Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 523
Filter
1.
Essays Biochem ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958528

ABSTRACT

Sulfation is one of the most important modifications that occur to a wide range of bioactive small molecules including polysaccharides, proteins, flavonoids, and steroids. In turn, these sulfated molecules have significant biological and pharmacological roles in diverse processes including cell signalling, modulation of immune and inflammation response, anti-coagulation, anti-atherosclerosis, and anti-adhesive properties. This Essay summarises the most encountered chemical sulfation methods of small molecules. Sulfation reactions using sulfur trioxide amine/amide complexes are the most used method for alcohol and phenol groups in carbohydrates, steroids, proteins, and related scaffolds. Despite the effectiveness of these methods, they suffer from issues including multiple-purification steps, toxicity issues (e.g., pyridine contamination), purification challenges, stoichiometric excess of reagents which leads to an increase in reaction cost, and intrinsic stability issues of both the reagent and product. Recent advances including SuFEx, the in situ reagent approach, and TBSAB show the widespread appeal of novel sulfating approaches that will enable a larger exploration of the field in the years to come by simplifying the purification and isolation process to access bespoke sulfated small molecules.

2.
Gut Microbes ; 16(1): 2377576, 2024.
Article in English | MEDLINE | ID: mdl-39068517

ABSTRACT

The global incidence and prevalence of inflammatory bowel disease (IBD) are gradually increasing. A high-fat diet (HFD) is known to disrupt intestinal homeostasis and aggravate IBD, yet the underlying mechanisms remain largely undefined. Here, a positive correlation between dietary fat intake and disease severity in both IBD patients and murine colitis models is observed. A HFD induces a significant decrease in indole-3-acetic acid (IAA) and leads to intestinal barrier damage. Furthermore, IAA supplementation enhances intestinal mucin sulfation and effectively alleviates colitis. Mechanistically, IAA upregulates key molecules involved in mucin sulfation, including 3'-phosphoadenosine 5'-phosphosulfate synthase 2 (Papss2) and solute carrier family 35 member B3 (Slc35b3), the synthesis enzyme and the transferase of 3'-phosphoadenosine-5'-phosphosulfate (PAPS), via the aryl hydrocarbon receptor (AHR). More importantly, AHR can directly bind to the transcription start site of Papss2. Oral administration of Lactobacillus reuteri, which can produce IAA, contributes to protecting against colitis and promoting mucin sulfation, while the modified L. reuteri strain lacking the iaaM gene (LactobacillusΔiaaM) and the ability to produce IAA fail to exhibit such effects. Overall, IAA enhances intestinal mucin sulfation through the AHR-Papss2-Slc35b3 pathway, contributing to the protection of intestinal homfeostasis.


A HFD can lead to the development of colitis by disrupting tryptophan metabolism in the gut microbiome and lowering levels of IAA. Supplementation with IAA has been shown to alleviate colitis in mice and improve intestinal barrier function. It is believed that IAA may activate the AHR to upregulate the expression of Papss2 and Slc35b3, promoting sulfation modification of mucins and protecting the intestinal barrier. HFD, high-fat diet; AHR, aryl hydrocarbon receptor; IAA, indole-3-acetic acid; Papss2, 3'-phosphoadenosine 5'-phosphosulfate synthase 2; Slc35b3, solute carrier family 35 member B3.


Subject(s)
Gastrointestinal Microbiome , Homeostasis , Indoleacetic Acids , Intestinal Mucosa , Mucins , Animals , Humans , Mice , Gastrointestinal Microbiome/drug effects , Mucins/metabolism , Indoleacetic Acids/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Mice, Inbred C57BL , Colitis/microbiology , Colitis/metabolism , Colitis/chemically induced , Limosilactobacillus reuteri/metabolism , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/drug therapy , Diet, High-Fat/adverse effects , Male , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Aryl Hydrocarbon/genetics , Disease Models, Animal
3.
Mol Hum Reprod ; 30(6)2024 May 30.
Article in English | MEDLINE | ID: mdl-38830032

