photosystem II antenna in high light through PsbS protein and xanthophyll cycle. In the latter case, H2O2 also plays a considerable role. This circumstance may explain the maintenance of the appropriate level of zeaxanthin not only upon high light but also upon other stress factors. Thus, the review emphasizes the significance of both strategies for ensuring plant sustainability under various environmental conditions.


Subject(s)
Arabidopsis , Photosystem II Protein Complex , Photosystem II Protein Complex/metabolism , Arabidopsis/metabolism , Light-Harvesting Protein Complexes/metabolism , Hydrogen Peroxide/metabolism , Photosynthesis/physiology
5.
Int J Mol Sci ; 23(9)2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35562922

ABSTRACT

Reversible phosphorylation of photosystem II light harvesting complexes (LHCII) is a well-established protective mechanism enabling efficient response to changing light conditions. However, changes in LHCII phosphorylation were also observed in response to abiotic stress regardless of photoperiod. This study aimed to investigate the impact of dark-chilling on LHCII phosphorylation pattern in chilling-tolerant Arabidopsis thaliana and to check whether the disturbed LHCII phosphorylation process will impact the response of Arabidopsis to the dark-chilling conditions. We analyzed the pattern of LHCII phosphorylation, the organization of chlorophyll-protein complexes, and the level of chilling tolerance by combining biochemical and spectroscopy techniques under dark-chilling and dark conditions in Arabidopsis mutants with disrupted LHCII phosphorylation. Our results show that during dark-chilling, LHCII phosphorylation decreased in all examined plant lines and that no significant differences in dark-chilling response were registered in tested lines. Interestingly, after 24 h of darkness, a high increase in LHCII phosphorylation was observed, co-occurring with a significant FV/FM parameter decrease. The highest drop of FV/FM was detected in the stn7-1 line-mutant, where the LHCII is not phosphorylated, due to the lack of STN7 kinase. Our results imply that STN7 kinase activity is important for mitigating the adverse effects of prolonged darkness.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Darkness , Light , Light-Harvesting Protein Complexes/genetics , Light-Harvesting Protein Complexes/metabolism , Phosphorylation , Photosystem II Protein Complex/genetics , Photosystem II Protein Complex/metabolism , Protein Serine-Threonine Kinases , Thylakoids/metabolism
6.
Photosynth Res ; 147(1): 107-124, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33269435

ABSTRACT

Protein phosphorylation is a fundamental post-translational modification in all organisms. In photoautotrophic organisms, protein phosphorylation is essential for the fine-tuning of photosynthesis. The reversible phosphorylation of the photosystem II (PSII) core and the light-harvesting complex of PSII (LHCII) contribute to the regulation of photosynthetic activities. Besides the phosphorylation of these major proteins, recent phosphoproteomic analyses have revealed that several proteins are phosphorylated in the thylakoid membrane. In this study, we utilized the Phos-tag technology for a comprehensive assessment of protein phosphorylation in the thylakoid membrane of Arabidopsis. Phos-tag SDS-PAGE enables the mobility shift of phosphorylated proteins compared with their non-phosphorylated isoform, thus differentiating phosphorylated proteins from their non-phosphorylated isoforms. We extrapolated this technique to two-dimensional (2D) SDS-PAGE for detecting protein phosphorylation in the thylakoid membrane. Thylakoid proteins were separated in the first dimension by conventional SDS-PAGE and in the second dimension by Phos-tag SDS-PAGE. In addition to the isolation of major phosphorylated photosynthesis-related proteins, 2D Phos-tag SDS-PAGE enabled the detection of several minor phosphorylated proteins in the thylakoid membrane. The analysis of the thylakoid kinase mutants demonstrated that light-dependent protein phosphorylation was mainly restricted to the phosphorylation of the PSII core and LHCII proteins. Furthermore, we assessed the phosphorylation states of the structural domains of the thylakoid membrane, grana core, grana margin, and stroma lamella. Overall, these results demonstrated that Phos-tag SDS-PAGE is a useful biochemical tool for studying in vivo protein phosphorylation in the thylakoid membrane protein.


