Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.107
Filter
1.
Front Plant Sci ; 15: 1393305, 2024.
Article in English | MEDLINE | ID: mdl-38841280

ABSTRACT

Pecan (Carya illinoensis), an economically important deciduous tree, bears commercially valuable nutritional nuts. Spring freezes in April can severely injure pecan buds, decreasing bloom, and fruit set. This study determined how low temperatures affect pecan buds/flowers at different growth stages in several pecan scion/rootstock combinations. This study focused on three pecan scion/rootstock combinations: Pawnee/Peruque (PP), Kanza/Giles (KG), and Maramec/Colby (MC), grown at the Cimarron Valley Research Station, Perkins, Oklahoma. Branches at three different growth stages, i.e., outer bud scale shed, one week after bud break, and early bloom stages were collected from PP, MC, and KG. Branches were held in a Conviron E8 freezing unit at 4 temperatures (-2, 0, 2, and 4°C) for 4 and 8 hours; A total of 8 treatments. One sample set was kept as an untreated control. After 2-3 weeks, branch samples from all the temperature treatments were observed and categorized into two groups. Group one with number of branches had healthy buds/formation of healthy leaves/flowers and group two with number of dead branches. The carbohydrate content reserved from dormant was analyzed using an Anthrone reagent. Visual observations and carbohydrate analyses revealed differences in damage and carbohydrate content among the scion/rootstock combinations, low-temperature treatments, and growth stages. The MC combination had minimum visual damage to leaves, buds, and flowers and significantly lower soluble sugars and starch in bark phloem as well as significantly lower soluble sugars in woody tissue xylem. The KG combination had maximum visual damage and significantly higher soluble sugars and starches in the bark, and soluble sugars in the woody tissues. These results indicate the MC combination is more tolerant to spring freeze damage at all three growth stages compared to the other two pecan scion/rootstock combinations. The results also demonstrate the MC combination is using more non-structural carbohydrates, soluble sugars and starches, suggesting this is a possible mechanism in its freeze tolerance.

2.
Proc Natl Acad Sci U S A ; 121(24): e2320215121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38830103

ABSTRACT

The Kuiper Belt object (KBO) Arrokoth, the farthest object in the Solar System ever visited by a spacecraft, possesses a distinctive reddish surface and is characterized by pronounced spectroscopic features associated with methanol. However, the fundamental processes by which methanol ices are converted into reddish, complex organic molecules on Arrokoth's surface have remained elusive. Here, we combine laboratory simulation experiments with a spectroscopic characterization of methanol ices exposed to proxies of galactic cosmic rays (GCRs). Our findings reveal that the surface exposure of methanol ices at 40 K can replicate the color slopes of Arrokoth. Sugars and their derivatives (acids, alcohols) with up to six carbon atoms, including glucose and ribose-fundamental building block of RNA-were ubiquitously identified. In addition, polycyclic aromatic hydrocarbons (PAHs) with up to six ring units (13C22H12) were also observed. These sugars and their derivatives along with PAHs connected by unsaturated linkers represent key molecules rationalizing the reddish appearance of Arrokoth. The formation of abundant sugar-related molecules dubs Arrokoth as a sugar world and provides a plausible abiotic preparation route for a key class of biorelevant molecules on the surface of KBOs prior to their delivery to prebiotic Earth.