ABSTRACT

Preterm birth is a serious pregnancy complication that affects neonatal mortality, morbidity, and long-term neurological prognosis. Predicting spontaneous preterm delivery (PTD) is important for its management. While excluding the risk of PTD is important, identifying women at high risk of PTD is imperative for medical intervention. Currently used PTD prediction parameters in clinical practice have shown high negative predictive values, but low positive predictive values. We focused on sulfated and sialylated glycocalyx changes in the uterus and vagina prior to the onset of parturition and explored the potential of electrophysiological detection of these changes as a PTD prediction parameter with a high positive predictive value. In vivo local vaginal bioelectrical impedance (VZ) was measured using two different mouse PTD models. PTD was induced in ICR mice through the subcutaneous injection of mifepristone or local intrauterine injection of lipopolysaccharide (LPS). The PTD rates were 100% and 60% post-administration of mifepristone (16-20 h, n = 4) and LPS (12-24 h, n = 20), respectively. The local VZ values (15 and 10 h after mifepristone or LPS treatment, respectively) were significantly lower in the PTD group than in the non-PTD group. Receiver operator characteristic (ROC) curve analysis of VZ at 125 kHz as a predictor of PTD showed an area under the ROC curve of 1.00 and 0.77 and positive predictive values of 1.00 and 0.86, for the mifepristone and LPS models, respectively, suggesting that local VZ value can predict PTD. Histological examination of the LPS-treated model 6 h post-treatment revealed increased expression of sulfomucins and/or sulfated proteoglycans and sialomucins in the cervical epithelium, cervical stroma and vaginal stroma. In conclusion, local VZ values can determine sulfated and sialylated glycocalyx alterations within the uterus and vagina and might be a useful PTD prediction parameter.


Subject(s)
Electric Impedance , Mice, Inbred ICR , Premature Birth , Vagina , Animals , Female , Vagina/metabolism , Vagina/drug effects , Vagina/pathology , Pregnancy , Mice , Premature Birth/metabolism , Premature Birth/diagnosis , Mifepristone/pharmacology , Uterus/metabolism , Lipopolysaccharides/pharmacology , Lipopolysaccharides/toxicity , Predictive Value of Tests , ROC Curve , Disease Models, Animal
4.
J Proteome Res ; 23(7): 2386-2396, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38900499

ABSTRACT

Tyrosine sulfation, an understudied but crucial post-translational modification, cannot be directly detected in conventional nanoflow liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS) due to the extreme sulfate lability. Here, we report the detection of sulfate-retaining fragments from LC-electron capture dissociation (ECD) and nanoLC-electron transfer higher energy collision dissociation (EThcD). Sulfopeptide candidates were identified by Proteome Discoverer and MSFragger analysis of nanoLC-HCD MS/MS data and added to inclusion lists for LC-ECD or nanoLC-EThcD MS/MS. When this approach failed, targeted LC-ECD with fixed m/z isolation windows was performed. For the plasma protein fibrinogen, the known pyroglutamylated sulfopeptide QFPTDYDEGQDDRPK from the beta chain N-terminus was identified despite a complete lack of sulfate-containing fragment ions. The peptide QVGVEHHVEIEYD from the gamma-B chain C-terminus was also identified as sulfated or phosphorylated. This sulfopeptide is not annotated in Uniprot but was previously reported. MSFragger further identified a cysteine-containing peptide from the middle of the gamma chain as sulfated and deamidated. NanoLC-EThcD and LC-ECD MS/MS confirmed the two former sulfopeptides via sulfate-retaining fragment ions, whereas an unexpected fragmentation pattern was observed for the third sulfopeptide candidate. Manual interpretation of the LC-ECD spectrum revealed two additional isobaric identifications: a trisulfide-linked cysteinyl-glycine or a carbamidomethyl-dithiothreiotol covalent adduct. Synthesis of such adducts confirmed the latter identity.


