Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.281
Filter
1.
J Environ Sci (China) ; 149: 242-253, 2025 Mar.
Article in English | MEDLINE | ID: mdl-39181639

ABSTRACT

Poly(butylene succinate-co-furandicarboxylate) (PBSF) and poly(butylene adipate-co-furandicarboxylate) (PBAF) are novel furandicarboxylic acid-based biodegradable copolyesters with great potential to replace fossil-derived terephthalic acid-based copolyesters such as poly(butylene succinate-co-terephthalate) (PBST) and poly(butylene adipate-co-terephthalate) (PBAT). In this study, quantum chemistry techniques after molecular dynamics simulations are employed to investigate the degradation mechanism of PBSF and PBAF catalyzed by Candida antarctica lipase B (CALB). Computational analysis indicates that the catalytic reaction follows a four-step mechanism resembling the ping-pong bibi mechanism, with the initial two steps being acylation reactions and the subsequent two being hydrolysis reactions. Notably, the first step of the hydrolysis is identified as the rate-determining step. Moreover, by introducing single-point mutations to expand the substrate entrance tunnel, the catalytic distance of the first acylation step decreases. Additionally, energy barrier of the rate-determining step is decreased in the PBSF system by site-directed mutations on key residues increasing hydrophobicity of the enzyme's active site. This study unprecedently show the substrate binding pocket and hydrophobicity of the enzyme's active site have the potential to be engineered to enhance the degradation of copolyesters catalyzed by CALB.


Subject(s)
Fungal Proteins , Lipase , Polyesters , Lipase/metabolism , Lipase/chemistry , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Polyesters/chemistry , Polyesters/metabolism , Biodegradation, Environmental , Molecular Dynamics Simulation , Hydrolysis , Models, Chemical
2.
Anim Microbiome ; 6(1): 53, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39313845

ABSTRACT

BACKGROUND: Chronic diarrhea is a common cause of mortality and morbidity in captive rhesus macaques (Macaca mulatta). The exact etiology of chronic diarrhea in macaques remains unidentified. The occurrence of diarrhea is frequently linked to dysbiosis within the gut microbiome. Research into microbiome signatures correlated with diarrhea in macaques have predominantly been conducted with single sample collections. Our analysis was based on the metagenomic composition of longitudinally acquired fecal samples from rhesus macaques with chronic diarrhea and clinically healthy rhesus macaques that were obtained over the course of two years. We aimed to investigate potential relationships between the macaque gut microbiome, the presence of diarrhea and diet interventions with a selection of commercially available monkey diets. RESULTS: The microbiome signature of macaques with intermittent chronic diarrhea showed a significant increase in lactate producing bacteria e.g. lactobacilli, and an increase in fermenters of lactate and succinate. Strikingly, two lactose free diets were associated with a lower incidence of diarrhea. CONCLUSION: A lactose intolerance mechanism is suggested in these animals by the bloom of Lactobacillus in the presence of lactose resulting in an overproduction of intermediate fermentation products likely led to osmotically induced diarrhea. This study provides new insights into suspected microbiome-lactose intolerance relationship in rhesus macaques with intermittent chronic diarrhea. The integration of machine learning with metagenomic data analysis holds potential for developing targeted dietary interventions and therapeutic strategies and therefore ensuring a healthier and more resilient primate population.

3.
ACS Infect Dis ; 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39268963

ABSTRACT

Drug-resistant Mycobacterium tuberculosis is a significant cause of infectious disease morbidity and mortality for which new antimicrobials are urgently needed. Inhibitors of mycobacterial respiratory energy metabolism have emerged as promising next-generation antimicrobials, but a number of targets remain unexplored. Succinate dehydrogenase (SDH), a focal point in mycobacterial central carbon metabolism and respiratory energy production, is required for growth and survival in M. tuberculosis under a number of conditions, highlighting the potential of inhibitors targeting mycobacterial SDH enzymes. To advance SDH as a novel drug target in M. tuberculosis, we utilized a combination of biochemical screening and in-silico deep learning technologies to identify multiple chemical scaffolds capable of inhibiting mycobacterial SDH activity. Antimicrobial susceptibility assays show that lead inhibitors are bacteriostatic agents with activity against wild-type and drug-resistant strains of M. tuberculosis. Mode of action studies on lead compounds demonstrate that the specific inhibition of SDH activity dysregulates mycobacterial metabolism and respiration and results in the secretion of intracellular succinate. Interaction assays demonstrate that the chemical inhibition of SDH activity potentiates the activity of other bioenergetic inhibitors and prevents the emergence of resistance to a variety of drugs. Overall, this study shows that SDH inhibitors are promising next-generation antimicrobials against M. tuberculosis.