3.
Sci Rep ; 14(1): 12655, 2024 06 02.
Article in English | MEDLINE | ID: mdl-38825597

ABSTRACT

Potato peel waste (PPW) is an underutilized substrate which is produced in huge amounts by food processing industries. Using PPW a feedstock for production of useful compounds can overcome the problem of waste management as well as cost-effective. In present study, potential of PPW was investigated using chemical and thermochemical treatment processes. Three independent variables i.e., PPW concentration, dilute sulphuric acid concentration and liberation time were selected to optimize the production of fermentable sugars (TS and RS) and phenolic compounds (TP). These three process variables were selected in the range of 5-15 g w/v substrate, 0.8-1.2 v/v acid conc. and 4-6 h. Whole treatment process was optimized by using box-behnken design (BBD) of response surface methodology (RSM). Highest yield of total and reducing sugars and total phenolic compounds obtained after chemical treatment was 188.00, 144.42 and 43.68 mg/gds, respectively. The maximum yield of fermentable sugars attained by acid plus steam treatment were 720.00 and 660.62 mg/gds of TS and RS, respectively w.r.t 5% substrate conc. in 0.8% acid with residence time of 6 h. Results recorded that acid assisted autoclaved treatment could be an effective process for PPW deconstruction. Characterization of substrate before and after treatment was checked by SEM and FTIR. Spectras and micrographs confirmed the topographical variations in treated substrate. The present study was aimed to utilize biowaste and to determine cost-effective conditions for degradation of PWW into value added compounds.


Subject(s)
Industrial Waste , Plant Extracts , Solanum tuberosum , Chemistry Techniques, Analytical/methods , Chemistry Techniques, Analytical/standards , Solanum tuberosum/chemistry , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Industrial Waste/analysis , Food Industry , Fermentation , Sugars/analysis , Sugars/isolation & purification , Phenols/analysis , Phenols/isolation & purification , Acids/chemistry , Steam , Spectroscopy, Fourier Transform Infrared
4.
BMC Plant Biol ; 24(1): 519, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851682

ABSTRACT

Rice seeds of different varieties exhibited distinct metabolic profiles in our study. We analyzed the metabolites in seeds of six rice varieties (CH, HM, NX, YX, HY, and MX) using non-targeted GC-MS. Our findings revealed that amino acids, sugars, and organic acids were predominant in all varieties, with significant differences observed in CH compared to the others. Specifically phenylalanine and glycine content differed notably in NX and YX, respectively. Additionally, 1,5-anhydroglucitol content in NX, and glutamate, aspartate, and lactulose in NX, YX, HM, HY, and MX were up-regulated. Due to the biological functions of these amino acids and sugars, these indicated that compared to CH, rice of NX were more conducive to metabolism of carbohydrate and fat, and healthy growth maintenance in the human body, but mightThese variations suggest that NX rice may be more beneficial for carbohydrate and fat metabolism and overall health maintenance compared to CH. However, it may not be suitable for diabetic patients. YX rice may not be an ideal glycine supplement, rice ofwhile HM, HY, and MX rice could serve as potential lactulose sources. Furthermore, NX and YX rice exhibited higher levels of main storage proteins compared to CH. This study offers valuable insights into the metabolic differences among various rice varieties.


Subject(s)
Gas Chromatography-Mass Spectrometry , Metabolomics , Oryza , Seeds , Oryza/metabolism , Seeds/metabolism , Seeds/chemistry , Metabolomics/methods , Amino Acids/metabolism , Amino Acids/analysis , Metabolome
5.
Oral Dis ; 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38852170

ABSTRACT

OBJECTIVE: To analyze multiple-causal models, including socioeconomic, obesity, sugar consumption, alcohol smoking, caries, and periodontitis variables in pregnant women with early sugar exposure, obesity, and the Chronic Oral Disease Burden in their offspring around the first 1000 days of life. METHODS: The BRISA cohort study, Brazil, had two assessments: at the 22nd-25th gestational weeks and during the child's second year (n = 1141). We proposed a theoretical model exploring the association between socioeconomic and pregnancy factors (age, smoking, alcohol, sugars, obesity, periodontitis, and caries) and child's variables (sugars and overweight) with the outcome, Chronic Oral Disease Burden (latent variable deduced from visible plaque, gingivitis, and tooth decay), using structural equation modeling. RESULTS: Caries and periodontitis were correlated in pregnant women. Addictive behaviors in the gestational period were correlated. Obesity (Standardized coefficient - SC = 0.081; p = 0.047) and added sugar consumption (SC = 0.142; p = 0.041) were observed intergenerationally in the pregnant woman-child dyads. Sugar consumption by the children (SC = 0.210; p = 0.041) increased the Chronic Oral Disease Burden. CONCLUSIONS: Poor caries and periodontal indicators were correlated in pregnant women and their offspring. Obesity and sugar consumption act intergenerationally. Oral health in early life may change life trajectory since the worst oral conditions predict main NCDs.