Subject(s)
Fibrinogen , Tandem Mass Spectrometry , Tyrosine , Tyrosine/chemistry , Tyrosine/analogs & derivatives , Tandem Mass Spectrometry/methods , Fibrinogen/chemistry , Fibrinogen/metabolism , Chromatography, Liquid/methods , Humans , Protein Processing, Post-Translational , Trypsin/chemistry , Trypsin/metabolism , Sulfates/chemistry , Amino Acid Sequence , Peptides/chemistry , Peptides/analysis , Electrons
5.
Carbohydr Polym ; 341: 122294, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38876708

ABSTRACT

The role of glycosaminoglycans (GAGs) in modulating bone morphogenetic protein (BMP) signaling represents a recent and underexplored area. Conflicting reports suggest a dual effect: some indicate a positive influence, while others demonstrate a negative impact. This duality suggests that the localization of GAGs (either at the cell surface or within the extracellular matrix) or the specific type of GAG may dictate their signaling role. The precise sulfation patterns of heparan sulfate (HS) responsible for BMP2 binding remain elusive. BMP2 exhibits a preference for binding to HS over other GAGs. Using well-characterized biomaterials mimicking the extracellular matrix, our research reveals that HS promotes BMP2 signaling in the extracellular space, contrary to chondroitin sulfate (CS), which enhances BMP2 bioactivity at the cell surface. Further observations indicate that a central IdoA (2S)-GlcNS (6S) tri-sulfated motif within HS hexasaccharides enhances binding. Nevertheless, BMP2 exhibits a degree of adaptability to various HS sulfation types and sequences. Molecular dynamic simulations attribute this adaptability to the BMP2 N-terminal end flexibility. Our findings illustrate the complex interplay between GAGs and BMP signaling, highlighting the importance of localization and specific sulfation patterns. This understanding has implications for the development of biomaterials with tailored properties for therapeutic applications targeting BMP signaling pathways.


Subject(s)
Bone Morphogenetic Protein 2 , Glycosaminoglycans , Heparitin Sulfate , Signal Transduction , Bone Morphogenetic Protein 2/metabolism , Heparitin Sulfate/metabolism , Heparitin Sulfate/chemistry , Humans , Glycosaminoglycans/metabolism , Glycosaminoglycans/chemistry , Chondroitin Sulfates/chemistry , Chondroitin Sulfates/metabolism , Molecular Dynamics Simulation , Animals , Protein Binding
6.
Mol Med Rep ; 30(1)2024 Jul.
Article in English | MEDLINE | ID: mdl-38757335

ABSTRACT

Thrombin, which plays a crucial role in hemostasis, is also implicated in cancer progression. In the present study, the effects of the thrombin­targeting recombinant tyrosine­sulfated madanin­1 on cancer cell behavior and signaling pathways compared with madanin­1 wild­type (WT) were investigated. Recombinant madanin­1 2 sulfation (madanin­1 2S) and madanin­1 WT proteins were generated using Escherichia coli. SKOV3 and MDA­MB­231 cells were treated with purified recombinant proteins with or without thrombin stimulation. Migration and invasion of cells were analyzed by wound healing assay and Transwell assay, respectively. Thrombin markedly increased cell migration and invasion in both SKOV3 and MDA­MB­231 cells, which were significantly suppressed by madanin­1 2S (P<0.05). Madanin­1 2S also significantly suppressed thrombin­induced expression of phosphorylated (p)­Akt and p­extracellular signal­regulated kinase in both cell lines (P<0.05), whereas madanin­1 WT had no effect on the expression levels of these proteins in MDA­MB­231 cells. Furthermore, madanin­1 2S significantly reversed the effects of thrombin on E­cadherin, N­cadherin and vimentin expression in MDA­MB­231 cells (P<0.05), whereas madanin­1 WT did not show any effect. In conclusion, madanin­1 2S suppressed the migration and invasion of cancer cells more effectively than madanin­1 WT. It is hypothesized that inhibiting thrombin via the sulfated form of madanin­1 may be a potential candidate for enhanced cancer therapy; however, further in vivo validation is required.