4.
J Agric Food Chem ; 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39269285

ABSTRACT

Methane, a byproduct of agricultural activities, has shown potential as a nonedible substrate for biomanufacturing. The production of succinate by a methanotrophic bacterium utilizing methane presents an innovative route for the sustainable synthesis of chemicals. In this study, Methylotuvimicrobium buryatense 5GB1S was genetically modified through the reconstruction of an artificial serine cycle to enable the bioconversion of both methane and CO2 into succinate. The 13C labeling analysis confirmed the CO2 fixing in M. buryatense 5GB1S, leading to a 46% improvement in carbon conversion efficiency and a 107% increase in succinate production compared to the wild-type strain. The transcriptome data on carbon metabolisms was assessed to guide future optimizations for strengthening the overall carbon flux from methane to succinate. Finally, the maximum succinate titer of 299.36 mg/L was achieved under oxygen-limited conditions in 3 L bioreactors, which resulted in the volumetric productivity of 199.60 mg/L/day, representing a 23-fold enhancement compared to the wild-type strain. This study offers a new strategy for upcycling greenhouse gases into succinate in a sustainable manner through methanotrophic-based biomanufacturing.

5.
Eur J Endocrinol ; 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39303070

ABSTRACT

OBJECTIVE: Head-neck paragangliomas (HNPGLs) are rare tumors with approximately half arising due to germline pathogenic variants (PVs) in succinate dehydrogenase genes (SDHx). Patients with HNPGL have heterogenous propensity to recur and metastasize. Thus, we aim to assess prevalence and predictors of recurrent (RD) and/or metastatic disease in patients with and without SDHx-related HNPGLs. DESIGN AND METHODS: This cross-sectional study used retrospective data of 214 patients enrolled in six referral centers. Data included sex, age, primary tumor treatment, location, and size, biochemical phenotype, germline PVs, presence of RD (locoregional or new tumor), and/or metastasis. RESULTS: Patients with and without SDHx-related HNPGLs showed 74% and 40% prevalence of RD, respectively. Patients without SDHx-related HNPGLs presented with recurrent tumors only in head-neck regions. The only independent predictor for RD in the entire cohort was presence of SDHx PVs. Metastatic prevalence reached 9-13%. For patients with SDHx-related HNPGLs, large tumor size (>2.3cm, OR:50.0, CI:2.6-977.6), young age at initial diagnosis (<42years, OR:27.3, CI:1.8-407.2), and presence of SDHB PV (OR:15.6; CI:1.5-164.8) were independent predictors of metastasis. For patients without SDHx-related HNPGLs, only carotid-body location was an independent predictor of metastasis (OR:18.9, CI:2.0-182.5). CONCLUSIONS: Patients without SDHx-related HNPGLs require long-term follow-up due to high prevalence of RD with imaging largely restricted to head-neck regions. As carotid-body HNPGLs have the highest metastatic risk among sporadic tumors, radical treatment with frequent follow-up is suggested until population-based data are available. Importantly, patients with SDHx-related HNPGLs might benefit from early radical treatment when tumors are still small to reduce metastatic risk.