6.
BMC Plant Biol ; 24(1): 511, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38844870

ABSTRACT

The invasion of Mikania micrantha by climbing and covering trees has rapidly caused the death of many shrubs and trees, seriously endangering forest biodiversity. In this study, M. micrantha seedlings were planted together with local tree species (Cryptocarya concinna) to simulate the process of M. micrantha climbing under the forest. We found that the upper part of the M. micrantha stem lost its support after climbing to the top of the tree, grew in a turning and creeping manner, and then grew branches rapidly to cover the tree canopy. Then, we simulated the branching process through turning treatment. We found that a large number of branches had been formed near the turning part of the M. micrantha stem (TP). Compared with the upper part of the main stem (UP), the contents of plant hormones (auxin, cytokinin, gibberellin), soluble sugars (sucrose, glucose, fructose) and trehalose-6-phosphate (T6P) were significantly accumulated at TP. Further combining the transcriptome data of different parts of the main stem under erect or turning treatment, a hypothetical regulation model to illustrate how M. micrantha can quickly cover trees was proposed based on the regulation of sugars and hormones on plant branching; that is, the lack of support after ascending the top of the tree led to turning growth of the main stem, and the enhancement of sugars and T6P levels in the TP may first drive the release of nearby dormant buds. Plant hormone accumulation may regulate the entrance of buds into sustained growth and maintain the elongation of branches together with sugars to successfully covering trees.


Subject(s)
Introduced Species , Mikania , Trees , Mikania/growth & development , Trees/growth & development , Plant Growth Regulators/metabolism
7.
Talanta ; 276: 126219, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38733936

ABSTRACT

This study presents a potent paper-based analytical device (PAD) for quantifying various sugars using an innovative bi-nanozyme made from a 2-dimensional Fe/Ce metal-organic framework (FeCe-BTC). The MOF showed excellent bifunctional peroxidase-oxidase activities, efficiently catalyzing luminol's chemiluminescence (CL) reaction. As a peroxidase-like nanozyme, FeCe-BTC could facilitate the dissociation of hydrogen peroxide (H2O2) into hydroxyl radicals, which then oxidize luminol. Additionally, it was also discovered that when reacting with H2O2, the MOF turns into a mixed-valence MOF, and acts as an oxidase nanozyme. This activity is caused by the generated Ce4+ ions in the structure of MOF that can directly oxidize luminol. The MOF was directly synthesized on the PAD and cascaded with specific natural enzymes to establish simple, rapid, and selective CL sensors for the measurement of different sugars. A cell phone was also used to record light intensities, which were then correlated to the analyte concentration. The designed PAD showed a wide linear range of 0.1-10 mM for glucose, fructose, and sucrose, with detection limits of 0.03, 0.04, and 0.04 mM, respectively. It showed satisfactory results in food and biological samples with recovery values ranging from 95.8 to 102.4 %, which makes it a promising candidate for point-of-care (POC) testing for food control and medicinal purposes.