Subject(s)
Cell Movement , Recombinant Proteins , Thrombin , Humans , Cadherins/metabolism , Cadherins/genetics , Cell Line, Tumor , Cell Movement/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Recombinant Proteins/pharmacology , Signal Transduction/drug effects , Thrombin/antagonists & inhibitors , Thrombin/pharmacology , Tyrosine/metabolism , Tyrosine/pharmacology
7.
Heliyon ; 10(10): e31339, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38813151

ABSTRACT

Lead-acid batteries are noted for simple maintenance, long lifespan, stable quality, and high reliability, widely used in the field of energy storage. However, during the use of lead-acid batteries, the negative electrode is prone to irreversible sulfation, failing to meet the requirements of new applications such as maintenance-free hybrid vehicles and solar energy storage. In this study, in order to overcome the sulfation problem and improve the cycle life of lead-acid batteries, active carbon (AC) was selected as a foaming agent and foam fixing agent, and carbon foams (CF) with layered porous structure was prepared by mixing with molten sucrose. Sucrose as raw material is green and cheap, and the material preparation process is simple. The prepared CF material was then added as an additive to the negative electrode plate, and the electrochemical performance of the electrode plate and the battery was studied. The results proved that the addition of CF could effectively inhibit the sulfate formation of the negative electrode plate, with the 1.0 % CF negative electrode plate showing the best electrochemical performance. Specifically, according to the result of battery cycle testing, the simulated battery with CF had a cycle life of 3642 times, which was 2.87 times that of the blank group and 2.39 times of the AC group. Meanwhile, rate testing showed that the simulated battery with CF could maintain a high capacity even under high-rate discharge conditions.

8.
Essays Biochem ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38699885

ABSTRACT

The mammalian cytosolic sulfotransferases (SULTs) catalyze the sulfation of endocrine hormones as well as a broad array of drugs, environmental chemicals, and other xenobiotics. Many endocrine-disrupting chemicals (EDCs) interact with these SULTs as substrates and inhibitors, and thereby alter sulfation reactions responsible for metabolism and regulation of endocrine hormones such as estrogens and thyroid hormones. EDCs or their metabolites may also regulate expression of SULTs through direct interaction with nuclear receptors and other transcription factors. Moreover, some sulfate esters derived from EDCs (EDC-sulfates) may serve as ligands for endocrine hormone receptors. While the sulfation of an EDC can lead to its excretion in the urine or bile, it may also result in retention of the EDC-sulfate through its reversible binding to serum proteins and thereby enable transport to other tissues for intracellular hydrolysis and subsequent endocrine disruption. This mini-review outlines the potential roles of SULTs and sulfation in the effects of EDCs and our evolving understanding of these processes.

9.
Carbohydr Polym ; 337: 122157, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710573

ABSTRACT

Seaweed polysaccharides, particularly sulfated ones, exhibited potent antiviral activity against a wide variety of enveloped viruses, such as herpes simplex virus and respiratory viruses. Different mechanisms of action were suggested, which may range from preventing infection to intracellular antiviral activity, at different stages of the viral cycle. Herein, we generated two chemically engineered sulfated fucans (C303 and C304) from Cystoseira indica by an amalgamated extraction-sulfation procedure using chlorosulfonic acid-pyridine/N,N-dimethylformamide and sulfur trioxide-pyridine/N,N-dimethylformamide reagents, respectively. These compounds exhibited activity against HSV-1 and RSV with 50 % inhibitory concentration values in the range of 0.75-2.5 µg/mL and low cytotoxicity at concentrations up to 500 µg/mL. The antiviral activities of chemically sulfated fucans (C303 and C304) were higher than the water (C301) and CaCl2 extracted (C302) polysaccharides. Compound C303 had a (1,3)-linked fucan backbone and was branched. Sulfates were present at positions C-2, C-4, and C-2,4 of Fucp, and C-6 of Galp residues of this polymer. Compound C304 had a comparable structure but with more sulfates at C-4 of Fucp residue. Both C303 and C304 were potent antiviral candidates, acting in a dose-dependent manner on the adsorption and other intracellular stages of HSV-1 and RSV replication, in vitro.