6.
J Agric Food Chem ; 72(38): 21052-21064, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39268842

ABSTRACT

Succinate is an important metabolite and a critical chemical with diverse applications in the food, pharmaceutical, and agriculture industries. Recent studies have demonstrated several protective or detrimental functions of succinate in diseases; however, the effect of succinate on lipid metabolism is still unclear. Here, we identified a role of succinate in nonobese nonalcoholic fatty liver disease (NAFLD). Specifically, the level of succinate is increased in the livers and serum of mice with hepatic steatosis. The administration of succinate promotes triglyceride (TG) deposition and hepatic steatosis by suppressing fatty acid oxidation (FAO) in nonobese NAFLD mouse models. RNA-Seq revealed that succinate suppressed fibroblast growth factor 21 (FGF21) expression. Then, the restoration of FGF21 was sufficient to alleviate hepatic steatosis and FAO inhibition induced by succinate treatment in vitro and in vivo. Furthermore, the inhibition of FGF21 expression and FAO mediated by succinate was dependent on the AMPK/PPARα axis. This study provides evidence linking succinate exposure to abnormal hepatic lipid metabolism and the progression of nonobese NAFLD.


Subject(s)
AMP-Activated Protein Kinases , Fatty Acids , Fibroblast Growth Factors , Liver , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease , Oxidation-Reduction , PPAR alpha , Succinic Acid , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/drug therapy , Animals , PPAR alpha/metabolism , PPAR alpha/genetics , Mice , Male , Fatty Acids/metabolism , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/genetics , Humans , Succinic Acid/metabolism , Liver/metabolism , Liver/drug effects , Lipid Metabolism/drug effects , Fatty Liver/metabolism , Fatty Liver/genetics
7.
Environ Res ; 262(Pt 2): 119916, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39233032

ABSTRACT

Bixafen (BIX), a member of the succinate dehydrogenase inhibitor (SDHI) class of fungicides, has seen a surge in interest due to its expanding market presence and positive development outlook. However, there is a growing concern about its potential harm to aquatic life, largely due to its resistance to breaking down in the environment. In this study, we thoroughly examined the toxicological impact of BIX on zebrafish as a model organism. Our results revealed that BIX significantly hindered the development of zebrafish embryos, leading to increased mortality, hatching failures, and oxidative stress. Additionally, we observed cardiovascular abnormalities, including dilated cardiac chambers, reduced heart rate, sluggish blood circulation, and impaired vascular function. Notably, BIX also altered the expression of key genes involved in cardiovascular development, such as myl7, vmhc, nkx2.5, tbx5, and flt1. In summary, BIX was found to induce developmental and cardiovascular toxicity in zebrafish, underscoring the risks associated with SDHI pesticides and emphasizing the need for a reassessment of their impact on human health. These findings are crucial for the responsible use of BIX.

8.
Clin Imaging ; 115: 110280, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39260085

ABSTRACT

PURPOSE: Succinate dehydrogenase (SDH)-deficient renal cell carcinoma (RCC) is a newly defined, rare subtype of renal cancer, associated with pathogenic variations in the Succinate Dehydrogenase Subunit B (SDHB) gene. Our aim is to investigate the imaging findings of SDHB-associated renal tumors, utilizing cross-sectional and FDG-PET imaging in patients with pathogenic variations in SDHB gene, to facilitate accurate tumor characterization. METHODS: Twenty SDH-deficient tumors from 16 patients with pathogenic variations in SDHB gene were retrospectively evaluated using cross-sectional and FDG-PET imaging. Clinical findings such as demographics, family history, extra-renal findings and metastases were recorded. Tumor imaging characteristics on CT/MRI included were laterality, size, homogeneity, morphology, margins, internal content, T1/T2 signal intensity, enhancement features, and restricted diffusion. RESULTS: Sixteen patients (median age 31 years, IQR 19-41, 8 males) were identified with 68.8 % of patients having a known family history of SDHB variation. 81.3 % of lesions were solitary and majority were solid (86.7 % on CT, 87.5 % on MRI) with well-defined margins in >62.5 % of lesions, without evidence of internal fat, calcifications, or vascular invasion. 100 % of lesions demonstrated restricted diffusion and avid enhancement, with degree >75 % for most lesions on CT and MRI. On FDG-PET, all renal masses showed increased radiotracer uptake. 43.8 % of patients demonstrated extra-renal manifestations and 43.8 % had distant metastasis. CONCLUSION: SDHB-associated RCC is predominantly noted in young patients with no gender predilection. On imaging, SDH-deficient RCC are frequently unilateral, solitary, and solid with well-defined margins demonstrating avid enhancement with variability in enhancement pattern and showing restricted diffusion.