8.
J Dairy Sci ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38762110

ABSTRACT

Flaxseed is the richest source of secoisolariciresinol diglucoside, which is converted by ruminal microorganisms primarily to the mammalian lignan enterolactone. Our objective was to investigate the effect of diets containing soybean meal or flaxseed meal (FM) supplemented with sucrose, flaxseed oil, or both on milk enterolactone concentration and yield, diversity and relative abundance of ruminal bacterial taxa, ruminal fermentation profile, production performance, milk fatty acid (FA) yield, and nutrient utilization in dairy cows. Sixteen Holstein cows [8 multiparous (4 ruminally-cannulated) and 8 primiparous] averaging (mean ± SD) 134 ± 54.1 DIM and 679 ± 78.9 kg of BW in the beginning of the study were assigned to treatment sequences in a replicated 4 × 4 Latin square design. Each experimental period lasted 25 d with 18 d for diet adaptation and 7 d for data and sample collection. Diets were formulated to contain a 60:40 forage:concentrate ratio and included (DM basis): 1) 8% soybean meal and 23% ground corn (SBM), 2) 15% FM, 10.7% ground corn, and 5% sucrose (FLX+S), 3) 15% FM, 15.4% ground corn, and 3% flaxseed oil (FLX+O), and 4) 15% FM, 10.2% ground corn, 5% sucrose, and 3% flaxseed oil (FLX+SO). Compared with SBM, the concentration and yield of milk enterolactone increased in cows fed the FM diets, but did not differ among FLX+S, FLX+O, and FLX+SO. The relative abundances of the phyla Firmicutes, Verrucomicrobiota, and Actinobacteriota and those of the bacterial genera Lachnospiraceae NK3A20 group, Eubacterium coprostanoligenes group, Anaeromusa-Anaeroarcus, WCHB1-41, and p-251-o5 decreased, whereas Prevotella and NK4A214 group increased when comparing SBM against at least 1 diet containing FM. Furthermore, the relative abundances of Firmicutes and Actinobacteriota and those of Prevotella, Lachnospiraceae NK3A20 group, Eubacterium coprostanoligenes group, Acetitomaculum, Lachnospiraceae unclassified, NK4A214 group, and Anaeromusa-Anaeroarcus changed (increased or decreased) across the FLX+S, FLX+O, and FLX+SO diets. However, all these changes in the relative abundance of the ruminal bacterial taxa were not conclusively associated with the effect of diets on milk enterolactone. Diets did not affect ruminal pH and concentrations of NH3-N and total VFA. Dry matter intake and yields of milk, milk fat, and milk true protein all decreased in cows fed FLX+O or FLX+SO. Yields of milk total odd-chain FA, branched-chain FA, total < 16C FA, and total 16C FA all decreased with feeding FLX+O and FLX+SO. The apparent total-tract digestibilities of DM and OM were lowest in the FLX+S and FLX+O diets, with CP and ADF digestibilities lowest in cows receiving FLX+S or FLX+O, respectively. Urinary excretion of total N was lowest with feeding SBM. Contrarily, diets did not affect the urinary excretion of total purine derivatives. In brief, despite the effect of diets on the relative abundance of several ruminal microbiota phyla and genera, we were unable to conclusively associate these changes with increased milk enterolactone in FM-containing diets versus SBM.

9.
J Plant Physiol ; 297: 154259, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705079

ABSTRACT

Management of the plant microbiome may help support food needs for the human population. Bacteria influence plants through enhancing nutrient uptake, metabolism, photosynthesis, biomass production and/or reinforcing immunity. However, information into how these microbes behave under different growth conditions is missing. In this work, we tested how carbon supplements modulate the interaction of Pseudomonas chlororaphis with Arabidopsis thaliana. P. chlororaphis streaks strongly repressed primary root growth, lateral root formation and ultimately, biomass production. Noteworthy, increasing sucrose availability into the media from 0 to 2.4% restored plant growth and promoted lateral root formation in bacterized seedlings. This effect could not be observed by supplementing sucrose to leaves only, indicating that the interaction was strongly modulated by bacterial access to sugar. Total phenazine content decreased in the bacteria grown in high (2.4%) sucrose medium, and conversely, the expression of phzH and pslA genes were diminished by sugar supply. Pyocyanin antagonized the promoting effects of sucrose in lateral root formation and biomass production in inoculated seedlings, indicating that this virulence factor accounts for growth repression during the plant-bacterial interaction. Defence reporter transgenes PR-1::GUS and LOX2::GUS were induced in leaves, while the expression of the auxin-inducible, synthetic reporter gene DR5::GUS was enhanced in the roots of bacterized seedlings at low and high sucrose treatments, which suggests that growth/defence trade-offs in plants are critically modulated by P. chlororaphis. Collectively, our data suggest that bacterial carbon nutrition controls the outcome of the relation with plants.