Subject(s)
Antiviral Agents , Herpesvirus 1, Human , Polysaccharides , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Chlorocebus aethiops , Herpesvirus 1, Human/drug effects , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Animals , Vero Cells , Humans , Sulfates/chemistry , Sulfates/pharmacology , Respiratory Syncytial Viruses/drug effects
10.
Gels ; 10(5)2024 May 14.
Article in English | MEDLINE | ID: mdl-38786247

ABSTRACT

The negatively charged extracellular matrix plays a vital role in intervertebral disc tissues, providing specific cues for cell maintenance and tissue hydration. Unfortunately, suitable biomimetics for intervertebral disc regeneration are lacking. Here, sulfated alginate was investigated as a 3D culture material due to its similarity to the charged matrix of the intervertebral disc. Precursor solutions of standard alginate, or alginate with 0.1% or 0.2% degrees of sulfation, were mixed with primary human nucleus pulposus cells, cast, and cultured for 14 days. A 0.2% degree of sulfation resulted in significantly decreased cell density and viability after 7 days of culture. Furthermore, a sulfation-dependent decrease in DNA content and metabolic activity was evident after 14 days. Interestingly, no significant differences in cell density and viability were observed between surface and core regions for sulfated alginate, unlike in standard alginate, where the cell number was significantly higher in the core than in the surface region. Due to low cell numbers, phenotypic evaluation was not achieved in sulfated alginate biomaterial. Overall, standard alginate supported human NP cell growth and viability superior to sulfated alginate; however, future research on phenotypic properties is required to decipher the biological properties of sulfated alginate in intervertebral disc cells.

11.
Molecules ; 29(7)2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38611725

ABSTRACT

The C(sp2)-aryl sulfonate functional group is found in bioactive molecules, but their synthesis can involve extreme temperatures (>190 °C or flash vacuum pyrolysis) and strongly acidic reaction conditions. Inspired by the 1917 Tyrer industrial process for a sulfa dye that involved an aniline N(sp2)-SO3 intermediate en route to a C(sp2)-SO3 rearranged product, we investigated tributylsulfoammonium betaine (TBSAB) as a milder N-sulfamation to C-sulfonate relay reagent. Initial investigations of a stepwise route involving TBSAB on selected anilines at room temperature enabled the isolation of N(sp2)-sulfamate. Subsequent thermal rearrangement demonstrated the intermediary of a sulfamate en route to the sulfonate; however, it was low-yielding. Investigation of the N-sulfamate to C--sulfonate mechanism through control experiments with variation at the heteroatom positions and kinetic isotope experiments (KIEH/D) confirmed the formation of a key N(sp2)-SO3 intermediate and further confirmed an intermolecular mechanism. Furthermore, compounds without an accessible nitrogen (or oxygen) lone pair did not undergo sulfamation- (or sulfation) -to-sulfonation under these conditions. A one-pot sulfamation and thermal sulfonation reaction was ultimately developed and explored on a range of aniline and heterocyclic scaffolds with high conversions, including N(sp2)-sulfamates (O(sp2)-sulfates) and C(sp2)-sulfonates, in up to 99 and 80% (and 88% for a phenolic example) isolated yield, respectively. Encouragingly, the ability to modulate the ortho-para selectivity of the products obtained was observed under thermal control. A sulfonated analog of the intravenous anesthetic propofol was isolated (88% yield), demonstrating a proof-of-concept modification of a licensed drug alongside a range of nitrogen- and sulfur-containing heterocyclic fragments used in drug discovery.

12.
Molecules ; 29(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38611947

ABSTRACT

The Beckmann rearrangement of ketoximes to their corresponding amides, using a Brønsted acid-mediated fragmentation and migration sequence, has found wide-spread industrial application. We postulated that the development of a methodology to access ylideneamino sulfates using tributylsulfoammonium betaine (TBSAB) would afford isolable Beckmann-type intermediates and competent partners for subsequent rearrangement cascades. The ylideneamino sulfates generated, isolated as their tributylammonium salts, are sufficiently activated to undergo Beckmann rearrangement without additional reagent activation. The generation of sulfuric acid in situ from the ylideneamino sulfate giving rise to a routine Beckmann rearrangement and additional amide bond cleavage to the corresponding aniline was detrimental to reaction success. The screening of bases revealed inexpensive sodium bicarbonate to be an effective additive to prevent classic Brønsted acid-mediated fragmentation and achieve optimal conversions of up to 99%.