9.
Article in English | MEDLINE | ID: mdl-39271377

ABSTRACT

Phaeochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumours with a strong genetic predisposition, involving over 20 genes and with germline pathogenic variants identified in 40 % of cases. The succinate dehydrogenase (SDHx) genes are the most commonly implicated in hereditary PPGLs, accounting for 20 % of cases, and present unique diagnostic and treatment challenges due to their potential for multiple, recurrent, and aggressive manifestations, often necessitating lifelong follow-up. Over the past two decades, advances in biochemical and imaging assessments, management, and follow-up protocols have significantly improved care for both adult and paediatric patients. These advances include next-generation sequencing, new biochemical tests, cluster-specific functional imaging, and improved surgical and radiotherapy techniques, such as stereotactic surgery and peptide receptor radionuclide therapy (PRRT). International consensus guidelines have been developed to standardise the management of patients with SDHx pathogenic variants, emphasising multidisciplinary approaches and frequent tumour board discussions. These guidelines, summarised below, cover recommendations for initial genetic testing, tumour screening, follow-up care, and management of patients and asymptomatic carriers.

10.
BMC Pharmacol Toxicol ; 25(1): 61, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39227996

ABSTRACT

OBJECTIVE: To analyse the clinical efficacy and adverse drug reactions (ADRs) of iron preparations. METHODS: A total of 374 patients with iron deficiency anaemia admitted to our hospital between 1 January and 31 December 2020 were included in this study. They were divided into 2 groups based on their medication regimens: Group A (n = 187) took oral ferrous succinate tablets, and Group B (n = 187) received intravenous iron sucrose. The remission of major symptoms, laboratory test results, ADRs and other related data were collected after 4 weeks of treatment. RESULTS: Compared with the pre-treatment baseline, haemoglobin (Hb), serum iron (SI), serum ferritin (SF) and the mean corpuscular volume (MCV) increased in both groups at 4 weeks of treatment (P < 0.05). After treatment, Group A had lower levels of Hb (108.41 ± 8.39 vs. 122.31 ± 6.04 g/L, t = 6.293, P < 0.001), SI (9.72 ± 4.24 vs. 15.62 ± 5.41 µmol/L, t = 5.482, P < 0.001) and SF (27.1 ± 10.82 vs. 39.82 ± 10.44 ug/L, t = 6.793, P < 0.001) compared with Group B. In contrast, there was no significant difference in the post-treatment level of MCV (P > 0.05). The overall response rate significantly differed between the 2 groups (78.61% vs. 90.91%, χ2 = 10.949, P < 0.001). The incidence of ADRs of both groups were similar, and the difference was not statistically significant (χ2 = 0.035, P = 0.851). CONCLUSION: Iron sucrose demonstrates favourable efficacy and safety in treating iron deficiency anaemia.


Subject(s)
Anemia, Iron-Deficiency , Ferric Oxide, Saccharated , Ferrous Compounds , Humans , Male , Female , Ferric Oxide, Saccharated/administration & dosage , Ferric Oxide, Saccharated/adverse effects , Ferric Oxide, Saccharated/therapeutic use , Retrospective Studies , Middle Aged , Anemia, Iron-Deficiency/drug therapy , Anemia, Iron-Deficiency/blood , Administration, Oral , Adult , Ferrous Compounds/administration & dosage , Ferrous Compounds/adverse effects , Ferrous Compounds/therapeutic use , Tablets , Hemoglobins/analysis , Treatment Outcome , Administration, Intravenous , Hematinics/administration & dosage , Hematinics/adverse effects , Hematinics/therapeutic use , Aged , Ferritins/blood
11.
Pestic Biochem Physiol ; 204: 106029, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39277357

ABSTRACT

Dollar spot, a highly destructive turfgrasses disease worldwide, is caused by multiple species within the genus Clarireedia. Previous research indicated varying sensitivity to boscalid among Clarireedia populations not historically exposed to succinate dehydrogenase inhibitors (SDHIs). This study confirms that the differential sensitivity pattern is inherent among different Clarireedia spp., utilizing a combination of phylogenetic analyses, in vitro cross-resistance assays, and genetic transformation of target genes with different mutations. Furthermore, greenhouse inoculation experiments revealed that the differential boscalid sensitivity did not lead to pathogenicity issues or fitness penalties, thereby not resulting in control failure by boscalid. This research underscores the importance of continuous monitoring of fungicide sensitivity trends and highlights the complexity of chemical control of dollar spot due to the inherent variability in fungicide sensitivity among different Clarireedia spp.