Subject(s)
Arabidopsis/physiology , Light-Harvesting Protein Complexes/metabolism , Photosynthesis , Photosystem II Protein Complex/metabolism , Pyridines , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis/radiation effects , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Chromatography, Liquid , Electrophoresis, Gel, Two-Dimensional , Electrophoresis, Polyacrylamide Gel , Mutation , Phosphorylation , Protein Isoforms , Protein Kinases/genetics , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Tandem Mass Spectrometry , Thylakoids/metabolism
7.
Protoplasma ; 257(2): 489-499, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31784823

ABSTRACT

The role of α-carbonic anhydrase 4 (α-CA4) in photosynthetic machinery functioning in thylakoid membranes was studied, using Arabidopsis thaliana wild type plants (WT) and the plants with knockout of At4g20990 gene encoding α-CA4 (αCA4-mut) grown both in low light (LL, 80 µmol quanta m-2 s-1) or in high light (HL, 400 µmol quanta m-2 s-1). It was found that a content of PsbS protein, one of determinants of non-photochemical quenching of chlorophyll fluorescence, increased in mutants by 30% and 100% compared with WT plants in LL and in HL, respectively. Violaxanthin cycle pigments content and violaxanthin deepoxidase activity in HL were also higher in αCA4-mut than in WT plants. The content of PSII core protein, D1, when adapting to HL, decreased in WT plants and remained unchanged in mutants. This indicates, that the decrease in the content of Lhcb1 and Lhcb2 proteins in HL (Rudenko et al. Protoplasma 55(1):69-78, 2018) in WT plants resulted from decrease of both Photosystem II (PSII) complex content and content of these proteins in this complex, whereas in αCA4-mut plants from the latter process only. The absence of α-CA4 did not affect the rate of electron transport through Photosystem I (PSI) in thylakoids of mutant vs. WT, but led to 50-80% increase in the rate of electron transport from H2O to QA, evidencing the location of α-CA4 close to PSII. The latter difference may raise the question about its causal connection with the difference in the D1 protein content change during adapting to increased illumination in the presence and the absence of α-CA4.


Subject(s)
Carbonic Anhydrases/metabolism , Photosynthesis/physiology , Plant Leaves/chemistry
8.
Front Plant Sci ; 10: 974, 2019.
Article in English | MEDLINE | ID: mdl-31417591

ABSTRACT

Reversible phosphorylation of thylakoid proteins contributes to photoacclimation responses in photosynthetic organisms, enabling the fine-tuning of light harvesting under changing light conditions and promoting the onset of photoprotective processes. However, the precise functional role of many of the described phosphorylation events on thylakoid proteins remains elusive. The calcium sensor receptor protein (CAS) has previously been indicated as one of the targets of the state transition kinase 8 (STN8). Here we show that in Arabidopsis thaliana, CAS is also phosphorylated by the state transition kinase 7 (STN7), as well as by another, so-far unknown, Ca2+-dependent kinase. Phosphoproteomics analysis and in vitro phosphorylation assays on CAS variants identified the phylogenetically conserved residues Thr-376, Ser-378, and Thr-380 as the major phosphorylation sites of the STN kinases. Spectroscopic analyses of chlorophyll fluorescence emission at 77K further showed that, while the cas mutant is not affected in state transition, it displays a persistent strong excitation of PSI under high light exposure, similar to the phenotype previously observed in other mutants defective in photoacclimation mechanisms. Together with the observation of a strong concomitant phosphorylation of light harvesting complex II (LHCII) and photosynthetic core proteins under high irradiance in the cas mutant this suggests a role for CAS in the STN7/STN8/TAP38 network of phosphorylation-mediated photoacclimation processes in Arabidopsis.