13.
Biochem Biophys Res Commun ; 711: 149891, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38621346

ABSTRACT

Microorganisms synthesize a plethora of complex secondary metabolites, many of which are beneficial to human health, such as anticancer agents and antibiotics. Among these, the Sungeidines are a distinct class of secondary metabolites known for their bulky and intricate structures. They are produced by a specific biosynthetic gene cluster within the genome of the soil-dwelling actinomycete Micromonospora sp. MD118. A notable enzyme in the Sungeidine biosynthetic pathway is the activating sulfotransferase SgdX2. In this pathway, SgdX2 mediates a key sulfation step, after which the product undergoes spontaneous dehydration to yield a Sungeidine compound. To delineate the structural basis for SgdX2's substrate recognition and catalytic action, we have determined the crystal structure of SgdX2 in complex with its sulfate donor product, 3'-phosphoadenosine 5'-phosphate (PAP), at a resolution of 1.6 Å. Although SgdX2 presents a compact overall structure, its core elements are conserved among other activating sulfotransferases. Our structural analysis reveals a unique substrate-binding pocket that accommodates bulky, complex substrates, suggesting a specialized adaptation for Sungeidine synthesis. Moreover, we have constructed a substrate docking model that provides insights into the molecular interactions between SgdX2 and Sungeidine F, enhancing our understanding of the enzyme's specificity and catalytic mechanism. The model supports a general acid-base catalysis mechanism, akin to other sulfotransferases, and underscores the minor role of disordered regions in substrate recognition. This integrative study of crystallography and computational modeling advances our knowledge of microbial secondary metabolite biosynthesis and may facilitate the development of novel biotechnological applications.


Subject(s)
Sulfotransferases , Sulfotransferases/metabolism , Sulfotransferases/chemistry , Sulfotransferases/genetics , Crystallography, X-Ray , Models, Molecular , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Protein Conformation , Substrate Specificity , Catalytic Domain
14.
Sci Rep ; 14(1): 8050, 2024 04 05.
Article in English | MEDLINE | ID: mdl-38580665

ABSTRACT

Pregnenolone is a key intermediate in the biosynthesis of many steroid hormones and neuroprotective steroids. Sulfotransferase family cytosolic 2B member 1 (SULT2B1a) has been reported to be highly selective to sulfate pregnenolone. This study aimed to clarify the effect of missense single nucleotide polymorphisms (SNPs) of the human SULT2B1 gene on the sulfating activity of coded SULT2B1a allozymes toward Pregnenolone. To investigate the effects of single nucleotide polymorphisms of the SULT2B1 gene on the sulfation of pregnenolone by SULT2B1a allozymes, 13 recombinant SULT2B1a allozymes were generated, expressed, and purified using established procedures. Human SULT2B1a SNPs were identified by a comprehensive database search. 13 SULT2B1a nonsynonymous missense coding SNPs (cSNPs) were selected, and site-directed mutagenesis was used to generate the corresponding cDNAs, packaged in pGEX-2TK expression vector, encoding these 13 SULT2B1a allozymes, which were bacterially expressed in BL21 E. coli cells and purified by glutathione-Sepharose affinity chromatography. Purified SULT2B1a allozymes were analyzed for sulfating activities towards pregnenolone. In comparison with the wild-type SULT2B1a, of the 13 allozymes, 11 showed reduced activity toward pregnenolone at 0.1 µM. Specifically, P134L and R259Q allozymes, reported to be involved in autosomal-recessive congenital ichthyosis, displayed low activity (1-10%) toward pregnenolone. The findings of this study may demonstrate the impact of genetic polymorphism on the sulfation of pregnenolone in individuals with different SULT2B1 genotypes.