Subject(s)
Biphenyl Compounds , Fungicides, Industrial , Niacinamide , Plant Diseases , Fungicides, Industrial/pharmacology , Biphenyl Compounds/pharmacology , Plant Diseases/microbiology , Niacinamide/analogs & derivatives , Niacinamide/pharmacology , Poaceae/microbiology , Phylogeny , Drug Resistance, Fungal/genetics , Succinate Dehydrogenase/genetics , Succinate Dehydrogenase/antagonists & inhibitors , Basidiomycota/genetics , Basidiomycota/drug effects
12.
Pestic Biochem Physiol ; 204: 106028, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39277356

ABSTRACT

The destructive disease gray leaf spot, caused by Stemphylium solani, is prevalent in tomato plants in China. A variety of fungicides have been extensively used for controlling the disease, with a particular focus on succinate dehydrogenase inhibitors (SDHIs) and quinone outside inhibitors (QoIs). However, there was a lack of information regarding the resistance of S. solani to boscalid (SDHI) and pyraclostrobin (QoI) in China. In this study, the sensitivity of S. solani to boscalid and pyraclostrobin was monitored. The EC50 values for boscalid ranged from 0.02 to 3.0 µg∙mL-1, with an average value of 0.62 µg∙mL-1, while the EC50 values for pyraclostrobin ranged from 0.21 to 14.71 µg∙mL-1, with an average value of 6.03 µg∙mL-1. Based on these findings, the frequencies of observed resistance were as follows: 36.7% for boscalid and 50% for pyraclostrobin; while the resistance frequency to both boscalid and pyraclostrobin in S. solani was 19.4%. The mutation associated with boscalid resistance in S. solani within tomato fields was identified as SdhB-H277Y, while the mutation related to pyraclostrobin resistance was found in cytochrome b, specifically Cytb-G143A. The resistant mutants displayed diminished fitness in terms of mycelial growth, yet their pathogenicity exhibited no significant disparities. To delay the development of resistance, it is advisable to employ a rotation strategy using alternative fungicides with different modes of action or mix with fungicides with multi-site-contact activity for disease management.


Subject(s)
Ascomycota , Biphenyl Compounds , Drug Resistance, Fungal , Fungicides, Industrial , Niacinamide , Plant Diseases , Solanum lycopersicum , Strobilurins , Strobilurins/pharmacology , Solanum lycopersicum/microbiology , Fungicides, Industrial/pharmacology , Plant Diseases/microbiology , Niacinamide/pharmacology , Niacinamide/analogs & derivatives , Drug Resistance, Fungal/genetics , China , Biphenyl Compounds/pharmacology , Ascomycota/drug effects , Ascomycota/pathogenicity
13.
Mitochondrion ; 79: 101952, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39237068

ABSTRACT

Succinate dehydrogenase (SDH) plays pivotal roles in maintaining cellular metabolism, modulating regulatory control over both the tricarboxylic acid cycle and oxidative phosphorylation to facilitate energy production within mitochondria. Given that SDH malfunction may serve as a hallmark triggering pseudo-hypoxia signaling and promoting tumorigenesis, elucidating the impact of SDH assembly defects on mitochondrial functions and cellular responses is of paramount importance. In this study, we aim to clarify the role of SDHAF2, one assembly factor of SDH, in mitochondrial respiratory activities. To achieve this, we utilize the CRISPR/Cas9 system to generate SDHAF2 knockout in HeLa cells and examine mitochondrial respiratory functions. Our findings demonstrate a substantial reduction in oxygen consumption rate in SDHAF2 knockout cells, akin to cells with inhibited SDH activity. In addition, in our in-gel activity assays reveal a significant decrease not only in SDH activity but also in cytochrome c oxidase (COX) activity in SDHAF2 knockout cells. The reduced COX activity is attributed to the assembly defect and remains independent of SDH inactivation or SDH complex disassembly. Together, our results indicate a critical role of SDHAF2 in regulating respiration by facilitating the assembly of COX.