9.
Front Plant Sci ; 9: 1032, 2018.
Article in English | MEDLINE | ID: mdl-30065742

ABSTRACT

Phospho-proteomic studies have confirmed that phosphorylation is a common mechanism to regulate protein function in the chloroplast, including the enzymes of starch metabolism. In addition to the photosynthetic machinery protein kinases (STN7 and STN8) and their cognate protein phosphatases PPH1 (TAP38) and PBCP, multiple other protein kinases and phosphatases have now been localized to the chloroplast. Here, we build a framework for understanding protein kinases and phosphatases, their regulation, and potential roles in starch metabolism. We also catalog mapped phosphorylation sites on proteins of chloroplast starch metabolism to illustrate the potential and mostly unknown roles of protein phosphorylation in the regulation of starch biology.

10.
Biochem J ; 475(7): 1225-1233, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29622671

ABSTRACT

The photosynthetic chloroplast thylakoid membrane of higher plants is a complex three-dimensional structure that is morphologically dynamic on a timescale of just a few minutes. The membrane dynamics are driven by the phosphorylation of light-harvesting complex II (LHCII) by the STN7 kinase, which controls the size of the stacked grana region relative to the unstacked stromal lamellae region. Here, I hypothesise that the functional significance of these membrane dynamics is in controlling the partition of electrons between photosynthetic linear and cyclic electron transfer (LET and CET), which determines the ratio of NADPH/ATP produced. The STN7 kinase responds to the metabolic state of the chloroplast by sensing the stromal redox state. A high NADPH/ATP ratio leads to reduction of thioredoxin f (TRXf), which reduces a CxxxC motif in the stromal domain of STN7 leading to its inactivation, whereas a low NADPH/ATP ratio leads to oxidation of TRXf and STN7 activation. Phosphorylation of LHCII leads to smaller grana, which favour LET by speeding up diffusion of electron carriers plastoquinone (PQ) and plastocyanin (PC) between the domains. In contrast, dephosphorylation of LHCII leads to larger grana that slow the diffusion of PQ and PC, leaving the PQ pool in the stroma more oxidised, thus enhancing the efficiency of CET. The feedback regulation of electron transfer by the downstream metabolism is crucial to plant fitness, since perturbations in the NADPH/ATP ratio can rapidly lead to the inhibition of photosynthesis and photo-oxidative stress.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Photosynthesis , Photosystem II Protein Complex/metabolism , Thylakoids/metabolism , Electron Transport
11.
Plant J ; 90(6): 1176-1186, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28295753

ABSTRACT

The thylakoid-associated kinases STN7 and STN8 are involved in short- and long-term acclimation of photosynthetic electron transport to changing light conditions. Here we report the identification of STN7/STN8 in vivo targets that connect photosynthetic electron transport with metabolism and gene expression. Comparative phosphoproteomics with the stn7 and stn8 single and double mutants identified two proteases, one RNA-binding protein, a ribosomal protein, the large subunit of Rubisco and a ferredoxin-NADP reductase as targets for the thylakoid-associated kinases. Phosphorylation of three of the above proteins can be partially complemented by STN8 in the stn7 single mutant, albeit at lower efficiency, while phosphorylation of the remaining three proteins strictly depends on STN7. The properties of the STN7-dependent phosphorylation site are similar to those of phosphorylated light-harvesting complex proteins entailing glycine or another small hydrophobic amino acid in the -1 position. Our analysis uncovers the STN7/STN8 kinases as mediators between photosynthetic electron transport, its immediate downstream sinks and long-term adaptation processes affecting metabolite accumulation and gene expression.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Arabidopsis/physiology , Electron Transport/physiology , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Electron Transport/genetics , Light-Harvesting Protein Complexes/genetics , Light-Harvesting Protein Complexes/metabolism , Phosphorylation/genetics , Phosphorylation/physiology , Photosynthesis/genetics , Photosynthesis/physiology , Photosystem II Protein Complex/genetics , Photosystem II Protein Complex/metabolism , Protein Kinases/genetics , Protein Serine-Threonine Kinases/genetics
12.
Plant J ; 87(5): 484-94, 2016 09.
Article in English | MEDLINE | ID: mdl-27214592