Subject(s)
Isoenzymes , Pregnenolone , Humans , Isoenzymes/metabolism , Escherichia coli/metabolism , Sulfotransferases/metabolism , Polymorphism, Single Nucleotide
15.
Int J Mol Sci ; 25(5)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38474230

ABSTRACT

Sulfonation, primarily facilitated by sulfotransferases, plays a crucial role in the detoxification pathways of endogenous substances and xenobiotics, promoting metabolism and elimination. Traditionally, this bioconversion has been attributed to a family of human cytosolic sulfotransferases (hSULTs) known for their high sequence similarity and dependence on 3'-phosphoadenosine 5'-phosphosulfate (PAPS) as a sulfo donor. However, recent studies have revealed the presence of PAPS-dependent sulfotransferases within gut commensals, indicating that the gut microbiome may harbor a diverse array of sulfotransferase enzymes and contribute to detoxification processes via sulfation. In this study, we investigated the prevalence of sulfotransferases in members of the human gut microbiome. Interestingly, we stumbled upon PAPS-independent sulfotransferases, known as aryl-sulfate sulfotransferases (ASSTs). Our bioinformatics analyses revealed that members of the gut microbial genus Sutterella harbor multiple asst genes, possibly encoding multiple ASST enzymes within its members. Fluctuations in the microbes of the genus Sutterella have been associated with various health conditions. For this reason, we characterized 17 different ASSTs from Sutterella wadsworthensis 3_1_45B. Our findings reveal that SwASSTs share similarities with E. coli ASST but also exhibit significant structural variations and sequence diversity. These differences might drive potential functional diversification and likely reflect an evolutionary divergence from their PAPS-dependent counterparts.


Subject(s)
Burkholderiales , Gastrointestinal Microbiome , Humans , Escherichia coli/metabolism , Sulfotransferases/metabolism
16.
Carbohydr Polym ; 333: 121986, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38494237

ABSTRACT

Heparin, an anticoagulant with a century-long history of use, has been investigated over the past decade as a potential drug delivery vehicle. Despite its safety and efficacy, its interactions with many proteins through specific sulfate patterns can complicate drug delivery by mediating diverse biological functions. Here, we present the synthesis of a three-component drug delivery system comprising de-sulfated heparin as the carrier, galactose as the targeting moiety, and paclitaxel as the therapeutic drug. Removal of sulfates eliminated most of its anticoagulant effects in all intermediates. Through coupling with galactose and paclitaxel, the system improved the solubility of the drug and achieved selective targeting and efficient drug delivery to HepG2 cells, a liver carcinoma cell line with high galactose receptor expression. While the three-component system exhibited a slightly higher IC50 value than native paclitaxel, demonstrating its efficacy as a drug carrier, the IC50 value for the normal human liver cell line QSG7701 was significantly higher, indicating its selectivity and safety. Our study introduces a novel approach utilizing desulfated heparin as a carrier, warranting further investigation to unlock its potential in targeted drug delivery strategies.


Subject(s)
Heparin , Paclitaxel , Humans , Paclitaxel/pharmacology , Galactose , Sulfates/metabolism , Anticoagulants , Drug Delivery Systems
17.
Polymers (Basel) ; 16(5)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38475404

ABSTRACT

This study involved the creation of highly porous PLA scaffolds through the porogen/leaching method, utilizing polyethylene glycol as a porogen with a 75% mass ratio. The outcome achieved a highly interconnected porous structure with a thickness of 25 µm. To activate the scaffold's surface and improve its hydrophilicity, radiofrequency (RF) air plasma treatment was employed. Subsequently, furcellaran subjected to sulfation or carboxymethylation was deposited onto the RF plasma treated surfaces with the intention of improving bioactivity. Surface roughness and water wettability experienced enhancement following the surface modification. The incorporation of sulfate/carboxymethyl group (DS = 0.8; 0.3, respectively) is confirmed by elemental analysis and FT-IR. Successful functionalization of PLA scaffolds was validated by SEM and XPS analysis, showing changes in topography and increases in characteristic elements (N, S, Na) for sulfated (SF) and carboxymethylated (CMF). Cytocompatibility was evaluated by using mouse embryonic fibroblast cells (NIH/3T3).