14.
Pest Manag Sci ; 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39243160

ABSTRACT

BACKGROUND: Plant diseases seriously decrease the yield and quality of agricultural crops. Fungicide treatments remain the main means of field fungi control. However, the residual activity of fungicides is rapidly reduced due to various factors in the natural environment, therefore the development of agents with novel modes of action is desirable. It is highly required to design and develop new fungicides to address the resistance issue. Designing low impact chemicals to safely and sustainably address needs of agriculture. RESULTS: In this work, we used the highly active fluxapyroxad and flutolanil as parent structures, to design and synthesize a series of pyrazole-4-carboxamide derivatives. Some of the pyrazole-4-carboxamide derivatives exhibit fungicidal activities that are comparable to or higher than those of the commercialized fungicides fluxapyroxad and bixafen. In particular, compounds TM-1, TM-2, TM-3, TM-4, TM-5, TM-7 and TM-8 showed excellent fungicidal activities against corn rust that were 2-4 times higher than those of fluxapyroxad and bixafen. Field trial results demonstrated that at the same dosage levels, compound TM-2 exhibited comparable field control efficacy against wheat rust as compared to triadimefon and pyrazophenamide. Molecular docking simulations reveal that compound TM-2 interacts with TRP 173 of succinate dehydrogenase (SDH) through hydrogen bonding, which could explain the probable mechanism of action between compound TM-2 and the target protein. CONCLUSION: These results indicate that compound TM-2 may be a promising fungicide candidate and provide valuable reference for further investigation. © 2024 Society of Chemical Industry.

15.
Vestn Oftalmol ; 140(4): 49-58, 2024.
Article in Russian | MEDLINE | ID: mdl-39254390

ABSTRACT

Many key aspects of retinal ganglion cell (RGC) neurodegeneration in glaucoma are associated with mitochondrial dysfunction. Understanding the mechanisms and relationships between structural and functional changes in mitochondria would be beneficial for developing mitochondria-targeted therapeutic strategies to protect RGCs from glaucomatous neurodegeneration. PURPOSE: This study determines the extent of mitochondrial dysfunction in patients with primary open-angle glaucoma (POAG) and evaluates the potential for stabilizing the glaucomatous process by improving mitochondrial functional activity and energy production by therapy with Mexidol and Mexidol FORTE 250. MATERIAL AND METHODS: The study included 80 patients with moderate POAG with compensated intraocular pressure and 20 healthy volunteers. The extent of mitochondrial dysfunction was assessed by measuring the activity levels of mitochondrial enzymes: succinate dehydrogenase (SDH) and α-glycerophosphate dehydrogenase (α-GPDH) in peripheral blood lymphocytes using cytochemical analysis and cytometric morphology and density analysis (cytomorphodensitometry). Patients in the main group received sequential therapy with Mexidol as follows: Mexidol solution for intravenous and intramuscular administration at 50 mg/ml, 300 mg daily intramuscularly for 14 days, followed by Mexidol FORTE 250 tablets, one tablet three times daily for 56 days. Stabilization of glaucomatous optic neuropathy during treatment was evaluated using a comprehensive set of perimetric, electrophysiological, and structural-topographical methods at 14, 56, and 90 days. RESULTS: Sequential therapy in the main group resulted in a significant increase in mitochondrial enzyme activity at 14 and 56 days compared to baseline, with a gradual regression by the end of the observation period (90 days). This was accompanied by an increase in the number of mitochondria and an increase in their optical density as measured by cytomorphodensitometry. The improvement in mitochondrial enzyme activity at 14 and 56 days was associated with positive changes in the structural and functional parameters of the retina, as evidenced by static perimetry, optical coherence tomography, and a series of electrophysiological tests. CONCLUSION: The obtained data can be used to optimize POAG therapy by reducing mitochondrial dysfunction and stabilizing glaucomatous optic neuropathy.