Subject(s)
Arabidopsis , Indoleacetic Acids , Phenazines , Plant Roots , Pseudomonas chlororaphis , Sucrose , Sucrose/metabolism , Arabidopsis/microbiology , Arabidopsis/metabolism , Arabidopsis/genetics , Plant Roots/microbiology , Plant Roots/metabolism , Pseudomonas chlororaphis/metabolism , Phenazines/metabolism , Indoleacetic Acids/metabolism
10.
J Exp Bot ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758594

ABSTRACT

Bud dormancy is a survival strategy that plants have developed in their native habitats. It helps them endure harsh seasonal changes by temporarily halting growth and activity until conditions become more favorable. Research has primarily focused on bud dormancy in tree species and the ability to halt growth in vegetative tissues, particularly in meristems. Various plant species, such as potato, have developed specialized storage organs, enabling them to become dormant during their yearly growth cycle. Deciduous trees and potato tubers exhibit a similar type of bud endodormancy (ED), where the bud meristem will not initiate growth, even under favorable environmental conditions. Chilling accumulation activates C-repeat/dehydration responsive element binding (DREB) factors (CBFs) transcription factors that modify the expression of dormancy-associated genes. Chilling conditions shorten the duration of ED by influencing plant hormones and sugar metabolism, which impact the timing and rate of bud growth. Sugar metabolism and signaling pathways can interact with abscisic acid (ABA), affecting the symplastic connection of dormant buds. This review explores how chilling affects ED duration and explores the similarity of the chilling response of dormant buds in potato tuber and woody perennials.

11.
Foods ; 13(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38790875

ABSTRACT

Black carrot (Daucus carota ssp. sativus var. atrorubens Alef.) is widely recognized for its bioactive compounds and antioxidant properties. The black carrot of Cuevas Bajas (Málaga) is a local variety characterized by a black/purple core, which differs from other black carrot varieties. Therefore, this autochthonous variety was characterized according to the root size and the harvesting season by means of a study of its antioxidant capacity analyzed by three methods, its total carotenoids content, and its sugars and phenolic compounds profile by ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-MS). A total of 20 polyphenolic compounds were quantified in 144 samples analyzed. The anthocyanidins group was observed to be the most abundant, followed by the hydroxycinnamic acids group. Moreover, pelargonidin 3-sambubioside was observed in black carrot for the first time. The medium-sized carrots presented the highest content of phenolic compounds, largely due to their significantly higher anthocyanidins content. Comparatively, the small carrots showed a higher content of simple sugars than the large ones. Regarding the influence of season, significantly higher quantities of glucose and fructose were observed in the late-season carrots, while sucrose was the main sugar in early-season samples. No significant differences were observed in the total carotenoid content of black carrot.

12.
Foods ; 13(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731670

ABSTRACT

The challenges in the characterization of the nutritional quality of grain foods comprise obstacles to public health actions toward promotion of healthier grain-based foods. The present study investigated how carbohydrate metrics related to glycemic index (GI), glycemic load (GL), and warning labels of grain foods consumed by individuals living in São Paulo, Brazil. Information on intake of grain foods at individual level was obtained using 24 h recalls within a cross-sectional population-based survey conducted in 2015. There were 244 unique grain products reported by individuals in the survey, assessed through four metrics of carbohydrate quality, considering contents per 10 g of total carbohydrate: (1) ≥1 g fiber, (2) ≥1 g fiber and <1 g free sugars, (3) ≥1 g fiber and <2 g free sugars, and (4) ≥1 g fiber, and <2 g free sugars per 1 g of fiber. Outcomes included GI, GL, and inclusion of warning labels proposed by the Brazilian National Health Surveillance Agency (ANVISA), the Chilean Ministry of Health (1st and 3rd stages), and the Pan American Health Organization (PAHO). Metrics identified products with lower mean GI (-12.8 to -9.0 [p-values < 0.001]), and GL (-12.5 to -10.3 [p-values < 0.001]). Warning systems showed a certain degree of discrimination between products according to the metrics (p-value < 0.01 each); however, >50% of products with good nutritional quality according to the carbohydrate metrics still would receive warnings. Findings suggest that carbohydrate metrics identified products with lower GI and GL, and current warning labels may not adequately capture overall nutritional quality of grain foods.