18.
Acta Pharm Sin B ; 14(3): 1241-1256, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38487006

ABSTRACT

Sulfation is a crucial and prevalent conjugation reaction involved in cellular processes and mammalian physiology. 3'-Phosphoadenosine 5'-phosphosulfate (PAPS) synthase 2 (PAPSS2) is the primary enzyme to generate the universal sulfonate donor PAPS. The involvement of PAPSS2-mediated sulfation in adenomatous polyposis coli (APC) mutation-promoted colonic carcinogenesis has not been reported. Here, we showed that the expression of PAPSS2 was decreased in human colon tumors along with cancer stages, and the lower expression of PAPSS2 was correlated with poor prognosis in advanced colon cancer. Gut epithelial-specific heterozygous Apc deficient and Papss2-knockout (ApcΔgut-HetPapss2Δgut) mice were created, and the phenotypes were compared to the spontaneous intestinal tumorigenesis of ApcΔgut-Het mice. ApcΔgut-HetPapss2Δgut mice were more sensitive to gut tumorigenesis, which was mechanistically accounted for by the activation of Wnt/ß-catenin signaling pathway due to the suppression of chondroitin sulfation and inhibition of the farnesoid X receptor (FXR)-transducin-like enhancer of split 3 (TLE3) gene regulatory axis. Chondroitin sulfate supplementation in ApcΔgut-HetPapss2Δgut mice alleviated intestinal tumorigenesis. In summary, we have uncovered the protective role of PAPSS2-mediated chondroitin sulfation and bile acids-FXR-TLE3 activation in the prevention of gut carcinogenesis via the antagonization of Wnt/ß-catenin signaling. Chondroitin sulfate may be explored as a therapeutic agent for Papss2 deficiency-associated colonic carcinogenesis.

19.
J Colloid Interface Sci ; 663: 930-946, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38447407

ABSTRACT

Recovery of valuable metals from spent lithium-ion batteries (LIBs) is of great importance for resource sustainability and environmental protection. This study introduced pyrite ore (FeS2) as an alternative additive to achieve the selective recovery of Li2CO3 from spent LiCoO2 (LCO) batteries. The mechanism study revealed that the sulfation reaction followed two pathways. During the initial stage (550 °C-800 °C), the decomposition and oxidation of FeS2 and the subsequent gas-solid reaction between the resulting SO2 and layered LCO play crucial roles. The sulfation of lithium occurred prior to cobalt, resulting in the disruption of layered structure of LCO and the transformation into tetragonal spinel. In the second stage (over 800 °C), the dominated reactions were the decomposition of orthorhombic cobalt sulfate and its combination with rhombohedral Fe2O3 to form CoFe2O4. The deintercalation of Li from LCO by the substitution of Fe and conversion of Co(III)/Fe(II) into Co3O4/CoFe2O4 were further confirmed by density functional theory (DFT) calculation results. This fundamental understanding of the sulfation reaction facilitated the future development of lithium extraction methods that utilized additives to substantially reduce energy consumption.

20.
Beilstein J Org Chem ; 20: 173-180, 2024.
Article in English | MEDLINE | ID: mdl-38318459

ABSTRACT

The synthesis of gram quantities of the TF antigen (ß-ᴅ-Gal-(1→3)-α-ᴅ-GalNAc) and its 3'-sulfated analogue with a TEG-N3 spacer attached is described. The synthesis of the TF antigen comprises seven steps, from a known N-Troc-protected galactosamine donor, with an overall yield of 31%. Both the spacer (85%) and the galactose moiety (79%) were introduced using thioglycoside donors in NIS/AgOTf-promoted glycosylation reactions. The 3'-sulfate was finally introduced through tin activation in benzene/DMF followed by treatment with a sulfur trioxide-trimethylamine complex in a 66% yield.

SELECTION OF CITATIONS
SEARCH DETAIL