ABSTRACT

STN7 kinase catalyzes the phosphorylation of the globally most common membrane proteins, the light-harvesting complex II (LHCII) in plant chloroplasts. STN7 itself possesses one serine (Ser) and two threonine (Thr) phosphosites. We show that phosphorylation of the Thr residues protects STN7 against degradation in darkness, low light and red light, whereas increasing light intensity and far red illumination decrease phosphorylation and induce STN7 degradation. Ser phosphorylation, in turn, occurs under red and low intensity white light, coinciding with the client protein (LHCII) phosphorylation. Through analysis of the counteracting LHCII phosphatase mutant tap38/pph1, we show that Ser phosphorylation and activation of the STN7 kinase for subsequent LHCII phosphorylation are heavily affected by pre-illumination conditions. Transitions between the three activity states of the STN7 kinase (deactivated in darkness and far red light, activated in low and red light, inhibited in high light) are shown to modulate the phosphorylation of the STN7 Ser and Thr residues independently of each other. Such dynamic regulation of STN7 kinase phosphorylation is crucial for plant growth and environmental acclimation.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Light , Protein Serine-Threonine Kinases/metabolism , Serine/metabolism , Threonine/metabolism , Arabidopsis/genetics , Arabidopsis/radiation effects , Arabidopsis Proteins/genetics , Phosphorylation , Protein Serine-Threonine Kinases/genetics
13.
J Exp Bot ; 66(21): 6891-903, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26272903

ABSTRACT

Senescence is a highly regulated process characterized by the active breakdown of cells, which ultimately leads to the death of plant organs or whole plants. In annual plants such as Arabidopsis thaliana senescence can be observed in each individual leaf. Whether deficiencies in photosynthesis promote the induction of senescence was investigated by monitoring chlorophyll degradation, photosynthetic parameters, and reactive oxygen species accumulation in photosynthetic mutants. Several mutations affecting components of the photosynthetic apparatus, including psal-2, psan-2, and psbs, were found to lead to premature or faster senescence, as did simultaneous inactivation of the STN7 and STN8 kinases. Premature senescence is apparently not directly linked to an overall reduction in photosynthesis but to perturbations in specific aspects of the process. Dark-induced senescence is accelerated in mutants affected in linear electron flow, especially psad2-1, psan-2, and pete2-1, as well as in stn7 and stn8 mutants and STN7 and STN8 overexpressor lines. Interestingly, no direct link with ROS production could be observed.


Subject(s)
Arabidopsis/metabolism , Photosynthesis , Photosystem I Protein Complex/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Electron Transport , Mutation , Plant Leaves/growth & development , Plant Leaves/metabolism
14.
J Exp Bot ; 65(8): 1955-72, 2014 May.
Article in English | MEDLINE | ID: mdl-24622954

ABSTRACT

Thylakoids of land plants have a bipartite structure, consisting of cylindrical grana stacks, made of membranous discs piled one on top of the other, and stroma lamellae which are helically wound around the cylinders. Protein complexes predominantly located in the stroma lamellae and grana end membranes are either bulky [photosystem I (PSI) and the chloroplast ATP synthase (cpATPase)] or are involved in cyclic electron flow [the NAD(P)H dehydrogenase (NDH) and PGRL1-PGR5 heterodimers], whereas photosystem II (PSII) and its light-harvesting complex (LHCII) are found in the appressed membranes of the granum. Stacking of grana is thought to be due to adhesion between Lhcb proteins (LHCII or CP26) located in opposed thylakoid membranes. The grana margins contain oligomers of CURT1 proteins, which appear to control the size and number of grana discs in a dosage- and phosphorylation-dependent manner. Depending on light conditions, thylakoid membranes undergo dynamic structural changes that involve alterations in granum diameter and height, vertical unstacking of grana, and swelling of the thylakoid lumen. This plasticity is realized predominantly by reorganization of the supramolecular structure of protein complexes within grana stacks and by changes in multiprotein complex composition between appressed and non-appressed membrane domains. Reversible phosphorylation of LHC proteins (LHCPs) and PSII components appears to initiate most of the underlying regulatory mechanisms. An update on the roles of lipids, proteins, and protein complexes, as well as possible trafficking mechanisms, during thylakoid biogenesis and the de-etiolation process complements this review.