13.
Plants (Basel) ; 13(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732476

ABSTRACT

One of the key problems of biology is how plants adapt to unfavorable conditions, such as low temperatures. A special focus is placed on finding ways to increase tolerance in important agricultural crops like wheat. Au-based nanoparticles (Au-NPs) have been employed extensively in this area in recent years. Au-NPs can be produced fast and easily using low-cost chemical reagents. When employed in microdoses, Au-NPs are often non-toxic to plants, animals, and people. In addition, Au-NPs mainly have favorable impacts on plants. In this study, we investigated the effect of Au-NP seed nanopriming (diameter 15.3 nm, Au concentration 5-50 µg mL-1) on cold tolerance, as well as some physiological, biochemical and molecular parameters, of cold-sustainable wheat (Triticum aestivum L.) genotype Zlata. The treatment with Au-NPs improved tolerance to low temperatures in control conditions and after cold hardening. Au-NPs treatment boosted the intensity of growth processes, the quantity of photosynthetic pigments, sucrose in leaves, and the expressions of encoded RuBisCo and Wcor15 genes. The potential mechanisms of Au-NPs' influence on the cold tolerance of wheat varieties were considered.

14.
Clin Nutr ; 43(7): 1609-1617, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38781671

ABSTRACT

PURPOSE: The consumption of added sugar has increased rapidly in recent years. Limited knowledge exists regarding the association between added sugar intake and muscle strength, although the latter is a predictor of physical disability in older adults. This study aimed to investigate the association between added sugar intake and longitudinal changes in handgrip strength among middle-aged and elderly Chinese adults. METHODS: This prospective cohort study included 5298 adults aged 40 years and older (62.6% men) from the TCLSIH (Tianjin Chronic Low-grade Systemic Inflammation and Health) cohort study. Added sugar intake was obtained through a frequency questionnaire containing 100 items of food. Handgrip strength is measured annually using a handheld digital dynamometer. Multivariate linear regression models were used to examine the association between added sugars intake and the annual changes in handgrip strength and weight-adjusted handgrip strength. RESULTS: In the fully adjusted model, the annual change in handgrip strength for one unit increase in total added sugar, solid added sugar, and liquid added sugar intake was -0.0353 kg, (95% confidence intervals (CI) -0.000148, -0.0000164; P = 0.01), -0.0348 kg (95% CI: -0.000227, -0.0000269; P = 0.01) and -0.0189 kg (95% CI -0.000187, 0.0000338; P = 0.17), respectively. Added sugar from bread and biscuits sources were remarkably associated with a decline in handgrip strength (ß = -0.0498; 95%CI -0.00281, -0.000787) and (ß = -0.0459; 95%CI 0.00158, 0.00733) (P < 0.01). CONCLUSIONS: Our data suggest that the higher the intake of solid added sugars, but not liquid sugars, were associated with the declined handgrip strength in the Chinese middle-aged and elderly population. In addition, the consumption of added sugars from bread and biscuits sources was also associated with a decline in grip strength.

15.
Plants (Basel) ; 13(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38794441

ABSTRACT

Agave tequilana Weber var. Blue is used as the primary raw material in tequila production due to its fructans (inulin) content. This study evaluates the formulation of a plant-growth-promoting bacteria (PGPB) consortium (Pseudomonas sp. and Shimwellia sp.) to increase sugars in A. tequilana under field conditions. A total of three doses were tested: low (5 L ha-1), medium (10 L ha-1), and high (15 L ha-1), with a cellular density of 1 × 108 CFU mL-1 and one control treatment (without application). Total reducing sugars (TRS), inulin, sucrose, glucose, fructose, and plant growth were measured in agave plants aged 4-5 years at 0 (T0), 3 (T3), 6 (T6), and 12 (T12) months. Yield was recorded at T12. The TRS increased by 3%, and inulin by 5.3% in the high-dose treatment compared to the control at T12. Additionally, a low content of sucrose, glucose, and fructose (approximately 1%) was detected. At T12, the weight of agave heads increased by 31.2% in the medium dose and 22.3% in the high dose compared to the control. The high dose provided a higher inulin content. The A. tequilana plants were five years old and exhibited growth comparable to the standards for 6-7-year-old plants. This study demonstrates a sustainable strategy for tequila production, optimizing the use of natural resources and enhancing industry performance through increased sugar content and yield.