Subject(s)
Glaucoma, Open-Angle , Mitochondria , Picolines , Humans , Male , Glaucoma, Open-Angle/physiopathology , Glaucoma, Open-Angle/metabolism , Glaucoma, Open-Angle/drug therapy , Middle Aged , Female , Mitochondria/metabolism , Picolines/administration & dosage , Intraocular Pressure/physiology , Intraocular Pressure/drug effects , Retinal Ganglion Cells/pathology , Treatment Outcome , Antioxidants/administration & dosage , Succinate Dehydrogenase/metabolism , Aged
16.
Polymers (Basel) ; 16(17)2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39274078

ABSTRACT

As an important biodegradable and partially biobased copolyester, poly(butylene succinate-co-terephthalate) (PBST) possesses comparable thermal and mechanical properties and superior gas barrier performance when compared with poly(butylene adipate-co-terephthalate) (PBAT), but it was found to display poorer melt processability during pelletizing and injection molding. To make clear its melt crystallization behavior under rapid cooling, PBST48 and PBST44 were synthesized, and their melt crystallization was investigated comparatively with PBAT48. PBST48 showed a PBAT48-comparable melt crystallization performance at a cooling rate of 10 °C/min or at isothermal conditions, but it showed a melt crystallization ability at a cooling rate of 40 °C/min which was clearly poorer. PBST44, which has the same mass composition as PBAT48, completely lost its melt crystallization ability under the rapid cooling. The weaker chain mobility of PBST, resulting from its shorter succinate moiety, is responsible for its inferior melt crystallization ability and processability. In comparison with PBAT48, PBST48 displayed higher tensile modulus, and both PBST48 and PBST44 showed higher light transmittance. The findings in this study deepen the understanding of PBST's properties and will be of guiding significance for improving PBST's processability and application development.

17.
Proc Natl Acad Sci U S A ; 121(36): e2405410121, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39186650

ABSTRACT

The gut microbiome plays an important role in honeybee hormonal regulation and growth, but the underlying mechanisms are poorly understood. Here, we showed that the depletion of gut bacteria resulted in reduced expression of insulin-like peptide gene (ilp) in the head, accompanied by metabolic syndromes resembling those of Type 1 diabetes in humans: hyperglycemia, impaired lipid storage, and decreased metabolism. These symptoms were alleviated by gut bacterial inoculation. Gut metabolite profiling revealed that succinate, produced by Lactobacillus Firm-5, played deterministic roles in activating ilp gene expression and in regulating metabolism in honeybees. Notably, we demonstrated that succinate modulates host ilp gene expression through stimulating gut gluconeogenesis, a mechanism resembling that of humans. This study presents evidence for the role of gut metabolite in modulating host metabolism and contributes to the understanding of the interactions between gut microbiome and bee hosts.


Subject(s)
Gastrointestinal Microbiome , Lactobacillus , Succinic Acid , Bees/microbiology , Animals , Gastrointestinal Microbiome/drug effects , Lactobacillus/metabolism , Succinic Acid/metabolism , Gluconeogenesis
18.
Endocr Relat Cancer ; 31(10)2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39133175

ABSTRACT

Phaeochromocytomas and paragangliomas (collectively termed PPGL) are rare yet highly heritable neuroendocrine tumours, with over one-third of cases associated with germline pathogenic variants (PVs) in numerous genes. PVs in the succinate dehydrogenase subunit-A gene (SDHA) were initially implicated in hereditary PPGL in 2010, and SDHA has since become an important susceptibility gene accounting for up to 2.8% of cases. However, it remains poorly understood, particularly regarding the clinical nature of SDHA PPGL, rates of recurrence and metastasis, and the nature of metastatic disease. We present a narrative review of SDHA-related PPGL, covering pathophysiology, relevance to current clinical practice, and considerations for clinical genetics. We analyse a pool of 107 previously reported cases of SDHA-associated PPGL to highlight the spectrum of SDHA-related PPGL. Our analysis demonstrates that SDHA PPGL occurs across a wide age range (11-81 years) and affects men and women equally. SDHA PPGL typically presents as single tumours (91%), usually occurring in the head and neck (46%) or abdomen (43%, including 15% with phaeochromocytomas). Metastatic disease was reported in 25.5% of cases, with bone (82%) and lymph nodes (71%) being the most common sites of metastasis, often identified many years after the initial diagnosis. A family history of SDHA-related neoplasia was rare, reported in only 4% of cases. Understanding the clinical nature and risks associated with SDHA PVs is essential for facilitating the optimal management of patients and their families.