Subject(s)
Embryophyta/physiology , Embryophyta/ultrastructure , Thylakoids/physiology , Thylakoids/ultrastructure , Embryophyta/growth & development , Organogenesis, Plant
16.
Front Plant Sci ; 3: 277, 2012.
Article in English | MEDLINE | ID: mdl-23267361

ABSTRACT

Phosphorylation of the major photosynthetic light harvesting antenna proteins by STN7 kinase balances excitation between PSII and PSI. Phosphorylation of such abundant proteins is unique, differing distinctively from conventional tasks of protein kinases in phosphorylation of low abundance proteins in signaling cascades. Excitation balance between PSII and PSI is critical for redox homeostasis between the plastoquinone and plastocyanin pools and PSI electron acceptors, determining the capacity of the thylakoid membrane to produce reactive oxygen species (ROS) that operate as signals relaying information between chloroplasts and other cellular compartments. STN7 has also been proposed to be a conventional signaling kinase, instigating the phosphorylation cascade required for coordinated expression of photosynthesis genes and assembly of the photosynthetic machinery. The absence of STN7 kinase, however, does not prevent plants from sensing redox imbalance and adjusting the stoichiometry of the photosynthetic machinery to restore redox homeostasis. This suggests that STN7 is not essential for signaling between the chloroplast and the nucleus. Here we discuss the evolution and functions of the STN7 and other thylakoid protein kinases and phosphatases, and the inherent difficulties in analyzing signaling cascades initiated from the photosynthetic machinery. Based on our analyses of literature and publicly available expression data, we conclude that STN7 exerts it signaling effect primarily by controlling chloroplast ROS homeostasis through maintaining steady-state phosphorylation of the light harvesting II proteins and the redox balance in the thylakoid membrane. ROS are important signaling molecules with a direct effect on the development of jasmonate, which in turn relays information out from the chloroplast. We propose that thylakoid membrane redox homeostasis, regulated by SNT7, sends cell-wide signals that reprogram the entire hormonal network in the cell.

17.
Plant Signal Behav ; 5(1): 21-5, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20592803

ABSTRACT

Optimal photosynthetic performance requires that equal amounts of light are absorbed by photosystem II (PSII) and photosystem I (PSi), which are functionally linked through the photosynthetic electron transport chain. However, photosynthetic organisms must cope with light conditions that lead to the preferential stimulation of one or the other of the photosystems. Plants react to such imbalances by mounting acclimation responses that redistribute excitation energy between photosystems and restore the photosynthetic redox poise. in the short term, this involves the so-called state transition process, which, over periods of minutes, alters the antennal cross-sections of the photosystems through the reversible association of a mobile fraction of light-harvesting complex II (LHCII) with PSI or PSII. Longer-lasting changes in light quality initiate a long-term response (LTr), occurring on a timescale of hours to days, that redresses imbalances in excitation energy by changing the relative amounts of the two photosystems. Despite the differences in their timescales of action, state transitions and LTr are both triggered by the redox state of the plastoquinone (PQ) pool, via the activation of the thylakoid kinase STN7, which appears to act as a common redox sensor and/or signal transducer for both responses. This review highlights recent findings concerning the role of STN7 in coordinating short- and long-term photosynthetic acclimation responses.


Subject(s)
Acclimatization/physiology , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Light , Photosynthesis/physiology , Protein Kinases/metabolism , Signal Transduction , Oxidation-Reduction , Photosystem I Protein Complex , Photosystem II Protein Complex , Plastoquinone/metabolism , Protein Serine-Threonine Kinases
SELECTION OF CITATIONS
SEARCH DETAIL