16.
Heliyon ; 10(10): e31243, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38803890

ABSTRACT

The consumption of added sugars has been a major concern among consumers and researchers around the world. Some of these added sugars pose health threats such as obesity, and liver diseases to consumers. Therefore, consumers' understanding and knowledge of added sugars is important in regulating the intake of food items that contain different types and levels of added sugar. In this study, the knowledge and understanding of staff (consumers) of the University of Energy and Natural Resources, Ghana, was assessed through survey The results showed that about 38.5 % of consumers always read food labels whereas 3.1 % never read the labels of food they purchased. However, only about 20 % of consumers considered added sugars as most important information on food labels while most (about 38 %) were concerned about the calorie level in food items purchased. Based on the consumer's knowledge of sugars and sweeteners, there was a high level of disparity in classifying sugars in food as sugars and sweeteners. In addition, most consumers reported that they would adversely avoid food items containing lactose, isoglucose, and saccharin. The awareness of the consumers to the WHO recommendation for sugar reduction, the gender (P = 0.278), age (P = 0.959), level of education (P = 0.888), and staff category (P = 0.944) did not influence their decisions on purchasing food items with added sugars Most consumers were interested in issues of food and nutrition. Therefore, it is recommended that staff are taken through aspects of food nutrition as well as the consumption of added sugar towards the recommended levels.

17.
Food Chem ; 454: 139748, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38805921

ABSTRACT

This study investigated the relationship between coconut maturity stages and the sugar, amino acid, and mineral profiles of coconut water (CW). Metabolite profiles were analysed using 1H NMR, covering glucose (G), fructose (F), sucrose (S), reducing sugars (RS), total sugars (TS), amino acids, and organic acids. Mineral composition was measured using Microwave Plasma Atomic Emission Spectroscopy (MPAES). The results revealed distinct metabolite and mineral profiles across different maturity stages. Immature CW had high G/F and RS/TS ratios but low S/G ratios. Conversely, mature CW showed decreased G/F and RS/TS ratios but an increase in S/G. Mineral analysis revealed potassium as the predominant mineral in CW, peaking in the youngest stage and declining with maturity. Sodium, magnesium, and calcium showed a similar pattern, with higher concentrations in early than in later stages. The study identifies the age of 9-10 months as optimal stages for selecting tender coconut water.

18.
Arch Microbiol ; 206(6): 277, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38789671

ABSTRACT

Nowadays, natural resources like lignocellulosic biomass are gaining more and more attention. This study was conducted to analyse chemical composition of dried and ground samples (500 µm) of various Algerian bioresources including alfa stems (AS), dry palms (DP), olive pomace (OP), pinecones (PC), and tomato waste (TW). AS exhibited the lowest lignin content (3.60 ± 0.60%), but the highest cellulose (58.30 ± 2.06%), and hemicellulose (20.00 ± 3.07%) levels. DP, OP, and PC had around 30% cellulose, and 10% hemicellulose. OP had the highest lignin content (29.00 ± 6.40%), while TW contained (15.70 ± 2.67% cellulose, 13.70 ± 0.002% hemicellulose, and 17.90 ± 4.00% lignin). Among 91 isolated microorganisms, nine were selected for cellulase, xylanase, and/or laccase production. The ability of Bacillus mojavensis to produce laccase and cellulase, as well as B. safensis to produce cellulase and xylanase, is being reported for the first time. In submerged conditions, TW was the most suitable substrate for enzyme production. In this conditions, T. versicolor K1 was the only strain able to produce laccase (4,170 ± 556 U/L). Additionally, Coniocheata hoffmannii P4 exhibited the highest cellulase activity (907.62 ± 26.22 U/L), and B. mojavensis Y3 the highest xylanase activity (612.73 ± 12.73 U/L). T. versicolor K1 culture showed reducing sugars accumulation of 18.87% compared to initial concentrations. Sucrose was the predominant sugar detected by HPLC analysis (13.44 ± 0.02 g/L). Our findings suggest that T. versicolor K1 holds promise for laccase production, while TW represents a suitable substrate for sucrose production.