Subject(s)
Adrenal Gland Neoplasms , Paraganglioma , Pheochromocytoma , Humans , Pheochromocytoma/genetics , Pheochromocytoma/therapy , Pheochromocytoma/pathology , Paraganglioma/genetics , Paraganglioma/therapy , Paraganglioma/pathology , Adrenal Gland Neoplasms/genetics , Adrenal Gland Neoplasms/therapy , Adrenal Gland Neoplasms/pathology , Female , Adult , Male , Middle Aged , Aged , Adolescent , Child , Young Adult , Electron Transport Complex II/genetics , Aged, 80 and over
19.
Front Microbiol ; 15: 1411328, 2024.
Article in English | MEDLINE | ID: mdl-39149211

ABSTRACT

Background: An association between gut microbes and cardiovascular disease (CVD) has been established, but the underlying mechanisms remain largely unknown. Methods: We conducted a secondary analysis of the cross-sectional data obtained from the Metabolic Syndrome in Men (METSIM) population-based cohort of 10,194 Finnish men (age = 57.65 ± 7.12 years). We tested the levels of circulating gut microbe-derived metabolites as predictors of CVD, ischemic cerebrovascular accident (CVA), and myocardial infarction (MI). The Kaplan-Meier method was used to estimate the time from the participants' first outpatient clinic visit to the occurrence of adverse outcomes. The associations between metabolite levels and the outcomes were assessed using Cox proportional hazard models. Results: During a median follow-up period of 200 months, 979 participants experienced CVD, 397 experienced CVA, and 548 experienced MI. After adjusting for traditional risk factors and correcting for multiple comparisons, higher plasma levels of succinate [quartile 4 vs. quartile 1; adjusted hazard ratio, aHR = 1.30, (confidence interval (CI), 1.10-1.53) p = 0.0003, adjusted p = 0.01] were significantly associated with the risk of CVD. High plasma levels of ursodeoxycholic acid (UDCA) (quartile 3 vs. quartile 1); [aHR = 1.68, (CI, 1.26-2.2); p = 0.0003, adj. p = 0.01] were associated with a higher risk of CVA. Furthermore, as a continuous variable, succinate was associated with a 10% decrease in the risk of CVD [aHR = 0.9; (CI, 0.84-0.97); p = 0.008] and a 15% decrease in the risk of MI [aHR = 0.85, (CI, 0.77-0.93); p = 0.0007]. Conclusion: Gut microbe-derived metabolites, succinate, and ursodeoxycholic acid were associated with CVD, MI, and CVA, respectively. Regulating the gut microbes may represent a potential therapeutic target for modulating CVD and CVA.

20.
Bioresour Technol ; 412: 131364, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39209227

ABSTRACT

Succinate was found extensive applications in the food additives, pharmaceutical, and biopolymers industries. However, the succinate biosynthesis in E. coli required IPTG, lacked NADH, and produced high yields only under anaerobic conditions, unsuitable for cell growth. To overcome these limitations, the glyoxylate shunt and reductive TCA pathway were simultaneously enhanced to produce succinate in both aerobic and anaerobic conditions and achieve a high cell growth meanwhile. On this basis, NADH availability and sugars uptake were increased. Furthermore, an oxygen-dependent promoter was used to dynamically regulate the expression level of key genes of reductive TCA pathway to avoid the usage of IPTG. The final strain E. coli Mgls7-32 could produce succinate from corn stover hydrolysate without an inducer, achieving a titer of 72.8 g/L in 5 L bioreactor (1.2 mol/mol of total sugars). Those findings will aid in the industrial production of succinate.


Subject(s)
Citric Acid Cycle , Escherichia coli , Fermentation , Glyoxylates , Succinic Acid , Zea mays , Succinic Acid/metabolism , Escherichia coli/metabolism , Glyoxylates/metabolism , Hydrolysis , Oxidation-Reduction , Bioreactors , Anaerobiosis
SELECTION OF CITATIONS
SEARCH DETAIL