Subject(s)
Biomass , Laccase , Lignin , Lignin/metabolism , Laccase/metabolism , Algeria , Cellulase/metabolism , Sugars/metabolism , Cellulose/metabolism , Bacteria/metabolism , Bacteria/classification , Bacteria/isolation & purification , Bacteria/enzymology , Bacteria/genetics , Fermentation , Polysaccharides/metabolism , Bacillus/metabolism , Bacillus/enzymology
19.
Int J Biol Macromol ; 269(Pt 1): 131888, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704963

ABSTRACT

Efficient conversion of sugars into fermentable sugars is a critical challenge in the cost-effective production of lignocellulosic biopolymers and biofuels. This study focuses on various sugar quantification techniques applied to Furcraea Foetida (Mauritius Hemp) samples, utilizing natural deep eutectic solvents (NADES) and deep eutectic solvents (DES) like urea, glycerol, citrates, pyrogallol (PY), and cetyltrimethylammonium bromide (CTAB). Employing a Taguchi-designed experiment, operational conditions were fine-tuned to evaluate the influence of time, concentration, and temperature on each deep eutectic solvent-based process. The emerging green solvent extraction approach demonstrated significant results, achieving notably high sugar yields compared to traditional techniques such as alkali, hot-water, and acid-mediated extraction. At a CTAB:PY molar ratio of 1:3, optimized for 60 min at 50 °C, the highest fermentable sugar (FS) yield of 0.6891 ± 0.0123 g FS/g LCB was attained-2 to 6 times higher than non-optimized values and 0.2 to 0.3 times higher than optimized traditional methods. In light of this, this research study emphasizes the pivotal significance of efficient sugar conversion through optimized deep eutectic solvent-based extraction methods, with a particular focus on Furcraea Foetida fibers, offering promising outcomes for the biofuel and biopolymer production industry.


Subject(s)
Deep Eutectic Solvents , Fermentation , Lignin , Lignin/chemistry , Deep Eutectic Solvents/chemistry , Sugars/chemistry , Solvents/chemistry , Temperature
20.
Environ Sci Pollut Res Int ; 31(24): 35744-35759, 2024 May.
Article in English | MEDLINE | ID: mdl-38744764

ABSTRACT

This study describes the extraction and characterization of the hemicellulosic autohydrolysates (HAHs) derived from rice straw (RS) and vascular aquatic weeds like Typha angustifolia (TA) and Ceretophyllum demersum (CD). It further explores their capacity to sustain the proliferation of selected lactic acid bacteria (i.e., prebiotic activity) isolated from milk samples. To fractionate HAH from RS, TA and CD hot water extraction (HWE) method was used and RS, TA, and CD biomasses yielded 6.8, 4.99 and 2.98% of HAH corresponding to the hemicellulose extraction efficiencies of 26.15 ± 0.8%, 23.76 ± 0.6%, and 18.62 ± 0.4% respectively. The chemical characterization of HAH concentrates through HPLC showed that they comprised galactose, arabinose, xylose and glucose. The total phenol content of the RS, TA and CD-derived HAH concentrates were 37.53, 56.78 and 48.08 mg GAE/g. The five lactic acid bacteria (LAB) isolates Q1B, Q2A, Q3B, G1C and G2B selected for prebiotic activity assays generated mixed responses with the highest growth in RS-HAH for Q2A and the least in TA-HAH for Q3B. Further, the isolates Q2A, Q3B, G1C, and G2B, which showed the highest growth performance, were identified through MALDI-TOF and 16S rRNA sequencing as Lactobacillus brevis. All the tested LAB isolates showed diauxic growth in crude HAH preparations to maximize the utilization of carbon resources for their proliferation. This suggests that the selected LAB isolates are efficient degraders of hemicellulosic sugars. This paves the way for the valorization of lignocellulosic biomass to produce prebiotic hemicellulosic autohydrolysate and consequently enhances environmental sustainability by improving resource efficiency.


Subject(s)
Oryza , Polysaccharides , Prebiotics , Fermentation
SELECTION OF CITATIONS
SEARCH DETAIL
...